<
<

%GO

Programming
Language (OQQ?

Alan A. A. DonovanQ
Brian W. Kerni

SAIFIS ONILNAWOD TVYNOISSIHO™-d AFTSIM-NOSIAAY

http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780134190440
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780134190440
https://plusone.google.com/share?url=http://www.informit.com/title/9780134190440
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780134190440
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780134190440/Free-Sample-Chapter

Contents

Preface xi
The Origins of Go xii
The Go Project xiii
Organization of the Book XV
Where to Find More Information xvi
Acknowledgments xvii

1. Tutorial 1
1.1. Hello, World 1
1.2. Command-Line Arguments 4
1.3. Finding DuplicatesLines 8
1.4. Animated GIF§ 13
1.5. Fetchinga URL 15
1.6. Fetching URLs Concurrently 17
1.7. A Web Server 19
1.8. Loose Ends 23

2. Program Structure 27
2.1. Names 27
2.2. Declarations 28
2.3. Variables 30
2.4. Assignments 36
2.5. Type Declarations 39
2.6. Packages and Files 41

2.7. Scope 45

vii

viii

3. Basic Data Types

3.1
3.2.
3.3.
3.4.
3.5.
3.6.

Integers

Floating-Point Numbers
Complex Numbers
Booleans

Strings

Constants

4. Composite Types

4.1.
4.2.
4.3.
44.
4.5.
4.6.

Arrays

Slices

Maps

Structs

JSON

Text and HTML Templates

5. Functions

5.1.
5.2.
5.3.
54.
5.5.
5.6.
5.7.
5.8.
5.9.

Function Declarations
Recursion

Multiple Return Values
Errors

Function Values
Anonymous Functions
Variadic Functions
Deferred Function Calls
Panic

5.10. Recover

6. Methods

6.1.
6.2.
6.3.
6.4.
6.5.
6.6.

Method Declarations

Methods with a Pointer Receiver
Composing Types by Struct Embedding
Method Values and Expressions
Example: Bit Vector Type
Encapsulation

7. Interfaces

7.1.
7.2.
7.3.
7.4.
7.5.

Interfaces as Contracts
Interface Types

Interface Satisfaction

Parsing Flags with flag.Value
Interface Values

CONTENTS

51
51
56
61
63
64
75

81
81
84
93
99
107
113

119
119
121
124
127
132
135
142
143
148
151

155
155
158
161
164
165
168

171
171
174
175
179
181

CONTE

7.6.
7.7.
7.8.
7.9.
7.10.
7.11.
7.12.
7.13.
7.14.
7.15.

NTS

Sorting with sort.Interface

The http.Handler Interface

The error Interface

Example: Expression Evaluator
Type Assertions

Discriminating Errors with Type Assertions
Querying Behaviors with Interface Type Assertions

Type Switches
Example: Token-Based XML Decoding
A Few Words of Advice

8. Goroutines and Channels

8.1.
8.2.
8.3.
8.4.
8.5.
8.6.
8.7.
8.8.
8.9.
8.10.

Goroutines
Example: Concurrent Clock Server
Example: Concurrent Echo Server
Channels
Looping in Parallel
Example: Concurrent Web Crawler
Multiplexing with select
Example: Concurrent Directory Traversal
Cancellation

Example: Chat Server

9. Concurrency with Shared Variables

9.1.
9.2.
9.3.
9.4.
9.5.
9.6.
9.7.
9.8.

Race Conditions

Mutual Exclusion: sync.Mutéx

Read/Write Mutexes: syn¢. RWMutex
Memory Synchronization

Lazy Initializatien:"syn .0Once

The Race Detectot

Example: Concurfefit Non-Blocking Cache
Goroutines and Threads

10. Packages and the Go Tool

10.1.
10.2.
10.3.
10.4.
10.5.
10.6.
10.7.

Introduction

Import Paths

The Package Declaration
Import Declarations
Blank Imports

Packages and Naming
The Go Tool

186
191
196
197
205
206
208
210
213
216

217
217
219
222
225
234
239
244
247
251
253

257
257
262
266
267
268
271
272
280

283
283
284
285
285
286
289
290

11. Testing
11.1. The go test Tool
11.2. Test Functions
11.3. Coverage
11.4. Benchmark Functions
11.5. Profiling
11.6. Example Functions

12. Reflection
12.1. Why Reflection?
12.2. reflect.Type and reflect.vValue
12.3. Display, a Recursive Value Printer
12.4. Example: Encoding S-Expressions
12.5. Setting Variables with reflect.value
12.6. Example: Decoding S-Expressions
12.7. Accessing Struct Field Tags
12.8. Displaying the Methods of a Type
12.9. A Word of Caution

13. Low-Level Programming
13.1. unsafe.Sizeof, Alignof, and Offsetof
13.2. unsafe.Pointer
13.3. Example: Deep Equivalence
13.4. Calling C Code with cgo
13.5. Another Word of Caution

Index

CONTENTS

301
302
302
318
321
323
326

329
329
330
333
338
341
344
348
351
352

353
354
356
358
361
366

367

1

Tutorial

This chapter is a tour of the basic components of Go. We hop€ to'provide enough information
and examples to get you off the ground and doingsuseful/things as quickly as possible. The
examples here, and indeed in the whole book, are‘aimed at tasks that you might have to do in
the real world. In this chapter we'll try to giveyou a taste of the diversity of programs that one
might write in Go, ranging from simpléfile processing and a bit of graphics to concurrent
Internet clients and servers. We certainly Wwon't explain everything in the first chapter, but
studying such programs in a new langtiage ¢an be an effective way to get started.

When you're learning a new language, thete’s a natural tendency to write code as you would
have written it in a languageyou ‘already know. Be aware of this bias as you learn Go and try
to avoid it. We've triedsorillustrate and explain how to write good Go, so use the code here as
a guide when you're wiitifig Jour own.

1.1. Hello, World

We'll start with the now-traditional “hello, world” example, which appears at the beginning of
The C Programming Language, published in 1978. C is one of the most direct influences on
Go, and “hello, world” illustrates a number of central ideas.

gopl.io/chl/helloworld

package main
import "fmt"

func main() {
fmt.Println("Hello, #®R")
}

2 CHAPTER 1. TUTORIAL

Go is a compiled language. The Go toolchain converts a source program and the things it
depends on into instructions in the native machine language of a computer. These tools are
accessed through a single command called go that has a number of subcommands. The sim-
plest of these subcommands is run, which compiles the source code from one or more source
files whose names end in .go, links it with libraries, then runs the resulting executable file.
(We will use $ as the command prompt throughout the book.)

$ go run helloworld.go
Not surprisingly, this prints
Hello, tt®
Go natively handles Unicode, so it can process text in all the world’s languages.

If the program is more than a one-shot experiment, it’s likely that you would want to compile
it once and save the compiled result for later use. That is done withfgosbuild:

$ go build helloworld.go

This creates an executable binary file called helloworld that can be run any time without fur-
ther processing:

$./helloworld
Hello, it5#

We have labeled each significant example as @ reminder that you can obtain the code from the
book’s source code repository at gopl.io:

gopl.io/chi/helloworld

If you run go get gopl.io/chi/helloworld, it will fetch the source code and place it in the
corresponding directory. Thefels more about this topic in Section 2.6 and Section 10.7.

Let’s now talk about the pregram itself. Go code is organized into packages, which are similar
to libraries or modules’in other languages. A package consists of one or more . go source files
in a single directory that define what the package does. Each source file begins with a package
declaration, here package main, that states which package the file belongs to, followed by a list
of other packages that it imports, and then the declarations of the program that are stored in
that file.

The Go standard library has over 100 packages for common tasks like input and output,
sorting, and text manipulation. For instance, the fmt package contains functions for printing
formatted output and scanning input. Println is one of the basic output functions in fmt; it
prints one or more values, separated by spaces, with a newline character at the end so that the
values appear as a single line of output.

Package main is special. It defines a standalone executable program, not a library. Within
package main the function main is also special—it's where execution of the program begins.
Whatever main does is what the program does. Of course, main will normally call upon func-
tions in other packages to do much of the work, such as the function fmt.Println.

SECTION 1.1. HELLO, WORLD 3

We must tell the compiler what packages are needed by this source file; that’s the role of the
import declaration that follows the package declaration. The “hello, world” program uses
only one function from one other package, but most programs will import more packages.

You must import exactly the packages you need. A program will not compile if there are
missing imports or if there are unnecessary ones. This strict requirement prevents references
to unused packages from accumulating as programs evolve.

The import declarations must follow the package declaration. After that, a program consists
of the declarations of functions, variables, constants, and types (introduced by the keywords
func, var, const, and type); for the most part, the order of declarations does not matter. This
program is about as short as possible since it declares only one function, which in turn calls
only one other function. To save space, we will sometimes not show the package and import
declarations when presenting examples, but they are in the sourcefile and must be there to
compile the code.

A function declaration consists of the keyword func, the ndmeiof'the function, a parameter
list (empty for main), a result list (also empty here), and the bedy of the function—the state-
ments that define what it does—enclosed in braces. Welltake/a closer look at functions in
Chapter 5.

Go does not require semicolons at the ends ofsstatements or declarations, except where two or
more appear on the same line. In effect,‘newlinés following certain tokens are converted into
semicolons, so where newlines are placedyniatters to proper parsing of Go code. For instance,
the opening brace { of the function niust be on the same line as the end of the func declara-
tion, not on a line by itself, and in the,expression x + y, a newline is permitted after but not
before the + operator.

Go takes a strong stanée on dode formatting. The gofmt tool rewrites code into the standard
format, and the go tooks™fmt)subcommand applies gofmt to all the files in the specified pack-
age, or the ones in the c@¥fent directory by default. All Go source files in the book have been
run through gofmt, and you should get into the habit of doing the same for your own code.
Declaring a standard format by fiat eliminates a lot of pointless debate about trivia and, more
importantly, enables a variety of automated source code transformations that would be
infeasible if arbitrary formatting were allowed.

Many text editors can be configured to run gofmt each time you save a file, so that your source
code is always properly formatted. A related tool, goimports, additionally manages the inser-
tion and removal of import declarations as needed. It is not part of the standard distribution
but you can obtain it with this command:

$ go get golang.org/x/tools/cmd/goimports

For most users, the usual way to download and build packages, run their tests, show their doc-
umentation, and so on, is with the go tool, which we’ll look at in Section 10.7.

4 CHAPTER 1. TUTORIAL

1.2. Command-Line Arguments

Most programs process some input to produce some output; that’s pretty much the definition
of computing. But how does a program get input data on which to operate? Some programs
generate their own data, but more often, input comes from an external source: a file, a network
connection, the output of another program, a user at a keyboard, command-line arguments,
or the like. The next few examples will discuss some of these alternatives, starting with com-
mand-line arguments.

The os package provides functions and other values for dealing with the operating system in a
platform-independent fashion. Command-line arguments are available to a program in a
variable named Args that is part of the os package; thus its name anywhere outside the os
package is os . Args.

The variable os . Args is a slice of strings. Slices are a fundamentalinotion in Go, and we'll talk
a lot more about them soon. For now, think of a slice as addynamically sized sequence s of
array elements where individual elements can be accessed,as S[i] and a contiguous subse-
quence as s[m:n]. The number of elements is given By den(s). As in most other program-
ming languages, all indexing in Go uses half-open intervals that include the first index but
exclude the last, because it simplifies logic. For example, the slice s[m:n], where 0 <m<n <
len(s), contains n-m elements.

The first element of os.Args, os.Args[@],‘is the name of the command itself; the other ele-
ments are the arguments that were_presented to the program when it started execution. A
slice expression of the form s[m:n] yields\a slice that refers to elements m through n-1, so the
elements we need for our next example are those in the slice os.Args[1:1en(os.Args)]. Ifm
or n is omitted, it defaults tof0,081€en(s) respectively, so we can abbreviate the desired slice as
os.Args[1:].

Here’s an implementation of the Unix echo command, which prints its command-line argu-
ments on a single line. It imports two packages, which are given as a parenthesized list rather
than as individual import declarations. Either form is legal, but conventionally the list form is
used. The order of imports doesn't matter; the gofmt tool sorts the package names into
alphabetical order. (When there are several versions of an example, we will often number
them so you can be sure of which one we're talking about.)

gopl.io/chl/echol

// Echol prints its command-line arguments.
package main

import (
"emt”
"os

SECTION 1.2. COMMAND-LINE ARGUMENTS 5

func main() {
var s, sep string

for i :=1; i < len(os.Args); i++ {
S += sep + 0s.Args[i]
sep = " "

}

fmt.Println(s)
}

Comments begin with //. All text from a // to the end of the line is commentary for
programmers and is ignored by the compiler. By convention, we describe each package in a
comment immediately preceding its package declaration; for a main package, this comment is
one or more complete sentences that describe the program as a whole.

The var declaration declares two variables s and sep, of type string. A variable can be ini-
tialized as part of its declaration. If it is not explicitly initialized, itsis implicitly initialized to
the zero value for its type, which is @ for numeric types and the empty string "" for strings.
Thus in this example, the declaration implicitly initializes s and/sep to empty strings. We'll
have more to say about variables and declarations in Chaptef 24

For numbers, Go provides the usual arithmetic and’logical operators. When applied to
strings, however, the + operator concatenates the values, $o_the expression

sep + os.Args[i]

represents the concatenation of the strings §ep’and os.Args[i]. The statement we used in
the program,

S += sep + os.Args[i]

is an assignment statement that concatenates the old value of s with sep and os.Args[i] and
assigns it back to s; it is equivalent,to

S = s + sep + oswArgs[i)

The operator += is an asSignment operator. Each arithmetic and logical operator like + or * has
a corresponding assignment operator.

The echo program could have printed its output in a loop one piece at a time, but this version
instead builds up a string by repeatedly appending new text to the end. The string s starts life
empty, that is, with value "", and each trip through the loop adds some text to it; after the first
iteration, a space is also inserted so that when the loop is finished, there is one space between
each argument. This is a quadratic process that could be costly if the number of arguments is
large, but for echo, that’s unlikely. We'll show a number of improved versions of echo in this
chapter and the next that will deal with any real inefficiency.

The loop index variable i is declared in the first part of the for loop. The := symbol is part of
a short variable declaration, a statement that declares one or more variables and gives them
appropriate types based on the initializer values; there’s more about this in the next chapter.

The increment statement i++ adds 1 to i; it's equivalent to i += 1 which is in turn equivalent
to i =1+ 1. There’s a corresponding decrement statement i-- that subtracts 1. These are

6 CHAPTER 1. TUTORIAL

statements, not expressions as they are in most languages in the C family, so j = i++ is illegal,
and they are postfix only, so - -1 is not legal either.

The for loop is the only loop statement in Go. It has a number of forms, one of which is
illustrated here:

for initialization; condition; post {
// zero or more statements

}

Parentheses are never used around the three components of a for loop. The braces are
mandatory, however, and the opening brace must be on the same line as the post statement.

The optional initialization statement is executed before the loop starts. If it is present, it
must be a simple statement, that is, a short variable declaration, an_increment or assignment
statement, or a function call. The condition is a boolean expression*that is evaluated at the
beginning of each iteration of the loop; if it evaluates to true, tlie statements controlled by the
loop are executed. The post statement is executed after the.body,ef the loop, then the condi-
tion is evaluated again. The loop ends when the condition becomes false.

Any of these parts may be omitted. If there is nodnitialization and no post, the semi-
colons may also be omitted:

// a traditional "while" loop
for condition {

/...
}

If the condition is omitted entirely imany of these forms, for example in

// a traditionalginfinite loop
for {

/] ...
}

the loop is infinite, though loops of this form may be terminated in some other way, like a
break or return statement.

Another form of the for loop iterates over a range of values from a data type like a string or a
slice. To illustrate, here’s a second version of echo:

gopl.io/chl/echo2

// Echo2 prints its command-line arguments.
package main

import (
Emt”
"os

SECTION 1.2. COMMAND-LINE ARGUMENTS 7

func main() {
s, sep := "", ""
for _, arg := range os.Args[1:] {
S += sep + arg
sep = " "

}
fmt.Println(s)

}

In each iteration of the loop, range produces a pair of values: the index and the value of the
element at that index. In this example, we don’t need the index, but the syntax of a range loop
requires that if we deal with the element, we must deal with the index too. One idea would be
to assign the index to an obviously temporary variable like temp and ignore its value, but Go
does not permit unused local variables, so this would result in a compilation error.

The solution is to use the blank identifier, whose name is _ (that is, an"underscore). The blank
identifier may be used whenever syntax requires a variable namesbut program logic does not,
for instance to discard an unwanted loop index when we requige ‘only the element value. Most
Go programmers would likely use range and _ to writethe\echo program as above, since the
indexing over os.Args is implicit, not explicit, and thus easier to'get right.

This version of the program uses a short variable declaration to declare and initialize s and
sep, but we could equally well have declaredsthe variables separately. There are several ways
to declare a string variable; these are all equivalent:

s :=
var s string

var s =
var s string =

Why should you prefer efféyform to another? The first form, a short variable declaration, is
the most compact, but itumay be used only within a function, not for package-level variables.
The second form relies on default initialization to the zero value for strings, which is "". The
third form is rarely used except when declaring multiple variables. The fourth form is explicit
about the variable’s type, which is redundant when it is the same as that of the initial value but
necessary in other cases where they are not of the same type. In practice, you should generally
use one of the first two forms, with explicit initialization to say that the initial value is
important and implicit initialization to say that the initial value doesn’t matter.

As noted above, each time around the loop, the string s gets completely new contents. The +=
statement makes a new string by concatenating the old string, a space character, and the next
argument, then assigns the new string to s. The old contents of s are no longer in use, so they
will be garbage-collected in due course.

If the amount of data involved is large, this could be costly. A simpler and more efficient
solution would be to use the Join function from the strings package:

8 CHAPTER 1. TUTORIAL

gopl.io/chl/echo3

func main() {
fmt.Println(strings.Join(os.Args[1:], " "))
}

Finally, if we don’t care about format but just want to see the values, perhaps for debugging, we
can let Println format the results for us:

fmt.Println(os.Args[1:])

The output of this statement is like what we would get from strings.Join, but with sur-
rounding brackets. Any slice may be printed this way.

Exercise 1.1: Modify the echo program to also print os.Args[@], the name of the command
that invoked it.

Exercise 1.2: Modify the echo program to print the index and yalue of/each of its arguments,
one per line.

Exercise 1.3: Experiment to measure the difference in running time between our potentially
inefficient versions and the one that uses strings.J6in.)(Seetion 1.6 illustrates part of the
time package, and Section 11.4 shows how to write, bénchmark tests for systematic per-
formance evaluation.)

1.3. Finding Duplicate Lines

Programs for file copying, printing, searching, sorting, counting, and the like all have a similar
structure: a loop over the input;\some computation on each element, and generation of output
on the fly or at the end"” We'llishow three variants of a program called dups; it is partly inspired
by the Unix uniq comiand, which looks for adjacent duplicate lines. The structures and
packages used are modelsthat can be easily adapted.

The first version of dup prints each line that appears more than once in the standard input,
preceded by its count. This program introduces the if statement, the map data type, and the
bufio package.

gopl.io/chl/dupl

// Dupl prints the text of each line that appears more than
// once in the standard input, preceded by its count.
package main

import (
"bufio"
"fmt"
"os

SECTION 1.3. FINDING DUPLICATE LINES 9

func main() {
counts := make(map[string]int)
input := bufio.NewScanner(os.Stdin)
for input.Scan() {
counts[input.Text()]++

}
// NOTE: ignoring potential errors from input.Err()
for line, n := range counts {
ifn>1{
fmt.Printf("%d\t%s\n", n, line)
}
}

}

As with for, parentheses are never used around the condition in an if statement, but braces
are required for the body. There can be an optional else part that i§®executed if the condition
is false.

A map holds a set of key/value pairs and provides constant=timesoperations to store, retrieve,
or test for an item in the set. The key may be of any type whose Values can compared with ==,
strings being the most common example; the value may bejof anly type at all. In this example,
the keys are strings and the values are ints. The built-in"function make creates a new empty
map; it has other uses too. Maps are discussed at length'in Section 4.3.

Each time dup reads a line of input, the lin€ i§ used as a key into the map and the cor-
responding value is incremented. The statement counts[input.Text()]++ is equivalent to
these two statements:

line := input.Text()
counts[line] = countsfline] "+ 1

It’s not a problem if thé'map doesn’t yet contain that key. The first time a new line is seen, the
expression counts[1in€] on the right-hand side evaluates to the zero value for its type, which
is @ for int.

To print the results, we use another range-based for loop, this time over the counts map. As
before, each iteration produces two results, a key and the value of the map element for that
key. The order of map iteration is not specified, but in practice it is random, varying from one
run to another. This design is intentional, since it prevents programs from relying on any par-
ticular ordering where none is guaranteed.

Onward to the bufio package, which helps make input and output efficient and convenient.
One of its most useful features is a type called Scanner that reads input and breaks it into lines
or words; it’s often the easiest way to process input that comes naturally in lines.

The program uses a short variable declaration to create a new variable input that refers to a
bufio.Scanner:

input := bufio.NewScanner(os.Stdin)

10 CHAPTER 1. TUTORIAL

The scanner reads from the program’s standard input. Each call to input.Scan() reads the
next line and removes the newline character from the end; the result can be retrieved by call-
ing input.Text(). The Scan function returns true if there is a line and false when there is
no more input.

The function fmt.Printf, like printf in C and other languages, produces formatted output
from a list of expressions. Its first argument is a format string that specifies how subsequent
arguments should be formatted. The format of each argument is determined by a conversion
character, a letter following a percent sign. For example, %d formats an integer operand using
decimal notation, and %s expands to the value of a string operand.

Printf has over a dozen such conversions, which Go programmers call verbs. This table is far
from a complete specification but illustrates many of the features that are available:

%d decimal integer

%x, %0, %b integer in hexadecimal, octal, binary
%f, %g, % floating-point number: 3.141593 3.141592653589793 3.141593e+00

%t boolean: true or false

%c rune (Unicode code point)

%s string

%q quoted string "abc" or rune '¢!
%V any value in a natural format

%T type of any value

%% literal percent sign (no‘operand)

The format string in dupl also contains‘a;tab \t and a newline \n. String literals may contain
such escape sequences for represghting othetrwise invisible characters. Printf does not write a
newline by default. By conyvention, formatting functions whose names end in f, such as
log.Printf and fmt.Errorff use the formatting rules of fmt.Printf, whereas those whose
names end in 1n followPhintln, formatting their arguments as if by %v, followed by a
newline.

Many programs read either from their standard input, as above, or from a sequence of named
files. The next version of dup can read from the standard input or handle a list of file names,
using os.Open to open each one:

gopl.io/chl/dup2

// Dup2 prints the count and text of lines that appear more than once
// in the input. It reads from stdin or from a list of named files.
package main

import (
"bufio"
"fmt"
"os

SECTION 1.3. FINDING DUPLICATE LINES 11

func main() {
counts := make(map[string]int)
files := os.Args[1l:]
if len(files) == 0 {
countLines(os.Stdin, counts)
} else {
for _, arg :

range files {

f, err := o0s.Open(arg)
if err != nil {
fmt.Fprintf(os.Stderr, "dup2: %v\n", err)
continue
}
countLines(f, counts)
f.Close()
}
}
for line, n := range counts {
ifn>1{
fmt.Printf("%d\t%s\n", n, line)
}
}
}
func countLines(f *os.File, counts map[string]int) {
input := bufio.NewScanner(f)
for input.Scan() {
counts[input.Text()]++
}
// NOTE: ignoring poténtialferrors from input.Err()
}

The function os.0pen returfis ftwo'values. The first is an open file (*os.File) that is used in
subsequent reads by the Scanner.

The second result of os,0pén is a value of the built-in error type. If err equals the special
built-in value nil, the file was opened successfully. The file is read, and when the end of the
input is reached, Close closes the file and releases any resources. On the other hand, if err is
not nil, something went wrong. In that case, the error value describes the problem. Our sim-
ple-minded error handling prints a message on the standard error stream using Fprintf and
the verb %v, which displays a value of any type in a default format, and dup then carries on
with the next file; the continue statement goes to the next iteration of the enclosing for loop.

In the interests of keeping code samples to a reasonable size, our early examples are intention-
ally somewhat cavalier about error handling. Clearly we must check for an error from
o0s.0pen; however, we are ignoring the less likely possibility that an error could occur while
reading the file with input.Scan. We will note places where we've skipped error checking,
and we will go into the details of error handling in Section 5.4.

Notice that the call to countLines precedes its declaration. Functions and other package-level
entities may be declared in any order.

12 CHAPTER 1. TUTORIAL

A map is a reference to the data structure created by make. When a map is passed to a func-
tion, the function receives a copy of the reference, so any changes the called function makes to
the underlying data structure will be visible through the caller’s map reference too. In our
example, the values inserted into the counts map by countLines are seen by main.

The versions of dup above operate in a “streaming” mode in which input is read and broken
into lines as needed, so in principle these programs can handle an arbitrary amount of input.
An alternative approach is to read the entire input into memory in one big gulp, split it into
lines all at once, then process the lines. The following version, dup3, operates in that fashion.
It introduces the function ReadFile (from the io/ioutil package), which reads the entire
contents of a named file, and strings.Split, which splits a string into a slice of substrings.
(Split is the opposite of strings.Join, which we saw earlier.)

We've simplified dup3 somewhat. First, it only reads named files, not the standard input, since
ReadFile requires a file name argument. Second, we moved the(cotiiting of the lines back
into main, since it is now needed in only one place.

gopl.io/chl/dup3
package main

import (
"fmt"
"io/ioutil"
"og"
"strings"

)

func main() {
counts := make(map[stringlint)
for _, filename(:# range os.Args[1:] {
data, érr_g= Goutil.ReadFile(filename)
if err 1= nil {
fmt.Fprintf(os.Stderr, "dup3: %v\n", err)
continue
}
for _, line := range strings.Split(string(data), "\n") {
counts[line]++
}
}
for line, n := range counts {
ifn>1{
fmt.Printf("%d\t%s\n", n, line)
}

}

ReadFile returns a byte slice that must be converted into a string so it can be split by
strings.Split. We will discuss strings and byte slices at length in Section 3.5.4.

SECTION 1.4. ANIMATED GIFS 13

Under the covers, bufio.Scanner, ioutil.ReadFile, and ioutil.WriteFile use the Read
and Write methods of *os.File, but it’s rare that most programmers need to access those
lower-level routines directly. The higher-level functions like those from bufio and io/ioutil
are easier to use.

Exercise 1.4: Modify dup2 to print the names of all files in which each duplicated line occurs.

1.4. Animated GIFs

The next program demonstrates basic usage of Go's standard image packages, which we'll use
to create a sequence of bit-mapped images and then encode the sequence as a GIF animation.
The images, called Lissajous figures, were a staple visual effect in sci-fi films of the 1960s. They
are the parametric curves produced by harmonic oscillation in twe dimensions, such as two
sine waves fed into the x and y inputs of an oscilloscope. Figure el shows some examples.

Figuredl . s Four Lissajous figures.

There are several new constfucts,in this code, including const declarations, struct types, and
composite literals. Unlikesmost of our examples, this one also involves floating-point com-
putations. We'll discuss these topics only briefly here, pushing most details off to later chap-
ters, since the primary goal right now is to give you an idea of what Go looks like and the
kinds of things that can be done easily with the language and its libraries.

gopl.io/chl/lissajous

// Lissajous generates GIF animations of random Lissajous figures.
package main

import (
"image"
"image/color"
"image/gif"
"ig"
"math"
"math/rand"

os"

	Contents
	Preface
	The Origins of Go
	The Go Project
	Organization of the Book
	Where to Find More Information
	Acknowledgments

	1. Tutorial
	1.1. Hello, World
	1.2. Command-Line Arguments
	1.3. Finding Duplicate Lines
	1.4. Animated GIFs
	1.5. Fetching a URL
	1.6. Fetching URLs Concurrently
	1.7. A Web Server
	1.8. Loose Ends

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

