
Sam
ple

 p
ag

es

http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780321822369
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780321822369
https://plusone.google.com/share?url=http://www.informit.com/title/9780321822369
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780321822369
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780321822369/Free-Sample-Chapter

 xi

CONTENTS

Foreword xvii

Preface xix

Acknowledgments xxiii

About the Author xxv

Chapter 1 Scrum Startup 1
Shortcut 1: Scrum on the Pitch 1

Werewolf Slayers? 2
The Scrum Team 3
Project Sponsors 4
Good News and Not-So-Good News 5

Shortcut 2: Fragile Agile 5
It’s a Framework, Not a Method 6
Qualifications versus Qualities 7
Abusing the Agile Manifesto 7
A Few Scrum Antipatterns 7
Listen to Your Folks 11

Shortcut 3: Creative Comfort 11
Individual Gratitude 12
Physical Environment 12
Tools of the Trade 13
Identity 14
Shining Happy People 14

Wrap Up 15

Chapter 2 Attitudes and Abilities 17
Shortcut 4: Masterful ScrumMaster 17

Leading without Authority 17
Bring about Change without Fear 18
Be Diplomatic without Being Political 19
Behave Selflessly without Downplaying the Role 20
Protect without Being Overprotective 20

Sam
ple

 p
ag

es

xii Contents

Maintain Technical Knowledge without Being an Expert 20
Be Comfortable Never Finishing 21
Next Generation Leadership 21

Shortcut 5: Rock Stars or Studio Musicians? 21
Rock Stars 22
Studio Musicians 22
Scrum Values 22
Time to Make Music 25

Shortcut 6: Picking Your Team Line-Up 25
Everyone Is a Developer! 26
Scrum Team Size 26
Development Team Ratios 26
Fractional Assignment 28
Can a ScrumMaster Work with Multiple Teams? 28
Attitude over Aptitude 30
Embrace Heterogeneity (But Beware) 30
Household Rules 30
All for One and One for All! 30

Wrap Up 31

Chapter 3 Planning and Protecting 33
Shortcut 7: Setting the Scrum Stage 33

Ensure Team Stability 33
Adjust the Physical Environment 34
Estimates Are Not Guarantees 35
Work toward Reciprocity 35
Support Sustainable Development 35
Run a Pilot Project 36
Have Realistic Expectations 37

Shortcut 8: Plan the Sprint, Sprint the Plan 37
Product Backlog Refinement 37
Goals Are Good 38
How Long Should a Sprint Be? 38
Capacity Planning 39
Part 1: The What 39
Part 2: The How 40
Task Definition 40
The Right Number of Requirements 41
The 7 Ps 42

Shortcut 9: Incriminating Impediments 42
Defining Impediments 42
Many Shapes and Sizes 43

Sam
ple

 p
ag

es

 Contents xiii

Impediment ConTROL 44
Blocks versus Impediments 44
Understand the Terrain 45

Wrap Up 45

Chapter 4 Requirement Refinement 47
Shortcut 10: Structuring Stories 47

Breaking It Down 47
Task Slicing and Dicing 48
Consistency Is King 51

Shortcut 11: Developing the Definition of Done 51
Ambiguous Arguments 52
Where to Start 52
Multiple Levels 53
Constraints 56
Acceptance Criteria or DoD? 56
It’s Just Like Cooking! 57

Shortcut 12: Progressive Revelations 57
Verification and Validation 58
When, Where, Who 58
Issues and Adjustments 59
Be Aware of Scope Creep 59
Capturing the Output 60
Don’t Overdo It 60

Wrap Up 61

Chapter 5 Establishing Estimates 63
Shortcut 13: Relating to Estimating 63

Estimation Pain 63
Why Bother Estimating? 64
Explaining Relative Estimation 64
Software Relative Estimation 67
Velocity 68
Relative Estimation in Practice 69

Shortcut 14: Planning Poker at Pace 69
Setting Up the Game 69
Planning Poker Mechanics 71
When to Play Planning Poker 72
Get the Team Warmed Up 73
Big Cards for Big Occasions 73
Don’t Double Up 73
Reaching a Consensus 74

Sam
ple

 p
ag

es

xiv Contents

Phones Can Help 74
It’s All about Benefits 74
Remember Parkinson’s Law 75

Shortcut 15: Transitioning Relatively 75
An Approach 75
Using Historical Work 76
Creating the Mappings 76
Keep Up Your Recycling 80

Wrap Up 81

Chapter 6 Questioning Quality 83
Shortcut 16: Bah! Scrum Bug! 83

New Definitions 83
New Principles 85
New Approaches 85
Turning Moths into Butterflies 87

Shortcut 17: We Still Love the Testers! 87
Waterfall Friendship 88
Change Is in the Air 88
New Identities 89
The Tester as a Consultant 89
The Tester as a Designer 90
The Tester as an Explorer 91
A New Beginning 91

Shortcut 18: Automation Nation 91
Continuous Integration (CI) 92
Test Automation 93
Deployment Automation 96
Continuous Delivery and Scrum 97
Every Journey Begins with But a Small Step 97

Wrap Up 98

Chapter 7 Monitoring and Metrics 99
Shortcut 19: Metrics That Matter 99

Types of Metrics 99
Four Meaningful Metrics 100
Beware of Analysis Paralysis 106

Shortcut 20: Outstanding Stand-Ups 107
When and Where? 107
What Should Be Covered? 108
Multiple Teams 109

Sam
ple

 p
ag

es

 Contents xv

Ignore the ScrumMaster 109
Some Extra Touches 109
It’s Hitting the Big Time! 110

Shortcut 21: Taming the Task Board 111
Digital or Physical? 111
Materials Needed to Go Old School 111
Setting Up Your Columns 112
Rows of Sticky-Notes 112
Sticky-Note Content 112
Generating the Burndown 113
Some Important Decoration 113
Keeping It Real! 114
Party Time! 115

Wrap Up 115

Chapter 8 Retros, Reviews, and Risks 117
Shortcut 22: To-Dos for Your Sprint Reviews 117

During Sprint Planning 117
During the Sprint 118
During the Sprint Review 120
So-Called Suggestions 121
Picnics or Battles 122

Shortcut 23: Retrospective Irrespective 122
Reinforce Scrum’s Values 122
What If We’re Running One-Week Sprints? 122
Location, Location, Location 123
Getting Set 123
Output of the Retrospective 125
Format of the Retrospective 125
Seasoned Pros 128
Retrospective Attendees 128
Keep It Fresh 128

Shortcut 24: Risk Takers and Mistake Makers 129
Fear of Change 129
Free to Change 130
Fear of Exposure 130
Free to Be Exposed 130
Fear of Making Mistakes 131
Free to Make Mistakes 131
Lighten the Mood 132

Wrap Up 133

Sam
ple

 p
ag

es

xvi Contents

Chapter 9 Managing the Managers 135
Shortcut 25: Perception Is Reality 135

Build a Relationship 136
Reference Point 136
Involve Them 136
Keep Them in the Loop 137
Maintain Diplomatic Discipline 139
Remember Who Pays the Bills 140

Shortcut 26: Our Lords and Masters 140
ScrumMaster versus Chief ScrumMaster 140
Core Functions of the Chief ScrumMaster 141
Core Functions of the ScrumMaster Role 143
A Consistent Ecosystem 145

Shortcut 27: Morphing Managers in the Matrix 145
Evolving Out of the Matrix 145
Project Managers Aren’t Disappearing 149
The Future of Functional Managers 150
Let’s Be Realistic 151

Wrap Up 152

Chapter 10 Larger Lessons 153
Shortcut 28: Scrum Rollout Reckoning 153

How Agile Are We? 153
Humans Love to Measure 154
Should We Continue? 155
Costs versus Benefits 155
Are We Getting Better? 156
Keep It Simple 157
Spread the Good Word 158

Shortcut 29: Eyes on the Prize 158
Explaining Self-Organization 159
Environments and Boundaries 159
The Infinite Role 161

Shortcut 30: Shortcut to the Final Level 162
Looking in the Mirror 162
Choose Your Own Adventure 163
Experiment 163
Don’t Rest on Your Laurels 164
Exceeding Expectations 164

Final Wrap Up 165

References 167

Index 171

Sam
ple

 p
ag

es

 33

Chapter 3

PLANNING AND PROTECTING

Now that your organization is eager to adopt Scrum and a team has been selected
with the right attitudes and abilities, it is time to snap into action and get the show on
the road.

The following three shortcuts not only help you to set the team on their course
but also give you some tips and tricks to keep the project on track.

Shortcut 7: Setting the Scrum Stage lays down a range of suggestions to ensure
proper foundations have been established to support a successful Scrum team. Short-
cut 8: Plan the Sprint, Sprint the Plan provides specific, practical advice to ensure
an effective sprint planning session. Finally, Shortcut 9: Incriminating Impediments
offers advice to help control the impact of impediments during sprint execution.

Shortcut 7: Setting the Scrum Stage
Scrum teams require chemistry, and just as in a science lab, successful “chemical
reactions” are much easier to trigger when the broader organization provides the
suitable ingredients and environment to work with. As Mike Cohn (2009) astutely
recognizes, “The changes required to reap all of the rewards being agile can bring are
far reaching. These changes demand a great deal from not only the developers but the
rest of the organization as well.”

Let’s examine some of the key organizational and environmental preconditions
that should ideally be considered as part of your Scrum adoption plan.

Ensure Team Stability
Tom DeMarco and Timothy Lister (1999) identify a key mantra that any organization
seeking close-knit teams should adopt: “Preserve and protect successful teams.”

I am comfortable admitting that I have worked on Scrum projects that I would
consider to be less than successful. I can easily pinpoint the core reason for these
subpar results: my inability as a ScrumMaster to keep the team together for the dura-
tion of the project. This problem often occurs when key developers are dragged off
one project to work on a more urgent project (see Figure 3.1). Couple this problem
with continual corporate restructuring (that seems to be happening more and more
in these times of global financial difficulty), and it can be challenging to preserve
great teams.

Sam
ple

 p
ag

es

34 Chapter 3 � Planning and Protecting

DeMarco and Lister (1999) also quantified the damage caused when rotating
staff, concluding that “a reasonable assessment of startup cost (for a new team mem-
ber) is therefore approximately three lost work-months per new hire.” This estimate
doesn’t even take into account the less tangible costs such as lost momentum, damage
to morale, and loss of valuable, tacit knowledge.

Adjust the Physical Environment
Without question, some of my most successful Scrum projects were those in which
I was able to physically separate the Scrum teams from the rest of the organization.

DeMarco and Lister (1999) surmise why this may be the case:

It almost always makes sense to move a project . . . out of corporate space. Work
conducted in ad hoc space has got more energy and a higher success rate. People
suffer less from noise and interruption and frustration.

I’ve worked with Scrum teams that had to operate in large, open spaces near the
sales team who were frantically on their phones all day, every day. I’ve also had teams
that had been hamstrung by the corporate facilities department who wouldn’t allow
them to move a small, measly round meeting table into their areas. I could go on and
on, but the bottom line is that separation and environmental independence is the
holy grail.

Irrespective of whether you are able to reach this lofty goal, you should do every-
thing in your power to ensure that the Scrum team sits together. Scrum can certainly
work for distributed teams where collocation isn’t possible, but it’s not optimal.

Apart from the obvious daily logistical benefits that sitting in close proximity
offers, James Shore and Shane Warden (2007) offer an even more important rationale

FIGURE 3.1 Beware of “more urgent” projects trying to drag team members away.

Sam
ple

 p
ag

es

 Shortcut 7: Setting the Scrum Stage 35

for the collocation of the team: “Sitting together is the most effective way I know to
build empathy. Each group member gets to see that the others are working just as
hard.” Shortcut 3 goes into more detail regarding other key inclusions to incorpo-
rate into the physical working environment to ensure a physical space conducive to
Scrum.

Estimates Are Not Guarantees
How is this for an infuriating scenario? The project sponsor casually strolls over to
a team member and asks how long feature XYZ is going to take. The team member
takes off her headphones, breaking focus from what she was working on, glances up
and throws out a rough estimate to appease the sponsor. Lo and behold, the estimate
proves to be inaccurate. The sponsor then applies immense pressure on the entire
team to deliver on the promised “commitment,” and dammit, if that means missing
your kid’s end-of-year concert, then that’s the price of sticking to commitments!

News flash: An estimate is not a guarantee. If it were, there would be no need for
the word. An estimate is simply a prediction based on known information and input
at a given point in time. This definition needs to be clearly understood by the project
stakeholders before the project kicks off!

Work toward Reciprocity
Mary and Tom Poppendieck, authors of Leading Lean Software Development, put for-
ward the notion that there are two kinds of companies in this world: remuneration
companies and reciprocation companies:

People who work in a remuneration company have this agreement with their
company: “I will show up for work and you will pay me for my time. If you
want more than that, pay me more.” On the other hand, people who work in a
reciprocity company have this agreement: “I will treat you the way you treat me.
I expect fair compensation, but if you want care and commitment on my part,
then you agree that you will demonstrate care and commitment toward me, and
you will help me develop my potential to its fullest extent.” (Poppendieck and
Poppendieck 2009)

The best Scrum teams consist of committed and caring individuals, so it natu-
rally follows that companies that embrace the reciprocity model are more likely than
remuneration companies to have greater success with Scrum, especially in the long
term.

Support Sustainable Development
Shortcut 1 mentioned that one of Scrum’s guiding principles is that team members
should work at a sustainable pace.

Sam
ple

 p
ag

es

36 Chapter 3 � Planning and Protecting

In Agile Product Management with Scrum, Roman Pichler (2010) points out that

developing a product is like running a marathon. If you want to finish, you have
to choose a steady pace. Many product owners make the mistake of pressuring
the team to take on more work.

Any organization that maintains a culture of late-night martyrdom and contin-
ues to not only respect but also explicitly reward ludicrous overtime is at conflict
with one of the principles of Scrum (or any other agile framework, for that matter).
Overtime should be the exception, not the rule, and as recognized by Kent Beck in
Extreme Programming Explained (1999), it should be recognized as “a symptom of a
serious problem on the project,” not simply business as usual.

Run a Pilot Project
Although there are certainly some advantages to taking the Big Bang approach to roll-
ing out Scrum across an organization, I don’t advocate it. Instead, I’m a big believer
in initially running a pilot project. I recommend this approach even if the business
is champing at the bit to roll Scrum out en masse. Why do I recommend investing
this additional time if not to help obtain validation and buy-in? Mike Cohn (2009)
explains the reason perfectly:

[A] pilot project is undertaken to provide guidance to subsequent projects; it
pilots the way in doing something new. . . . As an industry we have enough evi-
dence that Scrum works; what individual organizations need to learn is how to
make Scrum work inside their organizations.

I always run pilot projects before rolling out across a broader group, and in fact,
without the experimental freedom that a pilot project offers, I’m not sure if you
would even be reading this book today!

It may be tempting to select a project to pilot that is low value and therefore low
risk. This is a false economy. Shore and Warden (2007) reinforce this point:

Avoid taking a project with low value as a “learning opportunity.” You’ll have
trouble involving customers and achieving an organizational success. Your
organization could view the project as a failure even if it’s a technical success.

Regarding team stability and the less-than-successful projects I experienced:
the reason I couldn’t keep those teams together was that the pilot projects we were
working on were not of high enough priority and value. When push came to shove
and shared resources were being stretched between the pilot project and the “more
important” projects, no guesses as to which lost out.

Sam
ple

 p
ag

es

 Shortcut 8: Plan the Sprint, Sprint the Plan 37

How long should a pilot project last? Well, if you’ve been reading this section
carefully, you will conclude that your pilot project should be no different from any
other important project. As Roman Pichler (2010) states, “There is no rule in Scrum
that mandates how long a project can last. But, it is common for agile projects to take
no longer than three to six months.”

Have Realistic Expectations
Change takes time, and very often with change, we need to take one step back to take
two forward. Adopting Scrum requires a significant shift in organizational mindset
that includes breaking entrenched habits, and this feat doesn’t happen overnight.

There is going to be lead time before the developers feel comfortable working
in cross-functional teams and before the old command-and-control attitudes disap-
pear. Based on this premise, the organization should not be naïve and expect amazing
gains immediately. Patience and nurturing is the name of the game, and a supportive
organization will no doubt see its investment reaping dividends in the near future.

S hortcut 8: Plan the Sprint, Sprint the Plan
As one of the “elements of a chemistry-building strategy for healthy organizations,”
DeMarco and Lister (1999) recommend providing “lots of satisfying closure.” I totally
agree with their advice and suggest another complementary element: the provision of
lots of clean, fresh starts. Luckily for us, the sprint time-box offers both closure and
fresh starts, and in this shortcut we explore the Scrum activity that offers us the regu-
lar fresh start: sprint planning.

By collectively resetting the goals for the upcoming sprint every few weeks, the
team can start afresh rather than remain stuck on a seemingly endless treadmill of
ongoing work. Further, without this regular and expected planning session, signifi-
cant disruption is caused when team members are rounded up on an ad hoc basis to
plan and design.

Product Backlog Refinement
Before the team is gathered in the planning room, I recommend a few preliminary
steps to ensure that the product backlog is refined appropriately. First, ensure that the
product owner (with relevant assistance) not only has determined the next priority
requirements for the upcoming sprint but also has fleshed them out in just enough
detail to allow the developers to get started. Doing so might mean including more
detailed acceptance criteria as well as any wireframes or mock-ups if applicable (see
Shortcut 11). Additionally, it helps if the product owner has taken some time to col-
laborate in advance with any specialist testers to develop a set of initial test cases
(based on the acceptance criteria) to fully describe the inner workings of the required
functionality.

Sam
ple

 p
ag

es

38 Chapter 3 � Planning and Protecting

Goals Are Good
I would say that most of us enjoy working toward goals, so it is helpful to determine
a centralized sprint goal that is omnipresent throughout the sprint. This focal goal
typically maps to the main theme of the sprint. For example, the sprint goal might be
Enhance the Messaging Engine; this doesn’t mean that other bits and pieces can’t also
be worked on during the sprint, but it does indicate that the majority of the work will
target the messaging engine. A sprint goal also helps with decision making by ensur-
ing that everyone remains focused rather than deviating and heading off on tangents.

How Long Should a Sprint Be?
Back in the day, it was recommended that the sprint duration should be 30 days—no
more, no less. These days, things have become somewhat more flexible, and it is now
pretty much universally accepted that the sprint length can vary from team to team.
If you speak to any Scrum team, you will find that the vast majority of sprints run
from 1 to 4 weeks. I have tried them all out, and in my opinion, 1 week is too short,
4 weeks is too long, leaving me sitting on the fence between 2 and 3 weeks. For a new
project, I make the decision based on two factors:

 � Team preference: Some people prefer the longer duration to help gain more
momentum, whereas others prefer the simpler planning that a shorter sprint
offers.

 � Volatility of requirements: If the product owner is likely to change require-
ments more often than not due to the product domain or market conditions,
then I definitely recommend the shorter duration (see Figure 3.2).

Now, an important point: When the preferred sprint length is confirmed (it may
take some experimenting in the early days), it should be locked in and rarely changed.
There are specific reasons to avoid sporadically adjusting the sprint length, including
the following:

 � For team focus, a regular rhythm helps the team better understand how to
pace itself.

FIGURE 3.2 Factors to take into account when considering sprint length.

Sam
ple

 p
ag

es

 Shortcut 8: Plan the Sprint, Sprint the Plan 39

 � The velocity metric (see Shortcut 13) relies on a consistent sprint duration;
otherwise, it becomes less meaningful and more difficult to calculate.

 � If you change the duration of sprints, your sprint review, retrospective, and
planning sessions will not fall on the same day of the week. Such irregulari-
ties can prove to be a logistical headache, especially if you have to share meet-
ing rooms with others in the organization.

Capacity Planning
Before diving into the sprint planning process, the team needs to first determine its
sprint capacity. First, remember that not everyone will have full capacity for every
sprint. Some team members may need to work across multiple projects—certainly
not an ideal situation, but it can happen (see Shortcut 6). If this is the case, make sure
that these developers aren’t overallocated. Also, don’t forget to take into account any
public holidays, training, or scheduled leave.

Second, don’t fall into the trap of believing that those who are dedicated full time
to the sprint will be able to spend their entire working day on sprint-related tasks.

For example, in a team that I recently worked with (using 2-week sprints), a full-
time developer was typically allocated a capacity of 9 days × 6 hours per day = 54
hours per sprint to work on tasks.

First, we used 9 days because the equivalent of 1 full day was dedicated to the
sprint planning, review, and retrospective sessions. Six hours a day was allocated
because in a typical 8-hour day we found that an individual would usually get only
about 6 hours of solid sprint-focused work. The rest of the time was often taken up by
various other activities unrelated to the current sprint, such as refining the product
backlog (in anticipation for the upcoming sprint) and more general tasks required
to be a good citizen of the organization (such as responding to email and assisting
others not in the Scrum team). Please note that the proposed capacity per day will
vary depending on the team and environment. As such, 6 hours a day should not be
considered a universal standard, and I recommend using historical sprint interfer-
ence statistics (see Shortcut 19) to help you determine your team’s estimated sprint
capacity.

Let’s now take a look at the flow of the actual sprint planning session, which I
like to split into two distinct parts:

Part 1: The What
This segment is all about the product owner presenting the next-highest-priority
product backlog items (PBIs) to the development team as well as fielding any spe-
cific questions. This task is conducted for each of the PBIs that are being targeted
for completion in the upcoming sprint. I recommend using the team’s velocity (see
Shortcut 13) as a rough guide to determine how many PBIs the product owner should
be prepared to run through during this session.

Sam
ple

 p
ag

es

40 Chapter 3 � Planning and Protecting

Part 2: The How
Moving on, it is then time for the development team to break the PBIs into more gran-
ular technical tasks and to estimate each task to the nearest hour. Although estimat-
ing in hours may still be inaccurate at times, it helps the team make more informed
design trade-off decisions and assists in establishing more confidence in what will
likely be delivered by the end of the sprint. As Cohn (2007) explains further:

The goal is not the hours but the hours are often a good tool to use to ensure we
have discussed things (mostly the technical and product design of those things)
at a level sufficient to enter the sprint with a good feeling that we’ll be able to
finish all the work of the sprint.

I don’t expect product owners to hang around for this second part (unless they
particularly want to). That being said, I stipulate that although product owners don’t
necessarily need to be in the room, they certainly need to be on call in case any fur-
ther clarification is required. Nothing stalls a sprint planning session more than an
unavailable product owner!

Even though I like to use velocity-based planning as a guide for Part 1, I like to
also use what is commonly known as commitment-based planning to determine the
number of specific tasks to include in the sprint backlog. Here are the steps that the
development team typically runs through during commitment-based planning:

1. Start with the highest-priority PBI.

2. Deconstruct the PBI into tasks with estimates in hours.

3. Identify any specific task dependencies.

4. Continue this cycle until the team’s collective capacity is full.

5. If the output from the velocity-based approach (from Part 1) doesn’t match
the output from the commitment-based approach, simply call back the
product owner (if she has left the room) to add additional PBIs (if there is still
capacity) or explain to her why there will be fewer PBIs targeted than initially
expected (if the capacity is filled earlier than initially expected).

Task Definition
I typically set a few parameters for the generation of tasks:

 � Each task needs to be a small, testable slice of the overall PBI (see Shortcut 10)
and needs to factor in all activities required to meet the task’s definition of
“done” (see Shortcut 11).

 � Each task should take no longer than about 8 hours (the shorter, the better,
though).

Sam
ple

 p
ag

es

 Shortcut 8: Plan the Sprint, Sprint the Plan 41

 � Although more than one developer can work on a single PBI, there should be
only one developer (or developer pair) working on a task (see Figure 3.3).

 � Don’t forget to include tasks for the sprint review preparation (see Shortcut 22),
such as preparing demo data if required.

You now have the sprint backlog compiled, including the tasks and correspond-
ing estimates for them. The original estimates for the tasks can be aggregated to form
the sprint’s initial remaining time, and this time can then be recalculated each day
and tracked on the sprint burndown chart (see Shortcut 19). Before going home each
day, everyone on the development team should adjust the remaining time for any
tasks they had been working on that day to ensure that up-to-date data is being fed
into the sprint burndown chart.

The Right Number of Requirements
In a perfect world, after sprint planning is all said and done, you will have a nice
neat whole number of PBIs that the team anticipates it will be able to complete in
the forthcoming sprint. What you will find occasionally is that there will be a small
amount of expected capacity left over that isn’t quite enough to fit a whole new PBI
into. That’s okay—simply acknowledge as a team that the intention is to commence
the next-highest-priority requirement without setting the expectation that it will be

FIGURE 3.3 Although a single PBI can be worked on by multiple developers, each
task should be worked on by only one developer.

Sam
ple

 p
ag

es

42 Chapter 3 � Planning and Protecting

completed by the end of the sprint. I prefer this approach to trying to identify a small
enough PBI (lower down on the product backlog) that could fit in nicely because I
feel that it is more important to focus on working on the highest business value items.

The 7 Ps
As the British army adage goes, “Proper planning and preparation prevents piss-poor
performance,” so a thorough and well-conducted sprint planning session is impor-
tant to help generate a forecast that is as accurate as possible.

The sprint won’t always go according to plan, and no doubt adjustments will
need to be made at times. However, if this session is well run, everyone will have a
much better idea of what the collective objectives are, and this information will make
the coordination and alignment of expectations a great deal easier.

 Shortcut 9: Incriminating Impediments
You’ve trained your new Scrum troops, and they’re ready for their first mission. The
team is pumped, and the project is up and running. Things are going well; the daily
scrums are happening, the continuous integration server is humming along, tasks
are moving across the board, so life is pretty sweet. Then, from out of nowhere, the
bullets start flying, the mines start exploding, and your troops are no longer moving
forward. This is it, ScrumMaster—time to step up!

Okay, so perhaps in reality, it isn’t a spray of enemy fire impeding your team.
Instead, it might be a constantly breaking build, an interfering project sponsor, or
perhaps the loss of a key team member. The bottom line is that anything imped-
ing your team’s progress becomes the number-one priority for the ScrumMaster to
tackle.

Defining Impediments
Let’s start by defining what an impediment is. Here is the definition I choose to use:

An event that impedes any of the developers from working to their anticipated
sprint capacity.

If you recall from Shortcut 8, it isn’t wise to allocate a full-time developer a sprint
capacity of 8 hours a day (for a typical 8-hour working day). Why not? you ask. Well,
you have to be realistic: there is no way that people are going to spend every second
of their operational time working on their sprint tasks. We must take into account
the various meetings that will pop up, other extended collaboration time, unplanned
company events, and important head-clearing breaks, just to name a few. Now don’t
get me wrong: on some days, some team members will be able to maintain strong
focus on their sprint tasks and will max out or even exceed the 8 hours. However, on

Sam
ple

 p
ag

es

 Shortcut 9: Incriminating Impediments 43

other days, constant interruptions may make it difficult to maintain even a couple of
hours of sprint-focused work.

Many Shapes and Sizes
Impediments come in all shapes and sizes. Following is a small sample of indicative
impediments (both operational and systemic) to keep a careful eye on:

 � Meetings of large magnitude: Scrum projects really should have no need for
these extraneous, long-winded bad boys, so when they pop up, they are typi-
cally triggered by other areas of the business or by unforeseen issues.

 � Illness: Illness can strike unannounced at any time. Not much you can do
about it, but I highly recommend you avoid a culture of “toughing it out”
when sick. That expectation is just stupid. Work quality suffers, germs spread
very quickly in an open Scrum environment, and it just annoys everyone.

 � Broken builds: Without a healthy build (see Shortcut 18), development can-
not continue. If a build is broken, it must be the top priority of every team
member to fix it.

 � Issues with the tools of the trade: Whether it is a hardware malfunction, soft-
ware problem, or network connectivity issues, any problems with the working
environment can seriously hamper progress and lead to immense frustration.

 � Unreliable supplier: This is possibly one of the most frustrating impediments
due to the lack of control that the ScrumMaster and team might have in deal-
ing with an overburdened supplier. Poorly supported components or add-ons
can lead to black holes that can seriously suck time from your sprints.

 � Unrefined product backlog: A sprint should never start without the product
owner knowing exactly what requirements should make their way into the
sprint backlog. Further, these requirements should include enough detail for
the development team get their teeth into. If these requirements are not ready
for the sprint planning session then the sprint will not start smoothly at all
(see Shortcut 11).

 � Absent or unempowered product owner holding up key decisions: Product
owners should be available throughout the sprint to field specific questions
about the sprint backlog. If they are regularly absent or constantly having to
seek approval from elsewhere, the development team might find itself para-
lyzed with uncertainty.

 � Incentive schemes focused on the individual: Many organizations main-
tain performance reviews (and associated incentive schemes) that are based
entirely on individual performance. Hopefully by now you’ve absorbed the

Sam
ple

 p
ag

es

44 Chapter 3 � Planning and Protecting

fact that there is no “I” in “Scrum team,” so unless reviews also incorporate
a significant focus on team collaboration, the organization will be sending a
contradictory message to the team members.

Impediment ConTROL
I like to run through the following five-step approach when dealing with impedi-
ments: confirm, triage, remove, outline, learn (ConTROL).

 � Confirm: Obviously it is necessary to confirm what the impediment is. Typi-
cally, impediments are raised in the daily scrum, but urgent impediments
should be raised in real time rather than waiting for the daily scrum. The
sprint retrospective can uncover further impediments that may have slipped
through the cracks during the actual sprint. All impediments should be
tracked and monitored until they are resolved.

 � Triage: If you are bombarded with simultaneous impediments, then unless
you are Superman (being obsessed with super heroes doesn’t automatically
give you their special powers), you will be able to tackle only one or two at a
time. An impact and urgency assessment may be needed to help you deter-
mine where to start.

 � Remove: Ideally, the Scrum team can remove any impediment that gets
thrown its way, but it isn’t always the reality. To avoid delays, it is important
to know when to seek further help from other groups to get things back on
track (see Shortcut 26).

 � Outline: Both the Scrum team and stakeholders should be made aware of
any impediments as they come up. You especially want to avoid surprises for
product owners (and project sponsors) when it comes to any scuttled plans so
that they have as much time as possible to iron out any cascade effects.

 � Learn: The sprint retrospective (see Shortcut 23) is the main session during
which impediments are analyzed. It is important to learn from these issues to
avoid their recurrence and/or capture how they were dealt with so that if they
strike again, the impact is less pronounced.

Blocks versus Impediments
Many teams use the terms block and impediment interchangeably, but I like to differ-
entiate between the two (see Figure 3.4). I do so to clearly identify an obstruction that
has stopped progress on a particular task but hasn’t necessarily slowed down overall
progress (a block) versus an obstruction that is slowing down the team’s sprint prog-
ress (an impediment).

Sam
ple

 p
ag

es

 Wrap Up 45

A typical block occurs when a task has a dependency that has been held up for
some reason. A short, temporary block is a reasonably common occurrence and noth-
ing to get too concerned about, because in most cases, other work can be taken on
while the dependency is being taken care of. The important thing to note is that you
want clear visibility of all blocked tasks, irrespective of how temporary the block may
be. The way I like to track blocked tasks is to simply spin the corresponding sticky-
note 45 degrees so that it looks like a diamond and stands out on the task board. This
is a clear signal and allows you to immediately jump into detective mode to ensure
that the block is removed as quickly as possible.

Understand the Terrain
If you’re like me, you will be stunned when you think back to all of the impediments
that occurred throughout a project. It is often only when you reflect on the compiled
list of tracked impediments that you can really appreciate the difficult terrain your
Scrum troops have had to negotiate.

This impediment list can also prove invaluable if ever you must defend the team
should it fall under an uncomfortable spotlight due to incremental delays that have
started to impact release dates. I certainly found that if you carefully ConTROL
impediments when they decide to rear their ugly heads, these uncomfortable situa-
tions will be few and far between.

Wrap Up
The three shortcuts discussed in this chapter focused on a selection of tactics, tools,
and tips to help you to set your team on course and keep them on track. Let’s recap
what was covered:

FIGURE 3.4 A block affects only a single task, whereas an impediment acts like a parachute,
slowing down overall progress.

Sam
ple

 p
ag

es

46 Chapter 3 � Planning and Protecting

Shortcut 7: Setting the Scrum Stage

 � The importance of collocating team members whenever possible

 � A selection of cultural adjustments that are required to ensure that Scrum
can thrive

 � How and why pilot projects can assist in longer-term Scrum adoption

Shortcut 8: Plan the Sprint, Sprint the Plan

 � Factors to consider when selecting your sprint length and goal

 � How to determine a realistic sprint capacity

 � Options for structuring your sprint planning session

Shortcut 9: Incriminating Impediments

 � Definitions of impediments and blocks

 � Types of impediments to watch out for

 � How to ConTROL your list of impediments

Sam
ple

 p
ag

es

	Contents
	Foreword
	Preface
	Acknowledgments
	About the Author
	Chapter 3 Planning and Protecting
	Shortcut 7: Setting the Scrum Stage
	Ensure Team Stability
	Adjust the Physical Environment
	Estimates Are Not Guarantees
	Work toward Reciprocity
	Support Sustainable Development
	Run a Pilot Project
	Have Realistic Expectations

	Shortcut 8: Plan the Sprint, Sprint the Plan
	Product Backlog Refinement
	Goals Are Good
	How Long Should a Sprint Be?
	Capacity Planning
	Part 1: The What
	Part 2: The How
	Task Definition
	The Right Number of Requirements
	The 7 Ps

	Shortcut 9: Incriminating Impediments
	Defining Impediments
	Many Shapes and Sizes
	Impediment ConTROL
	Blocks versus Impediments
	Understand the Terrain

	Wrap Up

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

