
Sam
ple

 p
ag

es

http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780321928429
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780321928429
https://plusone.google.com/share?url=http://www.informit.com/title/9780321928429
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780321928429
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780321928429/Free-Sample-Chapter

 Table of Contents

 Preface xxvii

 1 Getting Ready 1

Whence C? 1

Why C? 2

Design Features 2

Efficiency 3

Portability 3

Power and Flexibility 3

Programmer Oriented 3

Shortcomings 4

Whither C? 4

What Computers Do 5

High-level Computer Languages and Compilers 6

Language Standards 7

The First ANSI/ISO C Standard 8

The C99 Standard 8

The C11 Standard 9

Using C: Seven Steps 9

Step 1: Define the Program Objectives 10

Step 2: Design the Program 10

Step 3: Write the Code 11

Step 4: Compile 11

Step 5: Run the Program 12

Step 6: Test and Debug the Program 12

Step 7: Maintain and Modify the Program 13

Commentary 13

Programming Mechanics 13

Object Code Files, Executable Files, and Libraries 14

Unix System 16

The GNU Compiler Collection and the LLVM Project 18

Linux Systems 18

Command-Line Compilers for the PC 19

Integrated Development Environments (Windows) 19

The Windows/Linux Option 21

C on the Macintosh 21

Sam
ple

 p
ag

es

How This Book Is Organized 22

Conventions Used in This Book 22

Typeface 22

Program Output 23

Special Elements 24

Summary 24

Review Questions 25

Programming Exercise 25

 2 Introducing C 27

A Simple Example of C 27

The Example Explained 28

Pass 1: Quick Synopsis 30

Pass 2: Program Details 31

The Structure of a Simple Program 40

Tips on Making Your Programs Readable 41

Taking Another Step in Using C 42

Documentation 43

Multiple Declarations 43

Multiplication 43

Printing Multiple Values 43

While You’re at It—Multiple Functions 44

Introducing Debugging 46

Syntax Errors 46

Semantic Errors 47

Program State 49

Keywords and Reserved Identifiers 49

Key Concepts 50

Summary 51

Review Questions 51

Programming Exercises 53

 3 Data and C 55

A Sample Program 55

What’s New in This Program? 57

Data Variables and Constants 59

Data: Data-Type Keywords 59

Integer Versus Floating-Point Types 60

Sam
ple

 p
ag

es

viii Contents

The Integer 61

The Floating-Point Number 61

Basic C Data Types 62

The int Type 62

Other Integer Types 66

Using Characters: Type char 71

The _Bool Type 77

Portable Types: stdint.h and inttypes.h 77

Types float, double, and long double 79

Complex and Imaginary Types 85

Beyond the Basic Types 85

Type Sizes 87

Using Data Types 88

Arguments and Pitfalls 89

One More Example: Escape Sequences 91

What Happens When the Program Runs 91

Flushing the Output 92

Key Concepts 93

Summary 93

Review Questions 94

Programming Exercises 97

 4 Character Strings and Formatted Input/Output 99

Introductory Program 99

Character Strings: An Introduction 101

Type char Arrays and the Null Character 101

Using Strings 102

The strlen() Function 103

Constants and the C Preprocessor 106

The const Modifier 109

Manifest Constants on the Job 109

Exploring and Exploiting printf() and scanf() 112

The printf() Function 112

Using printf() 113

Conversion Specification Modifiers for printf() 115

What Does a Conversion Specification Convert? 122

Using scanf() 128

Sam
ple

 p
ag

es

ixContents

The * Modifier with printf() and scanf() 133

Usage Tips for printf() 135

Key Concepts 136

Summary 137

Review Questions 138

Programming Exercises 140

 5 Operators, Expressions, and Statements 143

Introducing Loops 144

Fundamental Operators 146

Assignment Operator: = 146

Addition Operator: + 149

Subtraction Operator: – 149

Sign Operators: – and + 150

Multiplication Operator: * 151

Division Operator: / 153

Operator Precedence 154

Precedence and the Order of Evaluation 156

Some Additional Operators 157

The sizeof Operator and the size_t Type 158

Modulus Operator: % 159

Increment and Decrement Operators: ++ and -- 160

Decrementing: -- 164

Precedence 165

Don’t Be Too Clever 166

Expressions and Statements 167

Expressions 167

Statements 168

Compound Statements (Blocks) 171

Type Conversions 174

The Cast Operator 176

Function with Arguments 177

A Sample Program 180

Key Concepts 182

Summary 182

Review Questions 183

Programming Exercises 187

Sam
ple

 p
ag

es

x Contents

 6 C Control Statements: Looping 189

Revisiting the while Loop 190

Program Comments 191

C-Style Reading Loop 192

The while Statement 193

Terminating a while Loop 194

When a Loop Terminates 194

while: An Entry-Condition Loop 195

Syntax Points 195

Which Is Bigger: Using Relational Operators and Expressions 197

What Is Truth? 199

What Else Is True? 200

Troubles with Truth 201

The New _Bool Type 203

Precedence of Relational Operators 205

Indefinite Loops and Counting Loops 207

The for Loop 208

Using for for Flexibility 210

More Assignment Operators: +=, -=, *=, /=, %= 215

The Comma Operator 215

Zeno Meets the for Loop 218

An Exit-Condition Loop: do while 220

Which Loop? 223

Nested Loops 224

Program Discussion 225

A Nested Variation 225

Introducing Arrays 226

Using a for Loop with an Array 228

A Loop Example Using a Function Return Value 230

Program Discussion 232

Using Functions with Return Values 233

Key Concepts 234

Summary 235

Review Questions 236

Programming Exercises 241

Sam
ple

 p
ag

es

xiContents

 7 C Control Statements: Branching and Jumps 245

The if Statement 246

Adding else to the if Statement 248

Another Example: Introducing getchar() and putchar() 250

The ctype.h Family of Character Functions 252

Multiple Choice else if 254

Pairing else with if 257

More Nested ifs 259

Let’s Get Logical 263

Alternate Spellings: The iso646.h Header File 265

Precedence 265

Order of Evaluation 266

Ranges 267

A Word-Count Program 268

The Conditional Operator: ?: 271

Loop Aids: continue and break 274

The continue Statement 274

The break Statement 277

Multiple Choice: switch and break 280

Using the switch Statement 281

Reading Only the First Character of a Line 283

Multiple Labels 284

switch and if else 286

The goto Statement 287

Avoiding goto 287

Key Concepts 291

Summary 291

Review Questions 292

Programming Exercises 296

 8 Character Input/Output and Input Validation 299

Single-Character I/O: getchar() and putchar() 300

Buffers 301

Terminating Keyboard Input 302

Files, Streams, and Keyboard Input 303

The End of File 304

Redirection and Files 307

Sam
ple

 p
ag

es

xii Contents

Unix, Linux, and Windows Command Prompt Redirection 307

Creating a Friendlier User Interface 312

Working with Buffered Input 312

Mixing Numeric and Character Input 314

Input Validation 317

Analyzing the Program 322

The Input Stream and Numbers 323

Menu Browsing 324

Tasks 324

Toward a Smoother Execution 325

Mixing Character and Numeric Input 327

Key Concepts 330

Summary 331

Review Questions 331

Programming Exercises 332

 9 Functions 335

Reviewing Functions 335

Creating and Using a Simple Function 337

Analyzing the Program 338

Function Arguments 340

Defining a Function with an Argument: Formal Parameters 342

Prototyping a Function with Arguments 343

Calling a Function with an Argument: Actual Arguments 343

The Black-Box Viewpoint 345

Returning a Value from a Function with return 345

Function Types 348

ANSI C Function Prototyping 349

The Problem 350

The ANSI C Solution 351

No Arguments and Unspecified Arguments 352

Hooray for Prototypes 353

Recursion 353

Recursion Revealed 354

Recursion Fundamentals 355

Tail Recursion 356

Recursion and Reversal 358

Sam
ple

 p
ag

es

xiiiContents

Recursion Pros and Cons 360

Compiling Programs with Two or More Source Code Files 361

Unix 362

Linux 362

DOS Command-Line Compilers 362

Windows and Apple IDE Compilers 362

Using Header Files 363

Finding Addresses: The & Operator 367

Altering Variables in the Calling Function 369

Pointers: A First Look 371

The Indirection Operator: * 371

Declaring Pointers 372

Using Pointers to Communicate Between Functions 373

Key Concepts 378

Summary 378

Review Questions 379

Programming Exercises 380

 10 Arrays and Pointers 383

Arrays 383

Initialization 384

Designated Initializers (C99) 388

Assigning Array Values 390

Array Bounds 390

Specifying an Array Size 392

Multidimensional Arrays 393

Initializing a Two-Dimensional Array 397

More Dimensions 398

Pointers and Arrays 398

Functions, Arrays, and Pointers 401

Using Pointer Parameters 404

Comment: Pointers and Arrays 407

Pointer Operations 407

Protecting Array Contents 412

Using const with Formal Parameters 413

More About const 415

Sam
ple

 p
ag

es

xiv Contents

Pointers and Multidimensional Arrays 417

Pointers to Multidimensional Arrays 420

Pointer Compatibility 421

Functions and Multidimensional Arrays 423

Variable-Length Arrays (VLAs) 427

Compound Literals 431

Key Concepts 434

Summary 435

Review Questions 436

Programming Exercises 439

 11 Character Strings and String Functions 441

Representing Strings and String I/O 441

Defining Strings Within a Program 442

Pointers and Strings 451

String Input 453

Creating Space 453

The Unfortunate gets() Function 453

The Alternatives to gets() 455

The scanf() Function 462

String Output 464

The puts() Function 464

The fputs() Function 465

The printf() Function 466

The Do-It-Yourself Option 466

String Functions 469

The strlen() Function 469

The strcat() Function 471

The strncat() Function 473

The strcmp() Function 475

The strcpy() and strncpy() Functions 482

The sprintf() Function 487

Other String Functions 489

A String Example: Sorting Strings 491

Sorting Pointers Instead of Strings 493

The Selection Sort Algorithm 494

Sam
ple

 p
ag

es

xvContents

The ctype.h Character Functions and Strings 495

Command-Line Arguments 497

Command-Line Arguments in Integrated Environments 500

Command-Line Arguments with the Macintosh 500

String-to-Number Conversions 500

Key Concepts 504

Summary 504

Review Questions 505

Programming Exercises 508

 12 Storage Classes, Linkage, and Memory Management 511

Storage Classes 511

Scope 513

Linkage 515

Storage Duration 516

Automatic Variables 518

Register Variables 522

Static Variables with Block Scope 522

Static Variables with External Linkage 524

Static Variables with Internal Linkage 529

Multiple Files 530

Storage-Class Specifier Roundup 530

Storage Classes and Functions 533

Which Storage Class? 534

A Random-Number Function and a Static Variable 534

Roll ’Em 538

Allocated Memory: malloc() and free() 543

The Importance of free() 547

The calloc() Function 548

Dynamic Memory Allocation and Variable-Length Arrays 548

Storage Classes and Dynamic Memory Allocation 549

ANSI C Type Qualifiers 551

The const Type Qualifier 552

The volatile Type Qualifier 554

The restrict Type Qualifier 555

The _Atomic Type Qualifier (C11) 556

New Places for Old Keywords 557

Sam
ple

 p
ag

es

xvi Contents

Key Concepts 558

Summary 558

Review Questions 559

Programming Exercises 561

 13 File Input/Output 565

Communicating with Files 565

What Is a File? 566

The Text Mode and the Binary Mode 566

Levels of I/O 568

Standard Files 568

Standard I/O 568

Checking for Command-Line Arguments 569

The fopen() Function 570

The getc() and putc() Functions 572

End-of-File 572

The fclose() Function 574

Pointers to the Standard Files 574

A Simple-Minded File-Condensing Program 574

File I/O: fprintf(), fscanf(), fgets(), and fputs() 576

The fprintf() and fscanf() Functions 576

The fgets() and fputs() Functions 578

Adventures in Random Access: fseek() and ftell() 579

How fseek() and ftell() Work 580

Binary Versus Text Mode 582

Portability 582

The fgetpos() and fsetpos() Functions 583

Behind the Scenes with Standard I/O 583

Other Standard I/O Functions 584

The int ungetc(int c, FILE *fp) Function 585

The int fflush() Function 585

The int setvbuf() Function 585

Binary I/O: fread() and fwrite() 586

The size_t fwrite() Function 588

The size_t fread() Function 588

The int feof(FILE *fp) and int ferror(FILE *fp) Functions 589

An fread() and fwrite() Example 589

Sam
ple

 p
ag

es

xviiContents

Random Access with Binary I/O 593

Key Concepts 594

Summary 595

Review Questions 596

Programming Exercises 598

 14 Structures and Other Data Forms 601

Sample Problem: Creating an Inventory of Books 601

Setting Up the Structure Declaration 604

Defining a Structure Variable 604

Initializing a Structure 606

Gaining Access to Structure Members 607

Initializers for Structures 607

Arrays of Structures 608

Declaring an Array of Structures 611

Identifying Members of an Array of Structures 612

Program Discussion 612

Nested Structures 613

Pointers to Structures 615

Declaring and Initializing a Structure Pointer 617

Member Access by Pointer 617

Telling Functions About Structures 618

Passing Structure Members 618

Using the Structure Address 619

Passing a Structure as an Argument 621

More on Structure Features 622

Structures or Pointer to Structures? 626

Character Arrays or Character Pointers in a Structure 627

Structure, Pointers, and malloc() 628

Compound Literals and Structures (C99) 631

Flexible Array Members (C99) 633

Anonymous Structures (C11) 636

Functions Using an Array of Structures 637

Saving the Structure Contents in a File 639

A Structure-Saving Example 640

Program Points 643

Structures: What Next? 644

Sam
ple

 p
ag

es

xviii Contents

Unions: A Quick Look 645

Using Unions 646

Anonymous Unions (C11) 647

Enumerated Types 649

enum Constants 649

Default Values 650

Assigned Values 650

enum Usage 650

Shared Namespaces 652

typedef: A Quick Look 653

Fancy Declarations 655

Functions and Pointers 657

Key Concepts 665

Summary 665

Review Questions 666

Programming Exercises 669

 15 Bit Fiddling 673

Binary Numbers, Bits, and Bytes 674

Binary Integers 674

Signed Integers 675

Binary Floating Point 676

Other Number Bases 676

Octal 677

Hexadecimal 677

C’s Bitwise Operators 678

Bitwise Logical Operators 678

Usage: Masks 680

Usage: Turning Bits On (Setting Bits) 681

Usage: Turning Bits Off (Clearing Bits) 682

Usage: Toggling Bits 683

Usage: Checking the Value of a Bit 683

Bitwise Shift Operators 684

Programming Example 685

Another Example 688

Bit Fields 690

Bit-Field Example 692

Sam
ple

 p
ag

es

xixContents

Bit Fields and Bitwise Operators 696

Alignment Features (C11) 703

Key Concepts 705

Summary 706

Review Questions 706

Programming Exercises 708

 16 The C Preprocessor and the C Library 711

First Steps in Translating a Program 712

Manifest Constants: #define 713

Tokens 717

Redefining Constants 717

Using Arguments with #define 718

Creating Strings from Macro Arguments: The # Operator 721

Preprocessor Glue: The ## Operator 722

Variadic Macros: ... and __VA_ARGS__ 723

Macro or Function? 725

File Inclusion: #include 726

Header Files: An Example 727

Uses for Header Files 729

Other Directives 730

The #undef Directive 731

Being Defined—The C Preprocessor Perspective 731

Conditional Compilation 731

Predefined Macros 737

#line and #error 738

#pragma 739

Generic Selection (C11) 740

Inline Functions (C99) 741

_Noreturn Functions (C11) 744

The C Library 744

Gaining Access to the C Library 745

Using the Library Descriptions 746

The Math Library 747

A Little Trigonometry 748

Type Variants 750

The tgmath.h Library (C99) 752

Sam
ple

 p
ag

es

xx Contents

The General Utilities Library 753

The exit() and atexit() Functions 753

The qsort() Function 755

The Assert Library 760

Using assert 760

_Static_assert (C11) 762

memcpy() and memmove() from the string.h Library 763

Variable Arguments: stdarg.h 765

Key Concepts 768

Summary 768

Review Questions 768

Programming Exercises 770

 17 Advanced Data Representation 773

Exploring Data Representation 774

Beyond the Array to the Linked List 777

Using a Linked List 781

Afterthoughts 786

Abstract Data Types (ADTs) 786

Getting Abstract 788

Building an Interface 789

Using the Interface 793

Implementing the Interface 796

Getting Queued with an ADT 804

Defining the Queue Abstract Data Type 804

Defining an Interface 805

Implementing the Interface Data Representation 806

Testing the Queue 815

Simulating with a Queue 818

The Linked List Versus the Array 824

Binary Search Trees 828

A Binary Tree ADT 829

The Binary Search Tree Interface 830

The Binary Tree Implementation 833

Trying the Tree 849

Tree Thoughts 854

Sam
ple

 p
ag

es

xxiContents

Other Directions 856

Key Concepts 856

Summary 857

Review Questions 857

Programming Exercises 858

 A Answers to the Review Questions 861

Answers to Review Questions for Chapter 1 861

Answers to Review Questions for Chapter 2 862

Answers to Review Questions for Chapter 3 863

Answers to Review Questions for Chapter 4 866

Answers to Review Questions for Chapter 5 869

Answers to Review Questions for Chapter 6 872

Answers to Review Questions for Chapter 7 876

Answers to Review Questions for Chapter 8 879

Answers to Review Questions for Chapter 9 881

Answers to Review Questions for Chapter 10 883

Answers to Review Questions for Chapter 11 886

Answers to Review Questions for Chapter 12 890

Answers to Review Questions for Chapter 13 891

Answers to Review Questions for Chapter 14 894

Answers to Review Questions for Chapter 15 898

Answers to Review Questions for Chapter 16 899

Answers to Review Questions for Chapter 17 901

 B Reference Section 905

Section I: Additional Reading 905

Online Resources 905

C Language Books 907

Programming Books 907

Reference Books 908

C++ Books 908

Section II: C Operators 908

Arithmetic Operators 909

Relational Operators 910

Assignment Operators 910

Logical Operators 911

Sam
ple

 p
ag

es

xxii Contents

The Conditional Operator 911

Pointer-Related Operators 912

Sign Operators 912

Structure and Union Operators 912

Bitwise Operators 913

Miscellaneous Operators 914

Section III: Basic Types and Storage Classes 915

Summary: The Basic Data Types 915

Summary: How to Declare a Simple Variable 917

Summary: Qualifiers 919

Section IV: Expressions, Statements, and Program Flow 920

Summary: Expressions and Statements 920

Summary: The while Statement 921

Summary: The for Statement 921

Summary: The do while Statement 922

Summary: Using if Statements for Making Choices 923

Summary: Multiple Choice with switch 924

Summary: Program Jumps 925

Section V: The Standard ANSI C Library with C99 and C11 Additions 926

Diagnostics: assert.h 926

Complex Numbers: complex.h (C99) 927

Character Handling: ctype.h 929

Error Reporting: errno.h 930

Floating-Point Environment: fenv.h (C99) 930

Floating-point Characteristics: float.h 933

Format Conversion of Integer Types: inttypes.h (C99) 935

Alternative Spellings: iso646.h 936

Localization: locale.h 936

Math Library: math.h 939

Non-Local Jumps: setjmp.h 945

Signal Handling: signal.h 945

Alignment: stdalign.h (C11) 946

Variable Arguments: stdarg.h 947

Atomics Support: stdatomic.h (C11) 948

Boolean Support: stdbool.h (C99) 948

Common Definitions: stddef.h 948

Integer Types: stdint.h 949

Sam
ple

 p
ag

es

xxiiiContents

Standard I/O Library: stdio.h 953

General Utilities: stdlib.h 956

_Noreturn: stdnoreturn.h 962

String Handling: string.h 962

Type-Generic Math: tgmath.h (C99) 965

Threads: threads.h (C11) 967

Date and Time: time.h 967

Unicode Utilities: uchar.h (C11) 971

Extended Multibyte and Wide-Character Utilities: wchar.h (C99) 972

Wide Character Classification and Mapping Utilities: wctype.h (C99) 978

Section VI: Extended Integer Types 980

Exact-Width Types 981

Minimum-Width Types 982

Fastest Minimum-Width Types 983

Maximum-Width Types 983

Integers That Can Hold Pointer Values 984

Extended Integer Constants 984

Section VII: Expanded Character Support 984

Trigraph Sequences 984

Digraphs 985

Alternative Spellings: iso646.h 986

Multibyte Characters 986

Universal Character Names (UCNs) 987

Wide Characters 988

Wide Characters and Multibyte Characters 989

Section VIII: C99/C11 Numeric Computational Enhancements 990

The IEC Floating-Point Standard 990

The fenv.h Header File 994

The STDC FP_CONTRACT Pragma 995

Additions to the math.h Library 995

Support for Complex Numbers 996

Section IX: Differences Between C and C++ 998

Function Prototypes 999

char Constants 1000

The const Modifier 1000

Structures and Unions 1001

Enumerations 1002

Sam
ple

 p
ag

es

xxiv Contents

Pointer-to-void 1002

Boolean Types 1003

Alternative Spellings 1003

Wide-Character Support 1003

Complex Types 1003

Inline Functions 1003

C99/11 Features Not Found in C++11 1004

Index 1005

Sam
ple

 p
ag

es

 3
 Data and C

 You will learn about the following in this chapter:

 ■ Keywords:

 int , short , long , unsigned , char , float , double , _Bool , _Complex , _Imaginary

 ■ Operator:

 sizeof

 ■ Function:

 scanf()

 ■ The basic data types that C uses

 ■ The distinctions between integer types and floating-point types

 ■ Writing constants and declaring variables of those types

 ■ How to use the printf() and scanf() functions to read and write values of different
types

 Programs work with data. You feed numbers, letters, and words to the computer, and you
expect it to do something with the data. For example, you might want the computer to calcu-
late an interest payment or display a sorted list of vintners. In this chapter, you do more than
just read about data; you practice manipulating data, which is much more fun.

 This chapter explores the two great families of data types: integer and floating point. C offers
several varieties of these types. This chapter tells you what the types are, how to declare them,
and how and when to use them. Also, you discover the differences between constants and vari-
ables, and as a bonus, your first interactive program is coming up shortly.

 A Sample Program

 Once again, we begin with a sample program. As before, you’ll find some unfamiliar wrinkles
that we’ll soon iron out for you. The program’s general intent should be clear, so try compiling

Sam
ple

 p
ag

es

56 Chapter 3 Data and C

and running the source code shown in Listing 3.1 . To save time, you can omit typing the
comments.

 Listing 3.1 The platinum.c Program

 /* platinum.c -- your weight in platinum */

 #include <stdio.h>

 int main(void)

 {

 float weight; /* user weight */

 float value; /* platinum equivalent */

 printf("Are you worth your weight in platinum?\n");

 printf("Let's check it out.\n");

 printf("Please enter your weight in pounds: ");

 /* get input from the user */

 scanf("%f", &weight);

 /* assume platinum is $1700 per ounce */

 /* 14.5833 converts pounds avd. to ounces troy */

 value = 1700.0 * weight * 14.5833;

 printf("Your weight in platinum is worth $%.2f.\n", value);

 printf("You are easily worth that! If platinum prices drop,\n");

 printf("eat more to maintain your value.\n");

 return 0;

 }

 Tip Errors and Warnings

 If you type this program incorrectly and, say, omit a semicolon, the compiler gives you a syntax
error message. Even if you type it correctly, however, the compiler may give you a warning simi-
lar to “Warning—conversion from ‘double’ to ‘float,’ possible loss of data.” An error message
means you did something wrong and prevents the program from being compiled. A warning ,
however, means you’ve done something that is valid code but possibly is not what you meant
to do. A warning does not stop compilation. This particular warning pertains to how C handles
values such as 1700.0. It’s not a problem for this example, and the chapter explains the warn-
ing later.

 When you type this program, you might want to change the 1700.0 to the current price of
the precious metal platinum. Don’t, however, fiddle with the 14.5833 , which represents the
number of ounces in a pound. (That’s ounces troy, used for precious metals, and pounds avoir-
dupois, used for people—precious and otherwise.)

 Note that “entering” your weight means to type your weight and then press the Enter or Return
key. (Don’t just type your weight and wait.) Pressing Enter informs the computer that you have

Sam
ple

 p
ag

es

57A Sample Program

finished typing your response. The program expects you to enter a number, such as 156 , not
words, such as too much . Entering letters rather than digits causes problems that require an if
statement (Chapter 7 , “C Control Statements: Branching and Jumps”) to defeat, so please be
polite and enter a number. Here is some sample output:

 Are you worth your weight in platinum?

 Let's check it out.

 Please enter your weight in pounds: 156
 Your weight in platinum is worth $3867491.25.

 You are easily worth that! If platinum prices drop,

 eat more to maintain your value.

 Program Adjustments

 Did the output for this program briefly flash onscreen and then disappear even though you
added the following line to the program, as described in Chapter 2 , “Introducing C”?

 getchar();

 For this example, you need to use that function call twice:

 getchar();

 getchar();

 The getchar() function reads the next input character, so the program has to wait for input.
In this case, we provided input by typing 156 and then pressing the Enter (or Return) key, which
transmits a newline character. So scanf() reads the number, the first getchar() reads the
newline character, and the second getchar() causes the program to pause, awaiting further
input.

 What’s New in This Program?

 There are several new elements of C in this program:

 ■ Notice that the code uses a new kind of variable declaration. The previous examples
just used an integer variable type (int), but this one adds a floating-point variable
type (float) so that you can handle a wider variety of data. The float type can hold
numbers with decimal points.

 ■ The program demonstrates some new ways of writing constants. You now have numbers
with decimal points.

 ■ To print this new kind of variable, use the %f specifier in the printf() code to handle a
floating-point value. The .2 modifier to the %f specifier fine-tunes the appearance of the
output so that it displays two places to the right of the decimal.

 ■ The scanf() function provides keyboard input to the program. The %f instructs scanf()
to read a floating-point number from the keyboard, and the &weight tells scanf() to

Sam
ple

 p
ag

es

58 Chapter 3 Data and C

assign the input value to the variable named weight . The scanf() function uses the &
notation to indicate where it can find the weight variable. The next chapter discusses &
further; meanwhile, trust us that you need it here.

 ■ Perhaps the most outstanding new feature is that this program is interactive. The
computer asks you for information and then uses the number you enter. An interactive
program is more interesting to use than the noninteractive types. More important, the
interactive approach makes programs more flexible. For example, the sample program
can be used for any reasonable weight, not just for 156 pounds. You don’t have to
rewrite the program every time you want to try it on a new person. The scanf() and
 printf() functions make this interactivity possible. The scanf() function reads data
from the keyboard and delivers that data to the program, and printf() reads data from
a program and delivers that data to your screen. Together, these two functions enable
you to establish a two-way communication with your computer (see Figure 3.1), and that
makes using a computer much more fun.

 This chapter explains the first two items in this list of new features: variables and constants of
various data types. Chapter 4 , “Character Strings and Formatted Input/Output,” covers the last
three items, but this chapter will continue to make limited use of scanf() and printf() .

/*platinum.c*/

•

•

int main(void)

{

•

•

•

scanf("-----)

•

•

•

printf("Are you--)

printf(-----)

•

•

return 0;

}

Body

getting keyboard input

displaying program output Are you

 Figure 3.1 The scanf() and printf() functions at work.

Sam
ple

 p
ag

es

59Data: Data-Type Keywords

 Data Variables and Constants

 A computer, under the guidance of a program, can do many things. It can add numbers, sort
names, command the obedience of a speaker or video screen, calculate cometary orbits, prepare
a mailing list, dial phone numbers, draw stick figures, draw conclusions, or anything else your
imagination can create. To do these tasks, the program needs to work with data , the numbers
and characters that bear the information you use. Some types of data are preset before a
program is used and keep their values unchanged throughout the life of the program. These are
 constants . Other types of data may change or be assigned values as the program runs; these are
 variables . In the sample program, weight is a variable and 14.5833 is a constant. What about
 1700.0 ? True, the price of platinum isn’t a constant in real life, but this program treats it as a
constant. The difference between a variable and a constant is that a variable can have its value
assigned or changed while the program is running, and a constant can’t.

 Data: Data-Type Keywords

 Beyond the distinction between variable and constant is the distinction between different types
of data. Some types of data are numbers. Some are letters or, more generally, characters. The
computer needs a way to identify and use these different kinds. C does this by recognizing
several fundamental data types . If a datum is a constant, the compiler can usually tell its type
just by the way it looks: 42 is an integer, and 42.100 is floating point. A variable, however,
needs to have its type announced in a declaration statement. You’ll learn the details of declar-
ing variables as you move along. First, though, take a look at the fundamental type keywords
recognized by C. K&R C recognized seven keywords relating to types. The C90 standard added
two to the list. The C99 standard adds yet another three (see Table 3.1).

 Table 3.1 C Data Keywords

 Original K&R Keywords C90 K&R Keywords C99 Keywords

 int signed _Bool

 long void _Complex

 short _Imaginary

 unsigned

 char

 float

 double

 The int keyword provides the basic class of integers used in C. The next three keywords (long ,
 short , and unsigned) and the C90 addition signed are used to provide variations of the
basic type, for example, unsigned short int and long long int . Next, the char keyword

Sam
ple

 p
ag

es

60 Chapter 3 Data and C

designates the type used for letters of the alphabet and for other characters, such as # , $, % , and
 * . The char type also can be used to represent small integers. Next, float , double , and the
combination long double are used to represent numbers with decimal points. The _Bool type
is for Boolean values (true and false), and _Complex and _Imaginary represent complex and
imaginary numbers, respectively.

 The types created with these keywords can be divided into two families on the basis of how
they are stored in the computer: integer types and floating-point types.

 Bits, Bytes, and Words

 The terms bit , byte , and word can be used to describe units of computer data or to describe
units of computer memory. We’ll concentrate on the second usage here.

 The smallest unit of memory is called a bit . It can hold one of two values: 0 or 1 . (Or you can
say that the bit is set to “off” or “on.”) You can’t store much information in one bit, but a com-
puter has a tremendous stock of them. The bit is the basic building block of computer memory.

 The byte is the usual unit of computer memory. For nearly all machines, a byte is 8 bits, and
that is the standard definition, at least when used to measure storage. (The C language, how-
ever, has a different definition, as discussed in the “Using Characters: Type char" section
later in this chapter.) Because each bit can be either 0 or 1, there are 256 (that’s 2 times
itself 8 times) possible bit patterns of 0s and 1s that can fit in an 8-bit byte. These patterns
can be used, for example, to represent the integers from 0 to 255 or to represent a set of
characters. Representation can be accomplished with binary code, which uses (conveniently
enough) just 0s and 1s to represent numbers. (Chapter 15 , “Bit Fiddling,” discusses binary
code, but you can read through the introductory material of that chapter now if you like.)

 A word is the natural unit of memory for a given computer design. For 8-bit microcomputers,
such as the original Apples, a word is just 8 bits. Since then, personal computers moved up to
16-bit words, 32-bit words, and, at the present, 64-bit words. Larger word sizes enable faster
transfer of data and allow more memory to be accessed.

 Integer Versus Floating-Point Types

 Integer types? Floating-point types? If you find these terms disturbingly unfamiliar, relax.
We are about to give you a brief rundown of their meanings. If you are unfamiliar with bits,
bytes, and words, you might want to read the nearby sidebar about them first. Do you have to
learn all the details? Not really, not any more than you have to learn the principles of internal
combustion engines to drive a car, but knowing a little about what goes on inside a computer
or engine can help you occasionally.

 For a human, the difference between integers and floating-point numbers is reflected in the
way they can be written. For a computer, the difference is reflected in the way they are stored.
Let’s look at each of the two classes in turn.

Sam
ple

 p
ag

es

61Data: Data-Type Keywords

 The Integer

 An integer is a number with no fractional part. In C, an integer is never written with a decimal
point. Examples are 2, –23, and 2456. Numbers such as 3.14, 0.22, and 2.000 are not integers.
Integers are stored as binary numbers. The integer 7, for example, is written 111 in binary.
Therefore, to store this number in an 8-bit byte, just set the first 5 bits to 0 and the last 3 bits
to 1 (see Figure 3.2).

8-bit word

2
2

2
1

2
0

4 + + = 72 1

0 0 0 0 0 1 1 1

integer 7

 Figure 3.2 Storing the integer 7 using a binary code.

 The Floating-Point Number

 A floating-point number more or less corresponds to what mathematicians call a real number .
Real numbers include the numbers between the integers. Some floating-point numbers are
2.75, 3.16E7, 7.00, and 2e–8. Notice that adding a decimal point makes a value a floating-point
value. So 7 is an integer type but 7.00 is a floating-point type. Obviously, there is more than
one way to write a floating-point number. We will discuss the e-notation more fully later,
but, in brief, the notation 3.16E7 means to multiply 3.16 by 10 to the 7th power; that is, by 1
followed by 7 zeros. The 7 would be termed the exponent of 10.

 The key point here is that the scheme used to store a floating-point number is different from
the one used to store an integer. Floating-point representation involves breaking up a number
into a fractional part and an exponent part and storing the parts separately. Therefore, the
7.00 in this list would not be stored in the same manner as the integer 7, even though both
have the same value. The decimal analogy would be to write 7.0 as 0.7E1. Here, 0.7 is the frac-
tional part, and the 1 is the exponent part. Figure 3.3 shows another example of floating-point
storage. A computer, of course, would use binary numbers and powers of two instead of powers
of 10 for internal storage. You’ll find more on this topic in Chapter 15 . Now, let’s concentrate
on the practical differences:

 ■ An integer has no fractional part; a floating-point number can have a fractional part.

 ■ Floating-point numbers can represent a much larger range of values than integers can.
See Table 3.3 near the end of this chapter.

 ■ For some arithmetic operations, such as subtracting one large number from another,
floating-point numbers are subject to greater loss of precision.

Sam
ple

 p
ag

es

62 Chapter 3 Data and C

 ■ Because there is an infinite number of real numbers in any range—for example, in the
range between 1.0 and 2.0—computer floating-point numbers can’t represent all the
values in the range. Instead, floating-point values are often approximations of a true
value. For example, 7.0 might be stored as a 6.99999 float value—more about precision
later.

 ■ Floating-point operations were once much slower than integer operations. However,
today many CPUs incorporate floating-point processors that close the gap.

sign

+

+ .314159 1

exponent

x 101

fraction

.314159 3.14159

 Figure 3.3 Storing the number pi in floating-point format (decimal version).

 Basic C Data Types

 Now let’s look at the specifics of the basic data types used by C. For each type, we describe how
to declare a variable, how to represent a constant with a literal value, such as 5 or 2.78 , and
what a typical use would be. Some older C compilers do not support all these types, so check
your documentation to see which ones you have available.

 The int Type

 C offers many integer types, and you might wonder why one type isn’t enough. The answer is
that C gives the programmer the option of matching a type to a particular use. In particular,
the C integer types vary in the range of values offered and in whether negative numbers can be
used. The int type is the basic choice, but should you need other choices to meet the require-
ments of a particular task or machine, they are available.

 The int type is a signed integer. That means it must be an integer and it can be positive, nega-
tive, or zero. The range in possible values depends on the computer system. Typically, an int
uses one machine word for storage. Therefore, older IBM PC compatibles, which have a 16-bit
word, use 16 bits to store an int . This allows a range in values from –32768 to 32767 . Current
personal computers typically have 32-bit integers and fit an int to that size. Now the personal
computer industry is moving toward 64-bit processors that naturally will use even larger inte-
gers. ISO C specifies that the minimum range for type int should be from –32767 to 32767 .
Typically, systems represent signed integers by using the value of a particular bit to indicate the
sign. Chapter 15 discusses common methods.

Sam
ple

 p
ag

es

63Basic C Data Types

 Declaring an int Variable

 As you saw in Chapter 2 , “Introducing C,” the keyword int is used to declare the basic integer
variable. First comes int , and then the chosen name of the variable, and then a semicolon.
To declare more than one variable, you can declare each variable separately, or you can follow
the int with a list of names in which each name is separated from the next by a comma. The
following are valid declarations:

 int erns;

 int hogs, cows, goats;

 You could have used a separate declaration for each variable, or you could have declared all
four variables in the same statement. The effect is the same: Associate names and arrange
storage space for four int -sized variables.

 These declarations create variables but don’t supply values for them. How do variables get
values? You’ve seen two ways that they can pick up values in the program. First, there is
assignment:

 cows = 112;

 Second, a variable can pick up a value from a function—from scanf() , for example. Now let’s
look at a third way.

 Initializing a Variable

 To initialize a variable means to assign it a starting, or initial , value. In C, this can be done as
part of the declaration. Just follow the variable name with the assignment operator (=) and the
value you want the variable to have. Here are some examples:

 int hogs = 21;

 int cows = 32, goats = 14;

 int dogs, cats = 94; /* valid, but poor, form */

 In the last line, only cats is initialized. A quick reading might lead you to think that dogs is
also initialized to 94 , so it is best to avoid putting initialized and noninitialized variables in the
same declaration statement.

 In short, these declarations create and label the storage for the variables and assign starting
values to each (see Figure 3.4).

Sam
ple

 p
ag

es

64 Chapter 3 Data and C

2

Boars

create storage and give it value

int sows;

int boars=2;

create storage

 Figure 3.4 Defining and initializing a variable.

 Type int Constants

 The various integers (21 , 32 , 14 , and 94) in the last example are integer constants , also called
 integer literals . When you write a number without a decimal point and without an exponent, C
recognizes it as an integer. Therefore, 22 and –44 are integer constants, but 22.0 and 2.2E1 are
not. C treats most integer constants as type int . Very large integers can be treated differently;
see the later discussion of the long int type in the section "long Constants and long long
Constants.”

 Printing int Values

 You can use the printf() function to print int types. As you saw in Chapter 2 , the %d nota-
tion is used to indicate just where in a line the integer is to be printed. The %d is called a format
specifier because it indicates the form that printf() uses to display a value. Each %d in the
format string must be matched by a corresponding int value in the list of items to be printed.
That value can be an int variable, an int constant, or any other expression having an int
value. It’s your job to make sure the number of format specifiers matches the number of values;
the compiler won’t catch mistakes of that kind. Listing 3.2 presents a simple program that
initializes a variable and prints the value of the variable, the value of a constant, and the value
of a simple expression. It also shows what can happen if you are not careful.

 Listing 3.2 The print1.c Program

 /* print1.c-displays some properties of printf() */

 #include <stdio.h>

 int main(void)

 {

 int ten = 10;

 int two = 2;

 printf("Doing it right: ");

 printf("%d minus %d is %d\n", ten, 2, ten - two);

Sam
ple

 p
ag

es

65Basic C Data Types

 printf("Doing it wrong: ");

 printf("%d minus %d is %d\n", ten); // forgot 2 arguments

 return 0;

 }

 Compiling and running the program produced this output on one system:

 Doing it right: 10 minus 2 is 8

 Doing it wrong: 10 minus 16 is 1650287143

 For the first line of output, the first %d represents the int variable ten , the second %d repre-
sents the int constant 2 , and the third %d represents the value of the int expression ten -
two . The second time, however, the program used ten to provide a value for the first %d and
used whatever values happened to be lying around in memory for the next two! (The numbers
you get could very well be different from those shown here. Not only might the memory
contents be different, but different compilers will manage memory locations differently.)

 You might be annoyed that the compiler doesn’t catch such an obvious error. Blame the
unusual design of printf() . Most functions take a specific number of arguments, and the
compiler can check to see whether you’ve used the correct number. However, printf() can
have one, two, three, or more arguments, and that keeps the compiler from using its usual
methods for error checking. Some compilers, however, will use unusual methods of checking
and warn you that you might be doing something wrong. Still, it’s best to remember to always
check to see that the number of format specifiers you give to printf() matches the number of
values to be displayed.

 Octal and Hexadecimal

 Normally, C assumes that integer constants are decimal, or base 10, numbers. However, octal
(base 8) and hexadecimal (base 16) numbers are popular with many programmers. Because 8
and 16 are powers of 2, and 10 is not, these number systems occasionally offer a more conve-
nient way for expressing computer-related values. For example, the number 65536, which often
pops up in 16-bit machines, is just 10000 in hexadecimal. Also, each digit in a hexadecimal
number corresponds to exactly 4 bits. For example, the hexadecimal digit 3 is 0011 and the
hexadecimal digit 5 is 0101. So the hexadecimal value 35 is the bit pattern 0011 0101, and the
hexadecimal value 53 is 0101 0011. This correspondence makes it easy to go back and forth
between hexadecimal and binary (base 2) notation. But how can the computer tell whether
10000 is meant to be a decimal, hexadecimal, or octal value? In C, special prefixes indicate
which number base you are using. A prefix of 0x or 0X (zero-ex) means that you are specifying
a hexadecimal value, so 16 is written as 0x10 , or 0X10 , in hexadecimal. Similarly, a 0 (zero)
prefix means that you are writing in octal. For example, the decimal value 16 is written as 020
in octal. Chapter 15 discusses these alternative number bases more fully.

 Be aware that this option of using different number systems is provided as a service for your
convenience. It doesn’t affect how the number is stored. That is, you can write 16 or 020 or

Sam
ple

 p
ag

es

66 Chapter 3 Data and C

 0x10 , and the number is stored exactly the same way in each case—in the binary code used
internally by computers.

 Displaying Octal and Hexadecimal

 Just as C enables you write a number in any one of three number systems, it also enables you
to display a number in any of these three systems. To display an integer in octal notation
instead of decimal, use %o instead of %d . To display an integer in hexadecimal, use %x . If you
want to display the C prefixes, you can use specifiers %#o , %#x , and %#X to generate the 0 , 0x ,
and 0X prefixes respectively. Listing 3.3 shows a short example. (Recall that you may have
to insert a getchar(); statement in the code for some IDEs to keep the program execution
window from closing immediately.)

 Listing 3.3 The bases.c Program

 /* bases.c--prints 100 in decimal, octal, and hex */

 #include <stdio.h>

 int main(void)

 {

 int x = 100;

 printf("dec = %d; octal = %o; hex = %x\n", x, x, x);

 printf("dec = %d; octal = %#o; hex = %#x\n", x, x, x);

 return 0;

 }

 Compiling and running this program produces this output:

 dec = 100; octal = 144; hex = 64

 dec = 100; octal = 0144; hex = 0x64

 You see the same value displayed in three different number systems. The printf() function
makes the conversions. Note that the 0 and the 0x prefixes are not displayed in the output
unless you include the # as part of the specifier.

 Other Integer Types

 When you are just learning the language, the int type will probably meet most of your integer
needs. To be complete, however, we’ll cover the other forms now. If you like, you can skim
this section and jump to the discussion of the char type in the “Using Characters: Type char"
section, returning here when you have a need.

 C offers three adjective keywords to modify the basic integer type: short , long , and unsigned .
Here are some points to keep in mind:

Sam
ple

 p
ag

es

67Basic C Data Types

 ■ The type short int or, more briefly, short may use less storage than int , thus saving
space when only small numbers are needed. Like int , short is a signed type.

 ■ The type long int , or long , may use more storage than int , thus enabling you to
express larger integer values. Like int , long is a signed type.

 ■ The type long long int , or long long (introduced in the C99 standard), may use
more storage than long . At the minimum, it must use at least 64 bits. Like int , long
long is a signed type.

 ■ The type unsigned int , or unsigned , is used for variables that have only nonnegative
values. This type shifts the range of numbers that can be stored. For example, a 16-bit
 unsigned int allows a range from 0 to 65535 in value instead of from –32768 to 32767 .
The bit used to indicate the sign of signed numbers now becomes another binary digit,
allowing the larger number.

 ■ The types unsigned long int , or unsigned long , and unsigned short int , or
 unsigned short , are recognized as valid by the C90 standard. To this list, C99 adds
 unsigned long long int , or unsigned long long .

 ■ The keyword signed can be used with any of the signed types to make your intent
explicit. For example, short , short int , signed short , and signed short int are all
names for the same type.

 Declaring Other Integer Types

 Other integer types are declared in the same manner as the int type. The following list shows
several examples. Not all older C compilers recognize the last three, and the final example is
new with the C99 standard.

 long int estine;

 long johns;

 short int erns;

 short ribs;

 unsigned int s_count;

 unsigned players;

 unsigned long headcount;

 unsigned short yesvotes;

 long long ago;

 Why Multiple Integer Types?

 Why do we say that long and short types “may” use more or less storage than int ? Because
C guarantees only that short is no longer than int and that long is no shorter than int . The
idea is to fit the types to the machine. For example, in the days of Windows 3, an int and a
 short were both 16 bits, and a long was 32 bits. Later, Windows and Apple systems moved to
using 16 bits for short and 32 bits for int and long . Using 32 bits allows integers in excess of
2 billion. Now that 64-bit processors are common, there’s a need for 64-bit integers, and that’s
the motivation for the long long type.

Sam
ple

 p
ag

es

68 Chapter 3 Data and C

 The most common practice today on personal computers is to set up long long as 64 bits,
 long as 32 bits, short as 16 bits, and int as either 16 bits or 32 bits, depending on the
machine’s natural word size. In principle, these four types could represent four distinct sizes,
but in practice at least some of the types normally overlap.

 The C standard provides guidelines specifying the minimum allowable size for each basic data
type. The minimum range for both short and int is –32,767 to 32,767, corresponding to a
16-bit unit, and the minimum range for long is –2,147,483,647 to 2,147,483,647, correspond-
ing to a 32-bit unit. (Note: For legibility, we’ve used commas, but C code doesn’t allow that
option.) For unsigned short and unsigned int , the minimum range is 0 to 65,535, and for
 unsigned long , the minimum range is 0 to 4,294,967,295. The long long type is intended
to support 64-bit needs. Its minimum range is a substantial –9,223,372,036,854,775,807
to 9,223,372,036,854,775,807, and the minimum range for unsigned long long is 0 to
18,446,744,073,709,551,615. For those of you writing checks, that’s eighteen quintillion, four
hundred and forty-six quadrillion, seven hundred forty-four trillion, seventy-three billion,
seven hundred nine million, five hundred fifty-one thousand, six hundred fifteen using U.S.
nomenclature (the short scale or échelle courte system), but who’s counting?

 When do you use the various int types? First, consider unsigned types. It is natural to use
them for counting because you don’t need negative numbers, and the unsigned types enable
you to reach higher positive numbers than the signed types.

 Use the long type if you need to use numbers that long can handle and that int cannot.
However, on systems for which long is bigger than int , using long can slow down calcula-
tions, so don’t use long if it is not essential. One further point: If you are writing code on
a machine for which int and long are the same size, and you do need 32-bit integers, you
should use long instead of int so that the program will function correctly if transferred to a
16-bit machine. Similarly, use long long if you need 64-bit integer values.

 Use short to save storage space if, say, you need a 16-bit value on a system where int is 32-bit.
Usually, saving storage space is important only if your program uses arrays of integers that are
large in relation to a system’s available memory. Another reason to use short is that it may
correspond in size to hardware registers used by particular components in a computer.

 Integer Overflow

 What happens if an integer tries to get too big for its type? Let’s set an integer to its largest
possible value, add to it, and see what happens. Try both signed and unsigned types. (The
 printf() function uses the %u specifier to display unsigned int values .)

 /* toobig.c-exceeds maximum int size on our system */

 #include <stdio.h>

 int main(void)

 {

 int i = 2147483647;

 unsigned int j = 4294967295;

 printf("%d %d %d\n", i, i+1, i+2);

Sam
ple

 p
ag

es

69Basic C Data Types

 printf("%u %u %u\n", j, j+1, j+2);

 return 0;

 }

 Here is the result for our system:

 2147483647 -2147483648 -2147483647

 4294967295 0 1

 The unsigned integer j is acting like a car’s odometer. When it reaches its maximum value,
it starts over at the beginning. The integer i acts similarly. The main difference is that the
 unsigned int variable j , like an odometer, begins at 0, but the int variable i begins at
–2147483648. Notice that you are not informed that i has exceeded (overflowed) its maximum
value. You would have to include your own programming to keep tabs on that.

 The behavior described here is mandated by the rules of C for unsigned types. The standard
doesn’t define how signed types should behave. The behavior shown here is typical, but you
could encounter something different

 long Constants and long long Constants

 Normally, when you use a number such as 2345 in your program code, it is stored as an int
type. What if you use a number such as 1000000 on a system in which int will not hold such
a large number? Then the compiler treats it as a long int , assuming that type is large enough.
If the number is larger than the long maximum, C treats it as unsigned long . If that is still
insufficient, C treats the value as long long or unsigned long long , if those types are
available.

 Octal and hexadecimal constants are treated as type int unless the value is too large. Then the
compiler tries unsigned int . If that doesn’t work, it tries, in order, long , unsigned long ,
 long long , and unsigned long long .

 Sometimes you might want the compiler to store a small number as a long integer.
Programming that involves explicit use of memory addresses on an IBM PC, for instance, can
create such a need. Also, some standard C functions require type long values. To cause a small
constant to be treated as type long , you can append an l (lowercase L) or L as a suffix. The
second form is better because it looks less like the digit 1. Therefore, a system with a 16-bit
 int and a 32-bit long treats the integer 7 as 16 bits and the integer 7L as 32 bits. The l and L
suffixes can also be used with octal and hex integers, as in 020L and 0x10L .

 Similarly, on those systems supporting the long long type, you can use an ll or LL suffix to
indicate a long long value, as in 3LL . Add a u or U to the suffix for unsigned long long , as
in 5ull or 10LLU or 6LLU or 9Ull .

Sam
ple

 p
ag

es

70 Chapter 3 Data and C

 Printing short , long , long long , and unsigned Types

 To print an unsigned int number, use the %u notation. To print a long value, use the %ld
format specifier. If int and long are the same size on your system, just %d will suffice, but your
program will not work properly when transferred to a system on which the two types are differ-
ent, so use the %ld specifier for long . You can use the l prefix for x and o , too. So you would
use %lx to print a long integer in hexadecimal format and %lo to print in octal format. Note
that although C allows both uppercase and lowercase letters for constant suffixes, these format
specifiers use just lowercase.

 C has several additional printf() formats. First, you can use an h prefix for short types.
Therefore, %hd displays a short integer in decimal form, and %ho displays a short integer
in octal form. Both the h and l prefixes can be used with u for unsigned types. For instance,
you would use the %lu notation for printing unsigned long types. Listing 3.4 provides an
example. Systems supporting the long long types use %lld and %llu for the signed and
unsigned versions. Chapter 4 provides a fuller discussion of format specifiers.

 Listing 3.4 The print2.c Program

 /* print2.c-more printf() properties */

 #include <stdio.h>

 int main(void)

 {

 unsigned int un = 3000000000; /* system with 32-bit int */

 short end = 200; /* and 16-bit short */

 long big = 65537;

 long long verybig = 12345678908642;

 printf("un = %u and not %d\n", un, un);

 printf("end = %hd and %d\n", end, end);

 printf("big = %ld and not %hd\n", big, big);

 printf("verybig= %lld and not %ld\n", verybig, verybig);

 return 0;

 }

 Here is the output on one system (results can vary):

 un = 3000000000 and not -1294967296

 end = 200 and 200

 big = 65537 and not 1

 verybig= 12345678908642 and not 1942899938

 This example points out that using the wrong specification can produce unexpected results.
First, note that using the %d specifier for the unsigned variable un produces a negative number!
The reason for this is that the unsigned value 3000000000 and the signed value –129496296
have exactly the same internal representation in memory on our system. (Chapter 15 explains

Sam
ple

 p
ag

es

71Basic C Data Types

this property in more detail.) So if you tell printf() that the number is unsigned, it prints one
value, and if you tell it that the same number is signed, it prints the other value. This behavior
shows up with values larger than the maximum signed value. Smaller positive values, such as
96, are stored and displayed the same for both signed and unsigned types.

 Next, note that the short variable end is displayed the same whether you tell printf() that
 end is a short (the %hd specifier) or an int (the %d specifier). That’s because C automatically
expands a type short value to a type int value when it’s passed as an argument to a function.
This may raise two questions in your mind: Why does this conversion take place, and what’s
the use of the h modifier? The answer to the first question is that the int type is intended to be
the integer size that the computer handles most efficiently. So, on a computer for which short
and int are different sizes, it may be faster to pass the value as an int . The answer to the
second question is that you can use the h modifier to show how a longer integer would look if
truncated to the size of short . The third line of output illustrates this point. The value 65537
expressed in binary format as a 32-bit number is 00000000000000010000000000000001. Using
the %hd specifier persuaded printf() to look at just the last 16 bits; therefore, it displayed the
value as 1. Similarly, the final output line shows the full value of verybig and then the value
stored in the last 32 bits, as viewed through the %ld specifier.

 Earlier you saw that it is your responsibility to make sure the number of specifiers matches
the number of values to be displayed. Here you see that it is also your responsibility to use the
correct specifier for the type of value to be displayed.

 Tip Match the Type printf() Specifiers

 Remember to check to see that you have one format specifier for each value being displayed in
a printf() statement. And also check that the type of each format specifier matches the type
of the corresponding display value.

 Using Characters: Type char

 The char type is used for storing characters such as letters and punctuation marks, but techni-
cally it is an integer type. Why? Because the char type actually stores integers, not characters.
To handle characters, the computer uses a numerical code in which certain integers represent
certain characters. The most commonly used code in the U.S. is the ASCII code given in the
table on the inside front cover. It is the code this book assumes. In it, for example, the integer
value 65 represents an uppercase A . So to store the letter A , you actually need to store the
integer 65 . (Many IBM mainframes use a different code, called EBCDIC, but the principle is the
same. Computer systems outside the U.S. may use entirely different codes.)

 The standard ASCII code runs numerically from 0 to 127. This range is small enough that 7 bits
can hold it. The char type is typically defined as an 8-bit unit of memory, so it is more than
large enough to encompass the standard ASCII code. Many systems, such as the IBM PC and
the Apple Macs, offer extended ASCII codes (different for the two systems) that still stay within
an 8-bit limit. More generally, C guarantees that the char type is large enough to store the
basic character set for the system on which C is implemented.

Sam
ple

 p
ag

es

	Table of Contents
	3 Data and C
	A Sample Program
	What’s New in This Program?

	Data Variables and Constants
	Data: Data-Type Keywords
	Integer Versus Floating-Point Types
	The Integer
	The Floating-Point Number

	Basic C Data Types
	The int Type
	Other Integer Types
	Using Characters: Type char

