

53

Chapter 4

Sequence Diagrams

Interaction diagrams

 describe how groups of objects collaborate in some behav-
ior. The UML defines several forms of interaction diagram, of which the most
common is the sequence diagram.

Typically, a sequence diagram captures the behavior of a single scenario. The
diagram shows a number of example objects and the messages that are passed
between these objects within the use case.

To begin the discussion, I’ll consider a simple scenario. We have an order and
are going to invoke a command on it to calculate its price. To do that, the order
needs to look at all the line items on the order and determine their prices, which
are based on the pricing rules of the order line’s products. Having done that for
all the line items, the order then needs to compute an overall discount, which is
based on rules tied to the customer.

Figure 4.1 is a sequence diagram that shows one implementation of that sce-
nario. Sequence diagrams show the interaction by showing each participant
with a lifeline that runs vertically down the page and the ordering of messages
by reading down the page.

One of the nice things about a sequence diagram is that I almost don’t have
to explain the notation. You can see that an instance of order sends

getQuantity

and

getProduct

 messages to the order line. You can also see how we show the
order invoking a method on itself and how that method sends

getDiscountInfo

 to
an instance of customer.

The diagram, however, doesn’t show everything very well. The sequence of
messages

getQuantity

,

getProduct

,

getPricingDetails

, and

calculateBasePrice

 needs to
be done for each order line on the order, while

calculateDiscounts

 is invoked just
once. You can’t tell that from this diagram, although I’ll introduce some more
notation to handle that later.

Most of the time, you can think of the participants in an interaction diagram
as objects, as indeed they were in UML 1. But in UML 2, their roles are much
more complicated, and to explain it all fully is beyond this book. So I use the

Fowler_ch04.fm Page 53 Wednesday, August 27, 2003 12:24 PM

Sam
ple

 pa
ge

s

54

C

HAPTER

 4 S

EQUENCE

 D

IAGRAMS

term

participants

, a word that isn’t used formally in the UML spec. In UML 1,
participants were objects and so their names were underlined, but in UML 2,
they should be shown without the underline, as I’ve done here.

In these diagrams, I’ve named the participants using the style

anOrder

. This
works well most of the time. A fuller syntax is

name

:

Class,

 where both the name
and the class are optional, but you must keep the colon if you use the class.
(Figure 4.4, shown on page 58, uses this style.)

Each lifeline has an activation bar that shows when the participant is active in
the interaction. This corresponds to one of the participant’s methods being on
the stack. Activation bars are optional in UML, but I find them extremely valu-
able in clarifying the behavior. My one exception is when exploring a design dur-
ing a design session, because they are awkward to draw on whiteboards.

Naming often is useful to correlate participants on the diagram. The call

get-

Product

 is shown returning

aProduct

, which is the same name, and therefore the

getProduct

an Order an Order Line aProduct aCustomer

calculatePrice
getQuantity

getPricingDetails

calculateDiscounts

getDiscountInfo

calculateBasePrice

lifeline

activation

message

self-call

aProduct

return

found
message

participant

Figure 4.1 A sequence diagram for centralized control

Fowler_ch04.fm Page 54 Wednesday, August 27, 2003 12:24 PM

Sam
ple

 pa
ge

s

S

EQUENCE

 D

IAGRAMS

55

same participant, as the

aProduct

 that the

getPricingDetails

 call is sent to. Note
that I’ve used a return arrow for only this call; I did that to show the correspon-
dance. Some people use returns for all calls, but I prefer to use them only where
they add information; otherwise, they simply clutter things. Even in this case,
you could probably leave the return out without confusing your reader.

The first message doesn’t have a participant that sent it, as it comes from an
undetermined source. It’s called a

found message

.
For another approach to this scenario, take a look at Figure 4.2. The basic

problem is still the same, but the way in which the participants collaborate to
implement it is very different. The Order asks each Order Line to calculate its
own Price. The Order Line itself further hands off the calculation to the Product;
note how we show the passing of a parameter. Similarly, to calculate the dis-
count, the Order invokes a method on the Customer. Because it needs informa-
tion from the Order to do this, the Customer makes a reentrant call (

getBaseValue

)
to the Order to get the data.

The first thing to note about these two diagrams is how clearly the sequence
diagram indicates the differences in how the participants interact. This is the
great strength of interaction diagrams. They aren’t good at showing details of
algorithms, such as loops and conditional behavior, but they make the calls
between participants crystal clear and give a really good picture about which
participants are doing which processing.

an Order an Order Line aProduct aCustomer

calculatePrice
getPrice(quantity: number)

getDiscountedValue (an Order)

getBaseValue

discountedValue

parameter

return

calculatePrice

Figure 4.2 A sequence diagram for distributed control

Fowler_ch04.fm Page 55 Wednesday, August 27, 2003 12:24 PM

Sam
ple

 pa
ge

s

56

C

HAPTER

 4 S

EQUENCE

 D

IAGRAMS

The second thing to note is the clear difference in styles between the two
interactions. Figure 4.1 is

centralized control

, with one participant pretty much
doing all the processing and other participants there to supply data. Figure 4.2
uses

distributed control,

 in which the processing is split among many partici-
pants, each one doing a little bit of the algorithm.

Both styles have their strengths and weaknesses. Most people, particularly
those new to objects, are more used to centralized control. In many ways, it’s
simpler, as all the processing is in one place; with distributed control, in contrast,
you have the sensation of chasing around the objects, trying to find the program.

Despite this, object bigots like me strongly prefer distributed control. One of
the main goals of good design is to localize the effects of change. Data and
behavior that accesses that data often change together. So putting the data and
the behavior that uses it together in one place is the first rule of object-oriented
design.

Furthermore, by distributing control, you create more opportunities for using
polymorphism rather than using conditional logic. If the algorithms for product
pricing are different for different types of product, the distributed control mech-
anism allows us to use subclasses of product to handle these variations.

In general the OO style is to use a lot of little objects with a lot of little meth-
ods that give us a lot of plug points for overriding and variation. This style is
very confusing to people used to long procedures; indeed, this change is the
heart of the

paradigm shift

 of object orientation. It’s something that’s very diffi-
cult to teach. It seems that the only way to really understand it is to work in an
OO environment with strongly distributed control for a while. Many people
then say that they get a sudden “aha” when the style makes sense. At this point,
their brains have been rewired, and they start thinking that decentralized con-
trol is actually easier.

Creating and Deleting Participants

Sequence diagrams show some extra notation for creating and deleting partici-
pants (Figure 4.3). To create a participant, you draw the message arrow directly
into the participant box. A message name is optional here if you are using a
constructor, but I usually mark it with “new” in any case. If the participant
immediately does something once it’s created, such as the query command, you
start an activation right after the participant box.

Deletion of a participant is indicated by big X. A message arrow going into
the X indicates one participant explicitly deleting another; an X at the end of a
lifeline shows a participant deleting itself.

Fowler_ch04.fm Page 56 Wednesday, August 27, 2003 12:24 PM

Sam
ple

 pa
ge

s

L

OOPS

, C

ONDITIONALS

,

AND

THE

 L

IKE

57

In a garbage-collected environment, you don’t delete objects directly, but it’s
still worth using the X to indicate when an object is no longer needed and is
ready to be collected. It’s also appropriate for close operations, indicating that
the object isn’t usable any more.

Loops, Conditionals, and the Like

A common issue with sequence diagrams is how to show looping and condi-
tional behavior. The first thing to point out is that this isn’t what sequence dia-
grams are good at. If you want to show control structures like this, you are
better off with an activity diagram or indeed with code itself. Treat sequence

a Handler

a Query
Command

a Database
Statement

query database

new

new

execute

results

extract results

close

results

creation

self-deletion

deletion

from other

object

Figure 4.3 Creation and deletion of participants

Fowler_ch04.fm Page 57 Wednesday, August 27, 2003 12:24 PM

Sam
ple

 pa
ge

s

58

C

HAPTER

 4 S

EQUENCE

 D

IAGRAMS

diagrams as a visualization of how objects interact rather than as a way of
modeling control logic.

That said, here’s the notation to use. Both loops and conditionals use

interac-
tion frames,

 which are ways of marking off a piece of a sequence diagram. Fig-
ure 4.4 shows a simple algorithm based on the following pseudocode:

procedure dispatch
 foreach (lineitem)
 if (product.value > $10K)
 careful.dispatch
 else
 regular.dispatch
 end if
 end for
 if (needsConfirmation) messenger.confirm
end procedure

:Order

dispatch

alt

dispatch

dispatch

[else]

loop

frameoperator

guard

:Messenger

confirmopt

careful :
Distributor

regular :
Distributor

[for each line item]

[value > $10000]

[needsConfirmation]

Figure 4.4 Interaction frames

Fowler_ch04.fm Page 58 Wednesday, August 27, 2003 12:24 PM

Sam
ple

 pa
ge

s

L

OOPS

, C

ONDITIONALS

,

AND

THE

 L

IKE

59

In general, frames consist of some region of a sequence diagram that is
divided into one or more fragments. Each frame has an operator and each frag-
ment may have a guard. (Table 4.1 lists common operators for interaction
frames.) To show a loop, you use the

loop

 operand with a single fragment and
put the basis of the iteration in the guard. For conditional logic, you can use an

alt

 operator and put a condition on each fragment. Only the fragment whose
guard is true will execute. If you have only one region, there is an

opt

 operator.
Interaction frames are new in UML 2. As a result, you may see diagrams pre-

pared before UML 2 and that use a different approach; also, some people don’t
like the frames and prefer some of the older conventions. Figure 4.5 shows
some of these unofficial tweaks.

UML 1 used iteration markers and guards. An

iteration marker

 is a * added
to the message name. You can add some text in square brackets to indicate the
basis of the iteration.

Guards

are a conditional expression placed in square
brackets and indicate that the message is sent only if the guard is true. While
these notations have been dropped from sequence diagrams in UML 2, they are
still legal on communication diagrams.

Although iteration markers and guards can help, they do have weaknesses.
The guards can’t indicate that a set of guards are mutually exclusive, such as the

Table 4.1 Common Operators for Interaction Frames

Operator Meaning

alt Alternative multiple fragments; only the one whose condition is
true will execute (Figure 4.4).

opt Optional; the fragment executes only if the supplied condition is
true. Equivalent to an alt with only one trace (Figure 4.4).

par Parallel; each fragment is run in parallel.

loop Loop; the fragment may execute multiple times, and the guard
indicates the basis of iteration (Figure 4.4).

region Critical region; the fragment can have only one thread executing it
at once.

neg Negative; the fragment shows an invalid interaction.

ref Reference; refers to an interaction defined on another diagram. The
frame is drawn to cover the lifelines involved in the interaction.
You can define parameters and a return value.

sd Sequence diagram; used to surround an entire sequence diagram, if
you wish.

Fowler_ch04.fm Page 59 Wednesday, August 27, 2003 12:24 PM

Sam
ple

 pa
ge

s

60

C

HAPTER

 4 S

EQUENCE

 D

IAGRAMS

two on Figure 4.5. Both notations work only with a single message send and
don’t work well when several messages coming out of a single activation are
within the same loop or conditional block.

To get around this last problem, an unofficial convention that’s become pop-
ular is to use a

pseudomessage

, with the loop condition or the guard on a varia-
tion of the self-call notation. In Figure 4.5, I’ve shown this without a message
arrow; some people include a message arrow, but leaving it out helps reinforce
that this isn’t a real call. Some also like to gray shade the pseudomessage’s acti-
vation bar. If you have alterative behavior, you can show that with an alterna-
tive marker between the activations.

Although I find activations very helpful, they don’t add much in the case of
the

dispatch

 method, whereby you send a message and nothing else happens
within the receiver’s activation. A common convention that I’ve shown on Fig-
ure 4.5 is to drop the activation for those simple calls.

an Order

dispatch

careful :
Distributor

regular :
Distributor

dispatch

dispatch

pseudo

message

guard

asynchronous

message (UML

1.3 and earlier)

asynchronous

message (UML

1.4 and later)

order idline no.

delivery iddata

tadpole

iteration marker

* [for each line item]

:Messenger

[value > $10000]

[else]
alternative

!
non

normative

[needsConfirmation] confirm

Figure 4.5 Older conventions for control logic

Fowler_ch04.fm Page 60 Wednesday, August 27, 2003 12:24 PM

Sam
ple

 pa
ge

s

W

HEN

TO

 U

SE

 S

EQUENCE

 D

IAGRAMS

61

The UML standard has no graphic device to show passing data; instead, it’s
shown by parameters in the message name and return arrows.

Data tadpoles

have been around in many methods to indicate the movement of data, and
many people still like to use them with the UML.

All in all, although various schemes can add notation for conditional logic to
sequence diagrams, I don’t find that they work any better than code or at least
pseudocode. In particular, I find the interaction frames very heavy, obscuring
the main point of the diagram, so I prefer pseudomessages.

Synchronous and Asynchronous Calls

If you’re exceptionally alert, you’ll have noticed that the arrowheads in the last
couple of diagrams are different from the arrowheads earlier on. That minor dif-
ference is quite important in UML 2. In UML 2, filled arrowheads show a syn-
chronous message, while stick arrowheads show an asynchronous message.

If a caller sends a

synchronous message

, it must wait until the message is
done, such as invoking a subroutine. If a caller sends an

asynchronous message,

it can continue processing and doesn’t have to wait for a response. You see asyn-
chronous calls in multithreaded applications and in message-oriented middle-
ware. Asynchrony gives better responsiveness and reduces the temporal coupling
but is harder to debug.

The arrowhead difference is very subtle; indeed, rather too subtle. It’s also a
backward-incompatible change introduced in UML 1.4, before then an asyn-
chronous message was shown with the half-stick arrowhead, as in Figure 4.5.

I think that this arrowhead distinction is too subtle. If you want to highlight
asynchronous messages, I would recommend using the obsolete half-stick
arrowhead, which draws the eye much better to an important distinction. If
you’re reading a sequence diagram, beware of making assumptions about syn-
chrony from the arrowheads unless you’re sure that the author is intentionally
making the distinction.

When to Use Sequence Diagrams

You should use sequence diagrams when you want to look at the behavior of
several objects within a single use case. Sequence diagrams are good at showing
collaborations among the objects; they are not so good at precise definition of
the behavior.

Fowler_ch04.fm Page 61 Wednesday, August 27, 2003 12:24 PM

Sam
ple

 pa
ge

s

62

C

HAPTER

 4 S

EQUENCE

 D

IAGRAMS

If you want to look at the behavior of a single object across many use cases,
use a state diagram (see Chapter 10). If you want to look at behavior across
many use cases or many threads, consider an activity diagram (see Chapter 11).

If you want to explore multiple alternative interactions quickly, you may be
better off with CRC cards, as that avoids a lot of drawing and erasing. It’s often
handy to have a CRC card session to explore design alternatives and then use
sequence diagrams to capture any interactions that you want to refer to later.

Other useful forms of interaction diagrams are communication diagrams, for
showing connections; and timing diagrams, for showing timing constraints.

CRC Cards

One of the most valuable techniques in coming up with a good OO design is
to explore object interactions, because it focuses on behavior rather than
data. CRC (Class-Responsibility-Collaboration) diagrams, invented by
Ward Cunningham in the late 1980s, have stood the test of time as a highly
effective way to do this (Figure 4.6). Although they aren’t part of the UML,
they are a very popular technique among skilled object designers.

To use CRC cards, you and your colleagues gather around a table. Take
various scenarios and act them out with the cards, picking them up in the
air when they are active and moving them to suggest how they send mes-
sages to each other and pass them around. This technique is almost impos-
sible to describe in a book yet is easily demonstrated; the best way to learn
it is to have someone who has done it show it to you.

 Order

Check if items in stock

Determine price

Order Line

Check for valid payment

Customer

Dispatch to delivery address

class name

responsibility collaboration

Figure 4.6 A sample CRC card

Fowler_ch04.fm Page 62 Wednesday, August 27, 2003 12:24 PM

Sam
ple

 pa
ge

s

W

HEN

TO

 USE SEQUENCE DIAGRAMS 63

An important part of CRC thinking is identifying responsibilities. A
responsibility is a short sentence that summarizes something that an object
should do: an action the object performs, some knowledge the object
maintains, or some important decisions the object makes. The idea is that
you should be able to take any class and summarize it with a handful of
responsibilities. Doing that can help you think more clearly about the
design of your classes.

The second C refers to collaborators: the other classes that this class
needs to work with. This gives you some idea of the links between
classes—still at a high level.

One of the chief benefits of CRC cards is that they encourage animated
discussion among the developers. When you are working through a use
case to see how classes will implement it, the interaction diagrams in this
chapter can be slow to draw. Usually, you need to consider alternatives;
with diagrams, the alternatives can take too long to draw and rub out.
With CRC cards, you model the interaction by picking up the cards and
moving them around. This allows you to quickly consider alternatives.

As you do this, you form ideas about responsibilities and write them on
the cards. Thinking about responsibilities is important, because it gets you
away from the notion of classes as dumb data holders and eases the team
members toward understanding the higher-level behavior of each class. A
responsibility may correspond to an operation, to an attribute, or, more
likely, to an undetermined clump of attributes and operations.

A common mistake I see people make is generating long lists of low-
level responsibilities. But doing so misses the point. The responsibilities
should easily fit on one card. Ask yourself whether the class should be split
or whether the responsibilities would be better stated by rolling them up
into higher-level statements.

Many people stress the importance of role playing, whereby each per-
son on the team plays the role of one or more classes. I’ve never seen Ward
Cunningham do that, and I find that role playing gets in the way.

Books have been written on CRC, but I’ve found that they never really
get to the heart of the technique. The original paper on CRC, written with
Kent Beck, is [Beck and Cunningham]. To learn more about both CRC
cards and responsibilities in design, take a look at [Wirfs-Brock].

Fowler_ch04.fm Page 63 Wednesday, August 27, 2003 12:24 PM

Sam
ple

 pa
ge

s

