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Concepts of Motion

What is a chapter preview?
Each chapter starts with an overview. Think of it as a roadmap 
to help you get oriented and make the most of your studying.
❮❮ LOOKING BACK A Looking Back reference tells you what material from 
previous chapters is especially important for understanding the new 
topics. A quick review will help your learning. You will find additional 
Looking Back references within the chapter, right at the point they’re 
needed.

What is motion?
Before solving motion problems, we must 
learn to describe motion. We will use

■■ Motion diagrams
■■ Graphs
■■ Pictures

Motion concepts introduced in this 
chapter include position, velocity, and 
acceleration.

Why do we need vectors?
Many of the quantities used to describe 
motion, such as velocity, have both a size 
and a direction. We use vectors to represent 
these quantities. This chapter introduces 
graphical techniques to add and subtract 
vectors. Chapter 3 will explore vectors in 
more detail.

Why are units and significant  
figures important?
Scientists and engineers must commu-
nicate their ideas to others. To do so, we 
have to agree about the units in which 
quantities are measured. In physics we 
use metric units, called SI units. We also  
need rules for telling others how accurately  
a quantity is known. You will learn the rules  
for using significant figures correctly.

Why is motion important?
The universe is in motion, from the smallest scale of 
electrons and atoms to the largest scale of entire  
galaxies. We’ll start with the motion of everyday objects,  
such as cars and balls and people. Later we’ll study  
the motions of waves, of atoms in gases, and of electrons  
in circuits. Motion is the one theme that will be with us  
from the first chapter to the last.

IN THIS CHAPTER, you will learn the fundamental concepts of motion.

1

Motion takes many 
forms. The cyclists seen 
here are an example of 
translational motion.

a
u

v
u

x0 = v0x = t0 = 0

ax

x1

x
x0

Known

ax = 2.0 m/s2

Find
x1

A
u

A + B
u u

B
u

0.00620 = 6.20 * 10-3
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1.1  Motion Diagrams  25

1.1  Motion Diagrams
Motion is a theme that will appear in one form or another throughout this entire 
book. Although we all have intuition about motion, based on our experiences, some 
of the important aspects of motion turn out to be rather subtle. So rather than jumping 
immediately into a lot of mathematics and calculations, this first chapter focuses on 
visualizing motion and becoming familiar with the concepts needed to describe a 
moving object. Our goal is to lay the foundations for understanding motion.

Linear motion Circular motion Projectile motion Rotational motion

FIGURE 1.1  Four basic types of motion.

To begin, let’s define motion as the change of an object’s position with time. 
FIGURE 1.1 shows four basic types of motion that we will study in this book. The first 
three—linear, circular, and projectile motion—in which the object moves through 
space are called translational motion. The path along which the object moves, 
whether straight or curved, is called the object’s trajectory. Rotational motion 
is somewhat different because there’s movement but the object as a whole doesn’t 
change position. We’ll defer rotational motion until later and, for now, focus on 
translational motion.

Making a Motion Diagram
An easy way to study motion is to make a video of a moving object. A video camera, 
as you probably know, takes images at a fixed rate, typically 30 every second. Each 
separate image is called a frame. As an example, FIGURE 1.2 shows four frames from a 
video of a car going past. Not surprisingly, the car is in a somewhat different position 
in each frame.

Suppose we edit the video by layering the frames on top of each other, creating 
the composite image shown in FIGURE 1.3. This edited image, showing an object’s 
position at several equally spaced instants of time, is called a motion diagram. As 
the examples below show, we can define concepts such as constant speed, speeding 
up, and slowing down in terms of how an object appears in a motion diagram.

   NOTE     It’s important to keep the camera in a fixed position as the object moves by. 
Don’t “pan” it to track the moving object.

Examples of motion diagrams

Images that are equally spaced indicate an 
object moving with constant speed.

An increasing distance between the images 
shows that the object is speeding up.

A decreasing distance between the images 
shows that the object is slowing down.

FIGURE 1.2  Four frames from a video.

The same amount of time elapses
between each image and the next.

FIGURE 1.3  A motion diagram of the car 
shows all the frames simultaneously.
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26  CHAPTER 1 Concepts of Motion

   NOTE     Each chapter will have several Stop to Think questions. These questions are 
designed to see if you’ve understood the basic ideas that have been presented. The 
answers are given at the end of the book, but you should make a serious effort to 
think about these questions before turning to the answers.

1.2  Models and Modeling
The real world is messy and complicated. Our goal in physics is to brush aside many of 
the real-world details in order to discern patterns that occur over and over. For example, 
a swinging pendulum, a vibrating guitar string, a sound wave, and jiggling atoms in a 
crystal are all very different—yet perhaps not so different. Each is an example of a 
system moving back and forth around an equilibrium position. If we focus on under-
standing a very simple oscillating system, such as a mass on a spring, we’ll automati-
cally understand quite a bit about the many real-world manifestations of oscillations.

Stripping away the details to focus on essential features is a process called 
modeling. A model is a highly simplified picture of reality, but one that still captures 
the essence of what we want to study. Thus “mass on a spring” is a simple but realistic 
model of almost all oscillating systems.

Models allow us to make sense of complex situations by providing a framework for 
thinking about them. One could go so far as to say that developing and testing models 
is at the heart of the scientific process. Albert Einstein once said, “Physics should 
be as simple as possible—but not simpler.” We want to find the simplest model that 
allows us to understand the phenomenon we’re studying, but we can’t make the model 
so simple that key aspects of the phenomenon get lost.

We’ll develop and use many models throughout this textbook; they’ll be one of our 
most important thinking tools. These models will be of two types:

■■ Descriptive models: What are the essential characteristics and properties of a 
phenomenon? How do we describe it in the simplest possible terms? For example, 
the mass-on-a-spring model of an oscillating system is a descriptive model.

■■ Explanatory models: Why do things happen as they do? Explanatory models, based 
on the laws of physics, have predictive power, allowing us to test—against experi-
mental data—whether a model provides an adequate explanation of our observations.

The Particle Model
For many types of motion, such as that of balls, cars, and rockets, the motion of the 
object as a whole is not influenced by the details of the object’s size and shape. All we 
really need to keep track of is the motion of a single point on the object, so we can treat 
the object as if all its mass were concentrated into this single point. An object that can 
be represented as a mass at a single point in space is called a particle. A particle has  
no size, no shape, and no distinction between top and bottom or between front and back.

If we model an object as a particle, we can represent the object in each frame of a  
motion diagram as a simple dot rather than having to draw a full picture. FIGURE 1.4 
shows how much simpler motion diagrams appear when the object is represented as 
a particle. Note that the dots have been numbered 0, 1, 2, . . . to tell the sequence in 
which the frames were taken.

0
1

2

3

(a) Motion diagram of a rocket launch

(b) Motion diagram of a car stopping

Numbers show
the order in
which the frames
were taken.

4

0

The same amount of time elapses
between each image and the next.

1 2 3 4

FIGURE 1.4  Motion diagrams in which the 
object is modeled as a particle.

We can model an airplane’s takeoff as a 
particle (a descriptive model) undergoing 
constant acceleration (a descriptive 
model) in response to constant forces 
(an explanatory model).

STOP TO THINK 1.1  Which car is going faster, A or B? Assume there are equal intervals of time between 
the frames of both videos.

Car A Car B
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1.3  Position, Time, and Displacement  27

Treating an object as a particle is, of course, a simplification of reality—but that’s 
what modeling is all about. The particle model of motion is a simplification in which 
we treat a moving object as if all of its mass were concentrated at a single point. The 
particle model is an excellent approximation of reality for the translational motion of 
cars, planes, rockets, and similar objects.

Of course, not everything can be modeled as a particle; models have their limits. 
Consider, for example, a rotating gear. The center doesn’t move at all while each tooth is 
moving in a different direction. We’ll need to develop new models when we get to new 
types of motion, but the particle model will serve us well throughout Part I of this book.

STOP TO THINK 1.2  Three motion diagrams 
are shown. Which is a dust particle settling to the 
floor at constant speed, which is a ball dropped 
from the roof of a building, and which is a 
descending rocket slowing to make a soft landing  
on Mars?

(a) (c) 0

1

2

3

4
5

0
1

2

3

4

5

(b) 0

1

2

3

4

5

1.3  Position, Time, and Displacement
To use a motion diagram, you would like to know where the object is (i.e., its position) 
and when the object was at that position (i.e., the time). Position measurements can  
be made by laying a coordinate-system grid over a motion diagram. You can then 
measure the 1x, y2 coordinates of each point in the motion diagram. Of course, the 
world does not come with a coordinate system attached. A coordinate system is an 
artificial grid that you place over a problem in order to analyze the motion. You place 
the origin of your coordinate system wherever you wish, and different observers of a 
moving object might all choose to use different origins.

Time, in a sense, is also a coordinate system, although you may never have thought 
of time this way. You can pick an arbitrary point in the motion and label it ;t = 0 
seconds.” This is simply the instant you decide to start your clock or stopwatch, so 
it is the origin of your time coordinate. Different observers might choose to start 
their clocks at different moments. A video frame labeled ;t = 4 seconds” was taken 
4 seconds after you started your clock.

We typically choose t = 0 to represent the “beginning” of a problem, but the object 
may have been moving before then. Those earlier instants would be measured as neg-
ative times, just as objects on the x-axis to the left of the origin have negative values of 
position. Negative numbers are not to be avoided; they simply locate an event in space 
or time relative to an origin.

To illustrate, FIGURE 1.5a shows a sled sliding down a snow-covered hill. FIGURE 1.5b is  
a motion diagram for the sled, over which we’ve drawn an xy-coordinate system. You 
can see that the sled’s position is 1x3, y32 = 115 m, 15 m2 at time t3 = 3 s. Notice how 
we’ve used subscripts to indicate the time and the object’s position in a specific frame 
of the motion diagram.

   NOTE     The frame at t = 0 s is frame 0. That is why the fourth frame is labeled 3.

Another way to locate the sled is to draw its position vector: an arrow from the 
origin to the point representing the sled. The position vector is given the symbol r u. 
Figure 1.5b shows the position vector r u

3 = 121 m, 45°2. The position vector r u does not 
tell us anything different than the coordinates 1x, y2. It simply provides the informa-
tion in an alternative form.

(a)

The sled’s position in frame 3
can be specified with coordinates.

Alternatively, the position
can be specified by the
position vector.

r3 = (21 m, 45°)

(x3, y3) = (15 m, 15 m)
t3 = 3 s

u

(b)

45°

y (m)

x (m) 0

10

20

100 20 30

FIGURE 1.5  Motion diagram of a sled with 
frames made every 1 s.
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28  CHAPTER 1 Concepts of Motion

Scalars and Vectors
Some physical quantities, such as time, mass, and temperature, can be described com-
pletely by a single number with a unit. For example, the mass of an object is 6 kg 
and its temperature is 30°C. A single number (with a unit) that describes a physical 
quantity is called a scalar. A scalar can be positive, negative, or zero.

Many other quantities, however, have a directional aspect and cannot be described 
by a single number. To describe the motion of a car, for example, you must specify not 
only how fast it is moving, but also the direction in which it is moving. A quantity hav-
ing both a size (the “How far?” or “How fast?”) and a direction (the “Which way?”) is 
called a vector. The size or length of a vector is called its magnitude. Vectors will be 
studied thoroughly in Chapter 3, so all we need for now is a little basic information.

We indicate a vector by drawing an arrow over the letter that represents the quan-
tity. Thus r u and A

u
 are symbols for vectors, whereas r and A, without the arrows, are 

symbols for scalars. In handwritten work you must draw arrows over all symbols that 
represent vectors. This may seem strange until you get used to it, but it is very important 
because we will often use both r and r u, or both A and A

u
, in the same problem, and they 

mean different things! Note that the arrow over the symbol always points to the right, 
regardless of which direction the actual vector points. Thus we write r u or A

u
, never r z or A

z
.

Displacement
We said that motion is the change in an object’s position with time, but how do we 
show a change of position? A motion diagram is the perfect tool. FIGURE 1.6 is the 
motion diagram of a sled sliding down a snow-covered hill. To show how the sled’s 
position changes between, say, t3 = 3 s and t4 = 4 s, we draw a vector arrow between 
the two dots of the motion diagram. This vector is the sled’s displacement, which  
is given the symbol ∆r u. The Greek letter delta 1∆2 is used in math and science to 
indicate the change in a quantity. In this case, as we’ll show, the displacement ∆r u is 
the change in an object’s position.

   NOTE     ∆r u is a single symbol. It shows “from here to there.” You cannot cancel out 
or remove the ∆.

Notice how the sled’s position vector r u
4 is a combination of its early position r u

3 with  
the displacement vector ∆r u. In fact, r u

4 is the vector sum of the vectors r u
3 and  

∆r u. This is written

	    r u
4 = r u

3 + ∆r u	 (1.1)

Here we’re adding vector quantities, not numbers, and vector addition differs from “reg-
ular” addition. We’ll explore vector addition more thoroughly in Chapter 3, but for now 
you can add two vectors A

u
 and B

u
 with the three-step procedure of ❮❮ TACTICS BOX 1.1.

The sled’s displacement between
t3 = 3 s and t4 = 4 s is the vector 
drawn from one postion to the next.

t3 = 3 s

t4 = 4 s

r4
u

r3
u

∆r
u

y (m)

x (m)0

10

20

100 20 30

FIGURE 1.6  The sled undergoes a 
displacement ∆r u from position r u

3 
to position r u

4.

TACTICS BOX 1.1

Vector addition
1

2

3

To add B to A: Draw A.

Place the tail of
B at the tip of A.

Draw an arrow from
the tail of A to the
tip of B. This is
vector A + B. A + B

A
u

B
u

A
u

A
u

A
u

B
u

u

u

u

u

u

u

u

u u

uu

B
u
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1.3  Position, Time, and Displacement  29

If you examine Figure 1.6, you’ll see that the steps of Tactics Box 1.1 are exactly 
how r u

3 and ∆r u are added to give r u
4.

   NOTE     A vector is not tied to a particular location on the page. You can move a 
vector around as long as you don’t change its length or the direction it points. Vector 
B
u

 is not changed by sliding it to where its tail is at the tip of A
u

.

Equation 1.1 told us that r u
4 = r u

3 + ∆r u. This is easily rearranged to give a more 
precise definition of displacement: The displacement 𝚫ru of an object as it moves 
from one position rua to a different position rub is

	 ∆ru = rub - rua	 (1.2)

That is, displacement is the change (i.e., the difference) in position. Graphically, 𝚫ru 
is a vector arrow drawn from position rua to position rub.

Motion Diagrams with Displacement Vectors
The first step in analyzing a motion diagram is to determine all of the displacement 
vectors, which are simply the arrows connecting each dot to the next. Label each 
arrow with a vector symbol ∆r u

n, starting with n = 0. FIGURE 1.7 shows the motion dia-
grams of Figure 1.4 redrawn to include the displacement vectors.

   NOTE     When an object either starts from rest or ends at rest, the initial or final dots 
are as close together as you can draw the displacement vector arrow connecting 
them. In addition, just to be clear, you should write “Start” or “Stop” beside the 
initial or final dot. It is important to distinguish stopping from merely slowing down.

Now we can conclude, more precisely than before, that, as time proceeds:

■■ An object is speeding up if its displacement vectors are increasing in length.
■■ An object is slowing down if its displacement vectors are decreasing in length.

(a) Rocket launch

(b) Car stopping 

Start

Stop

∆r3

∆r2

∆r1

∆r0

∆r1 ∆r2 ∆r3

u

u

u

u

∆r0
u u u u

FIGURE 1.7  Motion diagrams with the 
displacement vectors.

Alice is sliding along a smooth, icy road on her sled when she suddenly runs headfirst  
into a large, very soft snowbank that gradually brings her to a halt. Draw a motion 
diagram for Alice. Show and label all displacement vectors.

MODEL  The details of Alice and the sled—their size, shape, color, and so on—are not 
relevant to understanding their overall motion. So we can model Alice and the sled as 
one particle.

VISUALIZE  FIGURE 1.8 shows a motion diagram. The problem statement suggests that 
the sled’s speed is very nearly constant until it hits the snowbank. Thus the displacement 
vectors are of equal length as Alice slides along the icy road. She begins slowing when 
she hits the snowbank, so the displacement vectors then get shorter until the sled stops. 
We’re told that her stop is gradual, so we want the vector lengths to get shorter gradually 
rather than suddenly.

EXAMPLE 1.1  ■  Headfirst into the snow

The displacement vectors
are getting shorter, so she’s
slowing down.

Stop

Hits snowbank

This is motion at constant speed
because the displacement vectors 
are a constant length.

∆r0 ∆r1 ∆r2 ∆r3
u u u u ∆r4

u ∆r5
u ∆r6

u

FIGURE 1.8  The motion diagram of Alice and the sled.
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30  CHAPTER 1 Concepts of Motion

Time Interval
It’s also useful to consider a change in time. For example, the clock readings of two 
frames of a video might be t1 and t2. The specific values are arbitrary because they 
are timed relative to an arbitrary instant that you chose to call t = 0. But the time 
interval ∆t = t2 - t1 is not arbitrary. It represents the elapsed time for the object to 
move from one position to the next.

The time interval 𝚫t ∙ tb ∙ ta measures the elapsed time as an object moves 
from position rua at time ta to position rub at time tb. The value of 𝚫t is independent 
of the specific clock used to measure the times.

To summarize the main idea of this section, we have added coordinate systems 
and clocks to our motion diagrams in order to measure when each frame was exposed 
and where the object was located at that time. Different observers of the motion may 
choose different coordinate systems and different clocks. However, all observers find 
the same values for the displacements ∆r u and the time intervals ∆t because these are 
independent of the specific coordinate system used to measure them.

1.4  Velocity
It’s no surprise that, during a given time interval, a speeding bullet travels farther than 
a speeding snail. To extend our study of motion so that we can compare the bullet to 
the snail, we need a way to measure how fast or how slowly an object moves.

One quantity that measures an object’s fastness or slowness is its average speed, 
defined as the ratio

	   average speed =
distance traveled

time interval spent traveling
=

d
∆t

	 (1.3)

If you drive 15 miles (mi) in 30 minutes 11
2 h2, your average speed is

	   average speed =
15 mi

1
2 h

= 30 mph	 (1.4)

Although the concept of speed is widely used in our day-to-day lives, it is not a 
sufficient basis for a science of motion. To see why, imagine you’re trying to land a jet 
plane on an aircraft carrier. It matters a great deal to you whether the aircraft carrier 
is moving at 20 mph (miles per hour) to the north or 20 mph to the east. Simply know-
ing that the ship’s speed is 20 mph is not enough information!

It’s the displacement ∆r u, a vector quantity, that tells us not only the distance trav-
eled by a moving object, but also the direction of motion. Consequently, a more useful 
ratio than d /∆t is the ratio ∆r u/∆t. In addition to measuring how fast an object moves, 
this ratio is a vector that points in the direction of motion.

It is convenient to give this ratio a name. We call it the average velocity, and it 
has the symbol v 

u
avg. The average velocity of an object during the time interval 𝚫  t, 

in which the object undergoes a displacement 𝚫ru, is the vector

	   v 

u
avg =

∆r u

∆t
	 (1.5)

An object’s average velocity vector points in the same direction as the displace-
ment vector 𝚫ru. This is the direction of motion.

   NOTE     In everyday language we do not make a distinction between speed and 
velocity, but in physics the distinction is very important. In particular, speed is 
simply “How fast?” whereas velocity is “How fast, and in which direction?” As we 
go along we will be giving other words more precise meanings in physics than they 
have in everyday language.

A stopwatch is used to measure a time 
interval.

The victory goes to the runner with the 
highest average speed.
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1.4  Velocity  31

As an example, FIGURE 1.9a shows two ships that move 5 miles in 15 minutes. Using 
Equation 1.5 with ∆t = 0.25 h, we find

	 v 

u
avg  A = (20 mph, north)	

	 v 

u
avg  B = (20 mph, east)	

(1.6)

Both ships have a speed of 20 mph, but their velocities differ. Notice how the velocity 
vectors in FIGURE 1.9b point in the direction of motion.

   NOTE     Our goal in this chapter is to visualize motion with motion diagrams. Strictly 
speaking, the vector we have defined in Equation 1.5, and the vector we will show on 
motion diagrams, is the average velocity v 

u
avg. But to allow the motion diagram to be 

a useful tool, we will drop the subscript and refer to the average velocity as simply v 

u. 
Our definitions and symbols, which somewhat blur the distinction between average 
and instantaneous quantities, are adequate for visualization purposes, but they’re not 
the final word. We will refine these definitions in Chapter 2, where our goal will be  
to develop the mathematics of motion.

Motion Diagrams with Velocity Vectors
The velocity vector points in the same direction as the displacement ∆r u, and the 
length of v 

u is directly proportional to the length of ∆r u. Consequently, the vectors 
connecting each dot of a motion diagram to the next, which we previously labeled as 
displacements, could equally well be identified as velocity vectors.

This idea is illustrated in FIGURE 1.10, which shows four frames from the motion 
diagram of a tortoise racing a hare. The vectors connecting the dots are now labeled 
as velocity vectors v 

u. The length of a velocity vector represents the average speed 
with which the object moves between the two points. Longer velocity vectors indi-
cate faster motion. You can see that the hare moves faster than the tortoise.

Notice that the hare’s velocity vectors do not change; each has the same length and 
direction. We say the hare is moving with constant velocity. The tortoise is also mov-
ing with its own constant velocity.

vavg A = (20 mph, north)
u

(a)

vavg B = (20 mph, east)

(b)

A

B

∆rA = (5 mi, north)

∆rB = (5 mi, east)

The velocity vectors point
in the direction of motion.

u

u

u

FIGURE 1.9  The displacement vectors and 
velocities of ships A and B.

v1
u

v2
u

v0
u

v1
u

v2
u

v0
u

The length of each arrow represents
the average speed. The hare moves
faster than the tortoise.

These are average velocity vectors.

Hare

Tortoise

FIGURE 1.10  Motion diagram of the 
tortoise racing the hare.

EXAMPLE 1.2  ■  Accelerating up a hill

The light turns green and a car accelerates, starting from rest, up a 20° hill. Draw a motion 
diagram showing the car’s velocity.

MODEL  Use the particle model to represent the car as a dot.

VISUALIZE  The car’s motion takes place along a straight line, but the line is neither hor-
izontal nor vertical. A motion diagram should show the object moving with the correct 
orientation—in this case, at an angle of 20°. FIGURE 1.11 shows several frames of the 
motion diagram, where we see the car speeding up. The car starts from rest, so the first 
arrow is drawn as short as possible and the first dot is labeled “Start.” The displacement 
vectors have been drawn from each dot to the next, but then they are identified and labeled 
as average velocity vectors v 

u.

v
u

This labels the whole row of
vectors as velocity vectors.

The velocity vectors
are getting longer, so
the car is speeding up.Start

FIGURE 1.11  Motion diagram of a car accelerating up a hill.
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32  CHAPTER 1 Concepts of Motion

1.5  Linear Acceleration
Position, time, and velocity are important concepts, and at first glance they might 
appear to be sufficient to describe motion. But that is not the case. Sometimes an 
object’s velocity is constant, as it was in Figure 1.10. More often, an object’s velocity 
changes as it moves, as in Figures 1.11 and 1.12. We need one more motion concept to 
describe a change in the velocity.

Because velocity is a vector, it can change in two possible ways:

1.	The magnitude can change, indicating a change in speed; or
2.	The direction can change, indicating that the object has changed direction.

We will concentrate for now on the first case, a change in speed. The car accel-
erating up a hill in Figure 1.11 was an example in which the magnitude of the  
velocity vector changed but not the direction. We’ll return to the second case in 
Chapter 4.

When we wanted to measure changes in position, the ratio ∆r u/∆t was useful. This 
ratio is the rate of change of position. By analogy, consider an object whose velocity 
changes from v 

u
a to v 

u
b during the time interval ∆t. Just as ∆r u = r u

b - r u
a is the change 

of position, the quantity ∆v 

u = v 

u
b - v 

u
a is the change of velocity. The ratio ∆v 

u
 /∆t is 

then the rate of change of velocity. It has a large magnitude for objects that speed up 
quickly and a small magnitude for objects that speed up slowly.

Marcos kicks a soccer ball. It rolls along the ground until stopped 
by Jose. Draw a motion diagram of the ball.

MODEL  This example is typical of how many problems in science 
and engineering are worded. The problem does not give a clear 
statement of where the motion begins or ends. Are we interested in 
the motion of the ball just during the time it is rolling between Mar-
cos and Jose? What about the motion as Marcos kicks it (ball rap-
idly speeding up) or as Jose stops it (ball rapidly slowing down)? 
The point is that you will often be called on to make a reasonable 
interpretation of a problem statement. In this problem, the details 
of kicking and stopping the ball are complex. The motion of the 
ball across the ground is easier to describe, and it’s a motion you 
might expect to learn about in a physics class. So our interpretation 
is that the motion diagram should start as the ball leaves Marcos’s 
foot (ball already moving) and should end the instant it touches 

Jose’s foot (ball still moving). In between, the ball will slow down 
a little. We will model the ball as a particle.

VISUALIZE  With this interpretation in mind, FIGURE 1.12 shows 
the motion diagram of the ball. Notice how, in contrast to the car 
of Figure 1.11, the ball is already moving as the motion diagram 
video begins. As before, the average velocity vectors are found 
by connecting the dots. You can see that the average velocity vec-
tors get shorter as the ball slows. Each v  

u is different, so this is not 
constant-velocity motion.

EXAMPLE 1.3  ■  A rolling soccer ball

v
u

Marcos Jose

The velocity vectors are gradually getting shorter.

FIGURE 1.12  Motion diagram of a soccer ball rolling from 
Marcos to Jose.

STOP TO THINK 1.3  A particle moves from position 1 to position 2 during the time 
interval ∆t. Which vector shows the particle’s average velocity?

(e)(d)(c)(b)(a)

1

2

y

x
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1.5  Linear Acceleration  33

The ratio ∆vu  /∆t is called the average acceleration, and its symbol is auavg. The 
average acceleration of an object during the time interval 𝚫t, in which the object’s 
velocity changes by 𝚫v 

u, is the vector

	   auavg =
∆v 

u

∆t
	 (1.7)

The average acceleration vector points in the same direction as the vector 𝚫v 

u.
Acceleration is a fairly abstract concept. Yet it is essential to develop a good in-

tuition about acceleration because it will be a key concept for understanding why 
objects move as they do. Motion diagrams will be an important tool for developing 
that intuition.

   NOTE     As we did with velocity, we will drop the subscript and refer to the average 
acceleration as simply au. This is adequate for visualization purposes, but not the 
final word. We will refine the definition of acceleration in Chapter 2.

Finding the Acceleration Vectors on a Motion Diagram
Perhaps the most important use of a motion diagram is to determine the acceleration 
vector au at each point in the motion. From its definition in Equation 1.7, we see that  
au points in the same direction as ∆v 

u, the change of velocity, so we need to find the 
direction of ∆v 

u. To do so, we rewrite the definition ∆v 

u = v 

u
b - v 

u
a as v 

u
b = v 

u
a + ∆v 

u. 
This is now a vector addition problem: What vector must be added to v 

u
a to turn it into 

v 

u
b? Tactics Box 1.2 shows how to do this.

The Audi TT accelerates from 0 to 60 mph 
in 6 s.

TACTICS BOX 1.2

Finding the acceleration vector

a
u

3

1

Return to the original motion 
diagram. Draw a vector at the 
middle dot in the direction of
∆v; label it a. This is the average
acceleration at the midpoint
between va and vb. 

Draw velocity vectors va and vb with
their tails together.

2 Draw the vector from the tip of va

to the tip of vb. This is ∆v because
vb = va + ∆v.

vb

va

vb

va

u

u

u

va
u

u

u

vb
u

va
u

vb
u

uu

u u

To find the acceleration as the
velocity changes from va to vb,
we must determine the change
of velocity ∆v = vb - va.

u u

u u u

u

uu

uuu

u u

∆v

Exercises 21–24 

Many Tactics Boxes will refer you to exercises in the 
Student Workbook where you can practice the new skill.
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34  CHAPTER 1 Concepts of Motion

Notice that the acceleration vector goes beside the middle dot, not beside the veloc-
ity vectors. This is because each acceleration vector is determined by the difference 
between the two velocity vectors on either side of a dot. The length of au does not have 
to be the exact length of ∆v 

u; it is the direction of au that is most important.
The procedure of ❮❮ TACTICS BOX 1.2 can be repeated to find au at each point in the 

motion diagram. Note that we cannot determine au at the first and last points because 
we have only one velocity vector and can’t find ∆v 

u.

The Complete Motion Diagram
You’ve now seen two Tactics Boxes. Tactics Boxes to help you accomplish specific 
tasks will appear in nearly every chapter in this book. We’ll also, where appropriate, 
provide Problem-Solving Strategies.

PROBLEM-SOLVING STRATEGY 1.1

Motion diagrams

MODEL  Determine whether it is appropriate to model the moving object as a parti-
cle. Make simplifying assumptions when interpreting the problem statement.

VISUALIZE  A complete motion diagram consists of:
■■ The position of the object in each frame of the video, shown as a dot. Use five 
or six dots to make the motion clear but without overcrowding the picture. The 
motion should change gradually from one dot to the next, not drastically. More 
complex motions will need more dots.

■■ The average velocity vectors, found by connecting each dot in the motion dia-
gram to the next with a vector arrow. There is one velocity vector linking each 
two position dots. Label the row of velocity vectors v 

u.

■■ The average acceleration vectors, found using Tactics Box 1.2. There is one 
acceleration vector linking each two velocity vectors. Each acceleration vector 
is drawn at the dot between the two velocity vectors it links. Use 0

u
 to indicate a 

point at which the acceleration is zero. Label the row of acceleration vectors au.

STOP TO THINK 1.4  A particle undergoes acceleration au while 
moving from point 1 to point 2. Which of the choices shows the 
most likely velocity vector v  

u
2 as the particle leaves point 2?

2

(a)

2

(c)

2

(d)

v22

(b)

u
v2
u

v2
u

v2
u

a
u

v1
u

2 1

Examples of Motion Diagrams
Let’s look at some examples of the full strategy for drawing motion diagrams.
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1.5  Linear Acceleration  35

A spaceship carrying the first astronauts to Mars descends safely 
to the surface. Draw a motion diagram for the last few seconds of 
the descent.

MODEL  The spaceship is small in comparison with the distance 
traveled, and the spaceship does not change size or shape, so it’s 
reasonable to model the spaceship as a particle. We’ll assume that 
its motion in the last few seconds is straight down. The problem 
ends as the spacecraft touches the surface.

VISUALIZE  FIGURE 1.13 shows a complete motion diagram as the 
spaceship descends and slows, using its rockets, until it comes  
to rest on the surface. Notice how the dots get closer together as  
it slows. The inset uses the steps of Tactics Box 1.2 (numbered 
circles) to show how the acceleration vector au is determined at one 
point. All the other acceleration vectors will be similar because  
for each pair of velocity vectors the earlier one is longer than the 
later one.

EXAMPLE 1.4  ■  The first astronauts land on Mars

v and a point in opposite 
directions. The object is 
slowing down.

v
u

u

a
u

u

a
u

∆v

va
u

va
u

vb
u

vb
u

Stops

1

2

3

u

FIGURE 1.13  Motion diagram of a spaceship landing on Mars.

A skier glides along smooth, horizontal snow at constant speed, then speeds up going 
down a hill. Draw the skier’s motion diagram.

MODEL  Model the skier as a particle. It’s reasonable to assume that the downhill slope is a 
straight line. Although the motion as a whole is not linear, we can treat the skier’s motion 
as two separate linear motions.

VISUALIZE  FIGURE 1.14 shows a complete motion diagram of the skier. The dots are 
equally spaced for the horizontal motion, indicating constant speed; then the dots get 
farther apart as the skier speeds up going down the hill. The insets show how the average 
acceleration vector au is determined for the horizontal motion and along the slope. All the 
other acceleration vectors along the slope will be similar to the one shown because each 
velocity vector is longer than the preceding one. Notice that we’ve explicitly written 0

u
 

for the acceleration beside the dots where the velocity is constant. The acceleration at the 
point where the direction changes will be considered in Chapter 4.

EXAMPLE 1.5  ■  Skiing through the woods

∆v = 0

0
u

0
u

u

v
u

a
u

a
u

a
u

va
u

vc
u

vb
u

vb
u

vd
u

vd
u

v and a point in the same direction. 
The object is speeding up.

va
u

vc
u

u ∆v
u

u u

FIGURE 1.14  Motion diagram of a skier.
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36  CHAPTER 1 Concepts of Motion

Notice something interesting in Figures 1.13 and 1.14. Where the object is speed-
ing up, the acceleration and velocity vectors point in the same direction. Where 
the object is slowing down, the acceleration and velocity vectors point in opposite 
directions. These results are always true for motion in a straight line. For motion 
along a line:

■■ An object is speeding up if and only if v u and au point in the same direction.
■■ An object is slowing down if and only if v u and au point in opposite directions.
■■ An object’s velocity is constant if and only if au ∙ 0

u
.

   NOTE     In everyday language, we use the word accelerate to mean “speed up” and the 
word decelerate to mean “slow down.” But speeding up and slowing down are both 
changes in the velocity and consequently, by our definition, both are accelerations. 
In physics, acceleration refers to changing the velocity, no matter what the change 
is, and not just to speeding up.

Draw the motion diagram of a ball tossed straight up in the air.

MODEL  This problem calls for some interpretation. Should we in-
clude the toss itself, or only the motion after the ball is released? 
What about catching it? It appears that this problem is really con-
cerned with the ball’s motion through the air. Consequently, we 
begin the motion diagram at the instant that the tosser releases the 
ball and end the diagram at the instant the ball touches his hand. We 
will consider neither the toss nor the catch. And, of course, we will 
model the ball as a particle.

VISUALIZE  We have a slight difficulty here because the ball retraces 
its route as it falls. A literal motion diagram would show the upward 
motion and downward motion on top of each other, leading to con-
fusion. We can avoid this difficulty by horizontally separating the 
upward motion and downward motion diagrams. This will not af-
fect our conclusions because it does not change any of the vectors. 
FIGURE 1.15 shows the motion diagram drawn this way. Notice that 
the very top dot is shown twice—as the end point of the upward 
motion and the beginning point of the downward motion.

The ball slows down as it rises. You’ve learned that the accel-
eration vectors point opposite the velocity vectors for an object 
that is slowing down along a line, and they are shown accordingly. 
Similarly, au and vu point in the same direction as the falling ball 
speeds up. Notice something interesting: The acceleration vectors 
point downward both while the ball is rising and while it is fall-
ing. Both “speeding up” and “slowing down” occur with the same 
acceleration vector. This is an important conclusion, one worth 
pausing to think about.

Now look at the top point on the ball’s trajectory. The velocity 
vectors point upward but are getting shorter as the ball approaches 
the top. As the ball starts to fall, the velocity vectors point down-
ward and are getting longer. There must be a moment—just an 
instant as vu switches from pointing up to pointing down—when 
the velocity is zero. Indeed, the ball’s velocity is zero for an in-
stant at the precise top of the motion!

But what about the acceleration at the top? The inset shows 
how the average acceleration is determined from the last upward 
velocity before the top point and the first downward velocity. We 

find that the acceleration at the top is pointing downward, just as it 
does elsewhere in the motion.

Many people expect the acceleration to be zero at the highest 
point. But the velocity at the top point is changing—from up to 
down. If the velocity is changing, there must be an acceleration. 
A downward-pointing acceleration vector is needed to turn the ve-
locity vector from up to down. Another way to think about this is 
to note that zero acceleration would mean no change of velocity. 
When the ball reached zero velocity at the top, it would hang there 
and not fall if the acceleration were also zero!

EXAMPLE 1.6  ■  Tossing a ball

v
u

v
u

a
u

a
u

a
u

a
u

a
u

a
u

∆v
u

∆v
u

∆v
u

va

ve

vc
u

vb
u

vf
u

vb
u

vf
u

vc
u

ve
u

va
u

vd
u

Finding a while
going down

Finding a while
going up

u

u

For clarity, we displace the upward and downward 
motions. They really occur along the same line.

The topmost point is 
shown twice for clarity.

The acceleration at
the top is not zero.

Finding a at the top
u

vd
u

u

u

FIGURE 1.15  Motion diagram of a ball tossed straight up in the air.
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1.6  Motion in One Dimension  37

1.6  Motion in One Dimension
An object’s motion can be described in terms of three fundamental quantities: its posi
tion r u, velocity v 

u, and acceleration au. These are vectors, but for motion in one dimen-
sion, the vectors are restricted to point only “forward” or “backward.” Consequently, 
we can describe one-dimensional motion with the simpler quantities x, vx  , and ax 
(or y, vy  , and ay). However, we need to give each of these quantities an explicit sign, 
positive or negative, to indicate whether the position, velocity, or acceleration vector 
points forward or backward.

Determining the Signs of Position, Velocity,  
and Acceleration
Position, velocity, and acceleration are measured with respect to a coordinate system, 
a grid or axis that you impose on a problem to analyze the motion. We will find it 
convenient to use an x-axis to describe both horizontal motion and motion along an 
inclined plane. A y-axis will be used for vertical motion. A coordinate axis has two 
essential features:

1.	An origin to define zero; and
2.	An x or y label (with units) at the positive end of the axis.

   NOTE     In this textbook, we will follow the convention that the positive end of an 
x-axis is to the right and the positive end of a y-axis is up. The signs of position, 
velocity, and acceleration are based on this convention.

TACTICS BOX 1.3

Determining the sign of the position, velocity, and acceleration

a
u

a
u

a
u

a
u

v
u

v
u

v
u

v
u

x x 7 0

y 7 0 y 6 0

Position to right of origin.

Position above origin. Position below origin.

vy 7 0 vy 6 0

Direction of motion is up. Direction of motion is down.

ay 7 0 ay 6 0

Acceleration vector points up. Acceleration vector points down.

Position to left of origin.

Direction of motion is to the right.

Direction of motion is to the left.

Acceleration vector points to the right.

Acceleration vector points to the left.

x 6 0

vx 7 0

vx 6 0

ax 7 0

ax 6 0

0

y

0

y

0
x

0

The sign of position (x or y) tells us where an object is.

The sign of velocity (vx or vy) tells us which direction 
the object is moving.

The sign of acceleration (ax or ay) tells us which way 
the acceleration vector points, not whether the object 
is speeding up or slowing down.

Exercises 30–31 
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38  CHAPTER 1 Concepts of Motion

Acceleration is where things get a bit tricky. A natural tendency is to think that a 
positive value of ax or ay describes an object that is speeding up while a negative value 
describes an object that is slowing down (decelerating). However, this interpretation 
does not work.

Acceleration is defined as auavg = ∆vu  /∆t. The direction of au can be determined by 
using a motion diagram to find the direction of ∆v 

u. The one-dimensional acceleration 
ax (or ay) is then positive if the vector au points to the right (or up), negative if au points 
to the left (or down).

FIGURE 1.16 shows that this method for determining the sign of a does not con-
form to the simple idea of speeding up and slowing down. The object in Figure 1.16a 
has a positive acceleration 1ax 7 02 not because it is speeding up but because the 
vector au points in the positive direction. Compare this with the motion diagram of 
Figure 1.16b. Here the object is slowing down, but it still has a positive acceleration 
1ax 7 02 because au points to the right.

In the previous section, we found that an object is speeding up if v 

u and au point 
in the same direction, slowing down if they point in opposite directions. For 
one-dimensional motion this rule becomes:

■■ An object is speeding up if and only if vx and ax have the same sign.
■■ An object is slowing down if and only if vx and ax have opposite signs.
■■ An object’s velocity is constant if and only if ax = 0.

Notice how the first two of these rules are at work in Figure 1.16.

Position-versus-Time Graphs
FIGURE 1.17 is a motion diagram, made at 1 frame per minute, of a student walking to 
school. You can see that she leaves home at a time we choose to call t = 0 min and 
makes steady progress for a while. Beginning at t = 3 min there is a period where the 
distance traveled during each time interval becomes less—perhaps she slowed down 
to speak with a friend. Then she picks up the pace, and the distances within each 
interval are longer.

a
u

v
u

a
u

v
u

x
x 7 0 vx 6 0 ax 7 00

x
x 7 0 vx 7 0 ax 7 00

(a) Speeding up to the right

(b) Slowing down to the left

FIGURE 1.16  One of these objects is 
speeding up, the other slowing down, but 
they both have a positive acceleration ax.

u
v

x (m)
0 100

1 frame per minute

200 300 400 500

t = 0 min

FIGURE 1.17  The motion diagram of a student walking to school and a coordinate axis for 
making measurements.

TABLE 1.1  Measured positions of a 
student walking to school

Time  
t (min)

Position  
x (m)

Time  
t (min)

Position  
x (m)

0     0 5 220

1   60 6 240

2 120 7 340

3 180 8 440

4 200 9 540

Figure 1.17 includes a coordinate axis, and you can see that every dot in a motion 
diagram occurs at a specific position. TABLE 1.1 shows the student’s positions at dif-
ferent times as measured along this axis. For example, she is at position x = 120 m  
at t = 2 min.

The motion diagram is one way to represent the student’s motion. Another is to 
make a graph of the measurements in Table 1.1. FIGURE 1.18a is a graph of x versus t for 
the student. The motion diagram tells us only where the student is at a few discrete 
points of time, so this graph of the data shows only points, no lines.

   NOTE     A graph of “a versus b” means that a is graphed on the vertical axis and b 
on the horizontal axis. Saying “graph a versus b” is really a shorthand way of saying 
“graph a as a function of b.”
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1.7  Solving Problems in Physics  39

However, common sense tells us the following. First, the student was some-
where specific at all times. That is, there was never a time when she failed to have 
a well-defined position, nor could she occupy two positions at one time. Second, the 
student moved continuously through all intervening points of space. She could not go 
from x = 100 m to x = 200 m without passing through every point in between. It is 
thus quite reasonable to believe that her motion can be shown as a continuous line pass-
ing through the measured points, as shown in FIGURE 1.18b. A continuous line or curve 
showing an object’s position as a function of time is called a position-versus-time 
graph or, sometimes, just a position graph.

   NOTE     A graph is not a “picture” of the motion. The student is walking along a 
straight line, but the graph itself is not a straight line. Further, we’ve graphed her 
position on the vertical axis even though her motion is horizontal. Graphs are 
abstract representations of motion. We will place significant emphasis on the 
process of interpreting graphs, and many of the exercises and problems will give you 
a chance to practice these skills.

t (min)

t (min)

x (m)

x (m)

0 2 4 6 8 10

600

400

200

0

0 2 4 6 8 10

600

400

200

0

(a)

(b)

Dots show the student’s position
at discrete instants of time.

A continuous line shows her
position at all instants of time.

FIGURE 1.18  Position graphs of the 
student’s motion.

The graph in FIGURE 1.19a represents the motion of a car along a 
straight road. Describe the motion of the car.

MODEL  We’ll model the car as a particle with a precise position at 
each instant.

VISUALIZE  As FIGURE 1.19b shows, the graph represents a car that 
travels to the left for 30 minutes, stops for 10 minutes, then travels 
back to the right for 40 minutes.

EXAMPLE 1.7  ■  Interpreting a position graph

t (min)

x (km)

20 40 60 80

(a)

20

10

0

-10

-20

t (min)

x (km)

20 40 60 80

(b)

20

10

0

-10

-20

1. At t = 0 min, the car is 10 km
    to the right of the origin.

5. The car reaches the
 origin at t = 80 min.

4. The car starts moving back
 to the right at t = 40 min.

2. The value of x decreases for
 30 min, indicating that the car
 is moving to the left.

3. The car stops for 10 min at a position
    20 km to the left of the origin.

FIGURE 1.19  Position-versus-time graph of a car.

1.7  Solving Problems in Physics
Physics is not mathematics. Math problems are clearly stated, such as “What is 
2 + 2?< Physics is about the world around us, and to describe that world we must use 
language. Now, language is wonderful—we couldn’t communicate without it—but 
language can sometimes be imprecise or ambiguous.

The challenge when reading a physics problem is to translate the words into 
symbols that can be manipulated, calculated, and graphed. The translation from 
words to symbols is the heart of problem solving in physics. This is the point 
where ambiguous words and phrases must be clarified, where the imprecise must 
be made precise, and where you arrive at an understanding of exactly what the 
question is asking.
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40  CHAPTER 1 Concepts of Motion

Using Symbols
Symbols are a language that allows us to talk with precision about the relationships 
in a problem. As with any language, we all need to agree to use words or symbols in 
the same way if we want to communicate with each other. Many of the ways we use 
symbols in science and engineering are somewhat arbitrary, often reflecting historical 
roots. Nonetheless, practicing scientists and engineers have come to agree on how to 
use the language of symbols. Learning this language is part of learning physics.

We will use subscripts on symbols, such as x3, to designate a particular point in the 
problem. Scientists usually label the starting point of the problem with the subscript 
“0,” not the subscript “1” that you might expect. When using subscripts, make sure 
that all symbols referring to the same point in the problem have the same numerical 
subscript. To have the same point in a problem characterized by position x1 but veloc-
ity v2x is guaranteed to lead to confusion!

Drawing Pictures
You may have been told that the first step in solving a physics problem is to “draw a 
picture,” but perhaps you didn’t know why, or what to draw. The purpose of drawing a 
picture is to aid you in the words-to-symbols translation. Complex problems have far 
more information than you can keep in your head at one time. Think of a picture as a 
“memory extension,” helping you organize and keep track of vital information.

Although any picture is better than none, there really is a method for draw-
ing pictures that will help you be a better problem solver. It is called the pictorial 
representation of the problem. We’ll add other pictorial representations as we go 
along, but the following procedure is appropriate for motion problems.

TACTICS BOX 1.4

Drawing a pictorial representation
1 	 Draw a motion diagram. The motion diagram develops your intuition for the 

motion.
2 	 Establish a coordinate system. Select your axes and origin to match the mo-

tion. For one-dimensional motion, you want either the x-axis or the y-axis  
parallel to the motion. The coordinate system determines whether the signs of 
v and a are positive or negative.

3 	 Sketch the situation. Not just any sketch. Show the object at the beginning of the 
motion, at the end, and at any point where the character of the motion changes. 
Show the object, not just a dot, but very simple drawings are adequate.

4 	 Define symbols. Use the sketch to define symbols representing quantities such as 
position, velocity, acceleration, and time. Every variable used later in the mathe-
matical solution should be defined on the sketch. Some will have known values, 
others are initially unknown, but all should be given symbolic names.

5 	 List known information. Make a table of the quantities whose values you can 
determine from the problem statement or that can be found quickly with sim-
ple geometry or unit conversions. Some quantities are implied by the problem, 
rather than explicitly given. Others are determined by your choice of coordi-
nate system.

6 	 Identify the desired unknowns. What quantity or quantities will allow you 
to answer the question? These should have been defined as symbols in step 4. 
Don’t list every unknown, only the one or two needed to answer the question.

It’s not an overstatement to say that a well-done pictorial representation of the 
problem will take you halfway to the solution. The following example illustrates how 
to construct a pictorial representation for a problem that is typical of problems you 
will see in the next few chapters.
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1.7  Solving Problems in Physics  41

Draw a pictorial representation for the following problem: A rocket 
sled accelerates horizontally at 50 m/s2 for 5.0 s, then coasts for 
3.0 s. What is the total distance traveled?

VISUALIZE  FIGURE 1.20 is the pictorial representation. The motion 
diagram shows an acceleration phase followed by a coasting phase. 
Because the motion is horizontal, the appropriate coordinate sys-
tem is an x-axis. We’ve chosen to place the origin at the starting 
point. The motion has a beginning, an end, and a point where the 
motion changes from accelerating to coasting, and these are the 
three sled positions sketched in the figure. The quantities x, vx 

, and 
t are needed at each of three points, so these have been defined on 

the sketch and distinguished by subscripts. Accelerations are asso-
ciated with intervals between the points, so only two accelerations 
are defined. Values for three quantities are given in the problem 
statement, although we need to use the motion diagram, where we 
find that au points to the right, to know that a0x = +50 m/s2 rather 
than -50 m/s2. The values x0 = 0 m and t0 = 0 s are choices we 
made when setting up the coordinate system. The value v0x = 0 m/s 
is part of our interpretation of the problem. Finally, we identify x2 
as the quantity that will answer the question. We now understand 
quite a bit about the problem and would be ready to start a quanti-
tative analysis.

EXAMPLE 1.8  ■  Drawing a pictorial representation
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Draw a
motion diagram.
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FIGURE 1.20  A pictorial representation.

A new building requires careful planning. 
The architect’s visualization and drawings 
have to be complete before the detailed 
procedures of construction get under 
way. The same is true for solving prob-
lems in physics.

We didn’t solve the problem; that is not the purpose of the pictorial representation. The 
pictorial representation is a systematic way to go about interpreting a problem and getting 
ready for a mathematical solution. Although this is a simple problem, and you probably 
know how to solve it if you’ve taken physics before, you will soon be faced with much 
more challenging problems. Learning good problem-solving skills at the beginning, while 
the problems are easy, will make them second nature later when you really need them.

Representations
A picture is one way to represent your knowledge of a situation. You could also rep-
resent your knowledge using words, graphs, or equations. Each representation of 
knowledge gives us a different perspective on the problem. The more tools you have 
for thinking about a complex problem, the more likely you are to solve it.

There are four representations of knowledge that we will use over and over:

1.	The verbal representation. A problem statement, in words, is a verbal represen-
tation of knowledge. So is an explanation that you write.

2.	The pictorial representation. The pictorial representation, which we’ve just pre-
sented, is the most literal depiction of the situation.

3.	The graphical representation. We will make extensive use of graphs.
4.	The mathematical representation. Equations that can be used to find the numeri-

cal values of specific quantities are the mathematical representation.

   NOTE     The mathematical representation is only one of many. Much of physics is 
more about thinking and reasoning than it is about solving equations.
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42  CHAPTER 1 Concepts of Motion

A Problem-Solving Strategy
One of the goals of this textbook is to help you learn a strategy for solving physics prob-
lems. The purpose of a strategy is to guide you in the right direction with minimal wasted 
effort. The four-part problem-solving strategy—Model, Visualize, Solve, Review—is 
based on using different representations of knowledge. You will see this problem-solving 
strategy used consistently in the worked examples throughout this textbook, and you 
should endeavor to apply it to your own problem solving.

GENERAL PROBLEM-SOLVING STRATEGY

MODEL  It’s impossible to treat every detail of a situation. Simplify the situation 
with a model that captures the essential features. For example, the object in a me-
chanics problem is often represented as a particle.

VISUALIZE  This is where expert problem solvers put most of their effort.
■■ Draw a pictorial representation. This helps you visualize important aspects of 
the physics and assess the information you are given. It starts the process of 
translating the problem into symbols.

■■ Use a graphical representation if it is appropriate for the problem.
■■ Go back and forth between these representations; they need not be done in any 
particular order.

SOLVE  Only after modeling and visualizing are complete is it time to develop a 
mathematical representation with specific equations that must be solved. All sym-
bols used here should have been defined in the pictorial representation.

REVIEW  Is your result believable? Does it have proper units? Does it make sense?

Use the first two steps of the problem-solving strategy to analyze 
the following problem: A small rocket, such as those used for me-
teorological measurements of the atmosphere, is launched verti-
cally with an acceleration of 30 m/s2. It runs out of fuel after 30 s. 
What is its maximum altitude?

MODEL  We need to do some interpretation. Common sense tells us 
that the rocket does not stop the instant it runs out of fuel. Instead, 
it continues upward, while slowing, until it reaches its maximum 
altitude. This second half of the motion, after running out of fuel, is 
like the ball that was tossed upward in the first half of Example 1.6. 
Because the problem does not ask about the rocket’s descent, we 
conclude that the problem ends at the point of maximum altitude. 
We’ll model the rocket as a particle.

VISUALIZE  FIGURE 1.21 shows the pictorial representation in 
pencil-sketch style. The rocket is speeding up during the first half of 
the motion, so au0 points upward, in the positive y-direction. Thus the 
initial acceleration is a0y = 30 m/s2. During the second half, as the 
rocket slows, au1 points downward. Thus a1y is a negative number.

EXAMPLE 1.9  ■  Launching a weather rocket

FIGURE 1.21  Pictorial representation for the rocket.

Throughout this textbook we will emphasize the first two steps. They are the phys-
ics of the problem, as opposed to the mathematics of solving the resulting equations. 
This is not to say that those mathematical operations are always easy—in many cases 
they are not. But our primary goal is to understand the physics.

Textbook illustrations are obviously more sophisticated than what you would draw 
on your own paper. To show you a figure very much like what you should draw, the 
final example of this section is in a “pencil sketch” style. We will include one or more 
pencil-sketch examples in nearly every chapter to illustrate exactly what a good prob-
lem solver would draw.

M01B_KNIG8221_05_GE_C01.indd   42 02/06/2022   15:50

Sam
ple

 pa
ge

s




