== Microsoft

The Definitive
Guide to DAX

Business intelligence with
Microsoft Excel, SQL Server
Analysis Services, and Power BI

I ¥ - 0 10
: : . | :
D ED| | .

u
SECO

Contents

Chapter1

Chapter 2

FOreword.o Xvii
Introduction to the second edition.................. ... i il XX
Introduction to the firstedition. i, XXi
What is DAX? 1
Understanding thedatamodel.....................o g™ L. 1

Understanding the direction of a relationship . . % 3
DAX for Excelusers...........ooviiiiinnnin.. @

Cellsversustables
Excel and DAX: Two functional lang
Iterators in DAX

DAX requires theory
DAX for SQL developers
Relationship handlingy, -
DAXis a functio
DAX as a pr
Subquerij
DAX for M 01T 12
ul’%sional versusTabular 12
%s a programming and querying language.................. 12
FArCNIES . o 13
Leaf-level calculationsooo i 14
DAX for POwer Bl USErS 14
Introducing DAX 17
Understanding DAX calculations ..., 17
DAX data types. . ..ot 19
DAX OPEratorsttt 23
Table constructors. ... 24

Conditional statementso 24

Understanding calculated columns and measures...................... 25

Calculated columns. ... 25
MEASUIES ...ttt e 26
Introducing variables 30
Handling errors in DAX @Xpressionso.eeeuereraranananananns 31
CONVEISION BITOS. ..ottt ettt 31
Arithmetic operationserrors ... 32
Intercepting €rrors.ot 35
Generating @rrors.o. ettt 38
Formatting DAXcode.............c.oooiiiint. 39

Introducing aggregators and iterators........... % 42
Using common DAX functions]| @ 45

Aggregation functions..........
Logical functions

Information functions. ..

Mathematical function

Trigonometric functions . ."
Text functic\é .. 50

Co
Chapter i asic table functions 57
oducing tablefunctions 57
Introducing EVALUATE SYNTaXouuntiee e eieieieaanns 59
Understanding FILTER. i 61
Introducing ALL and ALLEXCEPTooiuinii s, 63
Understanding VALUES, DISTINCT, and the blankrow................. 68
Using tablesasscalarvalues. ..., 72
Introducing ALLSELECTEDouiuiuiiiaaaaanananns 75
CONCIUSIONS . . oot 77

vi Contents

Chapter 5

Chapter 4 Understanding evaluation contexts 79
Introducing evaluation contexts. ... 80
Understanding filter contexts ..., 80
Understanding therow context ..., 85
Testing your understanding of evaluation contexts..................... 88
Using SUM in a calculated column. ...t 88
Using columns in @ameasure.ouvenininenininnnnenen.. 89
Using the row context with iterators..............ot 920
Nested row contexts on differenttables 91
Nested row contexts onthe sametable............ 92
Using the EARLIER function...................... %@ 0. ... 97
Understanding FILTER, ALL, and context interactions. " & 98
Working with severaltables............ ... b oo, 101
Row contexts and relationships. ... £ 0 0L 102
Filter context and relationships. eme. L. .4 ool 106
Using DISTINCT and SUMMARIZE infiltercontexts.................. 109
Conclusions d 113
Understanding CALCULATE and
CALCULATETABLE 115
Introducing CALCULATE and CALCULATETABLE. 115
Creatifigfilter contexts. ... 115
fatrodlcing CALCULATE.o 119
Using CALCULATE to compute percentages 124
IAtroducing KEEPFILTERS 135
Filteringasinglecolumn.............o i, 138
Filtering with complex conditions.........................ooat 140
Evaluation orderin CALCULATE, 144
Understanding context transition ..., 148
Row context and filter contextrecap.................coovvin.. 148
Introducing context transition................. ...l 151
Context transition in calculated columns........................ 154
Context transition with measures.cooiiiii... 157

Contents

vii

Understanding circular dependencies ..o, 161

CALCULATE modifiers.ottt 164
Understanding USERELATIONSHIP 164
Understanding CROSSFILTERcoiiiiiiiioa.. 168
Understanding KEEPFILTERS., 168
Understanding ALL in CALCULATEcciiiiiiiia.. 169
Introducing ALL and ALLSELECTED with no parameters......... 171

CALCULATE TUIES . . . oottt e e e 172

Chapter 6 Variables 175

Introducing VAR syntax.coooooo ™ol 175

Understanding that variables are constant.. . &£ q................... 177

Understanding the scope of variables. . 4. %, 0l 178

Using table variables. @0 .l L 181

Understanding lazy evaluationgmy,. .40 . ..o 182

Common patterns using variables .4l 183

Conclusions 185

Chapter 7 Working with iterators and with CALCULATE 187

Using iteratorsy, . . .o 187
Understanding iterator cardinality..................... 188
Leveraging context transition initerators 190
Using CONCATENATEX.ot 194
Iterators returning tables............ i 196

Solving common scenarios with iterators 199
Computing averages and moving averages 199
Using RANKX . ..o 203
Changing calculation granularityo oL 21

CONCIUSIONS . . ottt 215

Chapter 8 Time intelligence calculations 217

Introducing time intelligence. ... 217
Automatic Date/TimeinPowerBIlt 218
Automatic date columns in Power Pivot for Excel 219
Date table template in Power Pivot for Excel 220

viii Contents

Chapter 9

Buildingadatetable........ ... 220

Using CALENDAR and CALENDARAUTO...................... 222
Working with multipledateso oL, 224
Handling multiple relationships to the Date table 224
Handling multipledatetables................., 226
Understanding basic time intelligence calculations................... 228
Using MarkasDateTable ..., 232
Introducing basic time intelligence functions......................... 233
Using year-to-date, quarter-to-date, and month-to-date. 235
Computing time periods from prior periods. 237
Mixing time intelligence functions................ g™ 239
Computing a difference over previous periods £.. >, . % 241
Computing a moving annual total e St 243
Using the right call order for nested time intelligence
functions. ... A 245
Understanding semi-additive calculations®, =¥ 246
Using LASTDATE and LASTNONBLANK 248
Working with opening afid closing balances 254
Understanding advanced time intelligence calculations 258
Understanding periodstodate...................oooiiiiLL, 259
Understanding DATEADDcoovuiiiiiiiannnnn.. 262
UnderstandingyFIRSTDATE, LASTDATE, FIRSTNONBLANK,
andLASTNONBLANK 269
Usingdrillthrough with time intelligence........................ 271
Working with custom calendars.................... il 272
Working withweeks i 272
Custom year-to-date, quarter-to-date, and month-to-date...... 276
(@0 T3 Tl [0 o] o T 277
Calculation groups 279
Introducing calculation groups.coii i 279
Creating calculation groups.coviii e 281
Understanding calculation groups. ... 288
Understanding calculation item application..................... 291
Understanding calculation group precedence.................. 299
Including and excluding measures from calculation items. 304

Contents

ix

Understanding sideways recursionc.oouiiininananannn.s
Using the best practices.

CONCIUSIONS . . oo e

Chapter 10 Working with the filter context
Using HASONEVALUE and SELECTEDVALUE
Introducing ISFILTERED and ISCROSSFILTERED
Understanding differences between VALUES and FILTERS

Understanding the difference between ALLEXCEPT and
ALL/VALUES e g et

Using ALL to avoid context transition.......... .90 H. oo
USINgISEMPTY
Introducing data lineage and TREATAS oo oiieiiiinn
Understanding arbitrarily shaped filters, . o~ o oot

Conclusions 0 R

Chapter 11 Handling hierarchies
Computing percentagesiover hierarchies
Handling parefit/child hierarchies oo

CONCIUSIOMS . . e e e ottt

Chapter 12 Working'with tables
USINGQ'CALCULATETABLE.o,

Manipulating tables
Using ADDCOLUMNS
USingSUMMARIZE. i,
Using CROSSJOIN
Using UNION
Using INTERSECT
USING EXCEPT . ..o

Using tablesasfilters
Implementing OR conditions.o,

Narrowing sales computation to the first year’s
CUStOMErS. ...

X Contents

345
345
350
362

Computing NEW CUStOMErS. ...\ vut ittt 386

Reusing table expressions with DETAILROWS 388
Creating calculated tables. i i 390
Using SELECTCOLUMNS. . ..ot 390
Creating statictableswith ROW 391
Creating static tables with DATATABLE 392

Using GENERATESERIESoooiiiiiiiiiiininann.. 393
CONCIUSIONS . .ot 394
Chapter 13 Authoring queries 395
Introducing DAX Studio. ... g™ 395
Understanding EVALUATE.c.c. o fig it 396
Introducing the EVALUATE syntax....... 40 8, 00 ... 396

Using VARINDEFINE g¢ Queds B evenenenann.. 397
Using MEASURE in DEFINE0. 40 0% 0 oo, 399
Implementing common DAX query patterns......................... 400
Using ROW to test MeasUres e v v veeeeeeieeaaeaen 400

Using SUMMARIZEN, . .8 0o 401

Using SUMMARIZECORUMNS, 403

Using TOPN. .. .0 . e 409
Using GENERATERNANGENERATEALLc...... 415
Using ISONORAFTER 418

Using ADDMISSINGITEMS ...t 420

Using TOPNSKIP 421
USing GROUPBY.. ... i 421
Using NATURALINNERJOIN and NATURALLEFTOUTERJOIN .. 424

Using SUBSTITUTEWITHINDEX.ccooiiiiiiiiin... 426

USINg SAMPLE e 428
Understanding the auto-exists behavior in DAX queries 429
CONCIUSIONS . ..t e 435
Chapter 14 Advanced DAX concepts 437
Introducing expanded tables................ ...l 437
Understanding RELATEDooiiiiiiiiiiiiiininann. 441

Using RELATED in calculated columns 443

Contents

xi

Xii

Contents

Understanding the difference between table filters and

column filters. ... 444
Using table filtersinmeasures................ 447
Understanding active relationships.................... 451
Difference between table expansion and filtering 453
Context transition in expanded tables 455

Understanding ALLSELECTED and shadow filter contexts............ 456
Introducing shadow filter contexts. 457
ALLSELECTED returns the iterated rows 461
ALLSELECTED without parametersccoviiin... 463

The ALL* family of functionscoooi ol ame oo 463
ALL ... o T 465
ALLEXCEPT ... S 466
ALLNOBLANKROW o e e 466
ALLSELECTED i gt e oo 466
ALLCROSSFILTERED . .. /7%, Sl 466

Understanding datalineage. .. St ... 466

CoNCIUSIONS . . oo e e 469

Chapter 15 Advanced relationships 47

Implementing‘ealculated physical relationships 47
Computing multiple-column relationships...................... 471
Implementing relationships based onranges.................... 474
Understanding circular dependency in calculated

physical relationships. ... 476

Implementing virtual relationships L 480
Transferring filters in DAX.o i 480
Transferring a filter using TREATASt 482
Transferring a filter using INTERSECT 483
Transferring afilter using FILTER.coiiiiiiinn.. 484
Implementing dynamic segmentation using

virtual relationships. oo 485
Understanding physical relationships in DAX......................... 488
Using bidirectional cross-filters., 491

Understanding one-to-many relationships........................... 493

Understanding one-to-one relationships 493
Understanding many-to-many relationships......................... 494
Implementing many-to-many using a bridge table............. 494
Implementing many-to-many using a common dimension 500
Implementing many-to-many using MMR weak
relationships i 504
Choosing the right type of relationships 506
Managing granularitieso i 507
Managing ambiguity in relationships............ il 512
Understanding ambiguity in active relationships .. G0 514
Solving ambiguity in non-active relationships .. # @ 515
Conclusionsvvvii R 517
Chapter 16 Advanced calculations in DAX 519
Computing the working days betweenitwoldates 519
Showing budget and sales together %, ...l 527
Computing same-storesales,. . .2l ... i 530
Numbering sequences,6f eventscooiiiiiiiiiiinenn... 536
Computing previoys yearsales up to last date of sales................ 539
CoNCIUSIONS . . o e e et e 544
Chapter 177 The'DAX éngines 545
Understanding the architecture of the DAX engines.................. 545
Introducing the formulaengine 547
Introducing the storageengine. ..., 547
Introducing the VertiPaq (in-memory) storage engine.......... 548
Introducing the DirectQuery storageengine................... 549
Understanding datarefresh............. ... oot 549
Understanding the VertiPaq storageengine 550
Introducing columnar databaseso 550
Understanding VertiPag compression 553
Understanding segmentation and partitioning................. 562
Using Dynamic Management Viewsc.coenen.. 563

Contents xiii

Understanding the use of relationships in VertiPaq................... 565

Introducing materialization 568
Introducing aggregations.t 571
Choosing hardware for VertiPaq. ..., 573
Hardware choiceasanoption.................ccoiiiiiiiia.. 573
Set hardware priorities. ..o 574
CPUMOdel. ... 574
Memory speedt 575
Numberofcores i 576
MEMOIY SIZE ..ottt 576
Disk I/Oandpaging % 576
Best practices in hardware selection .. @ 577
ConcluSioNS . ..o oveii e O T 577

Chapter 18 Optimizing VertiPaq

Gathering information abou

ocessing of calculated columns. 599

C @Mhe right columnstostore.............oooiiiiiiiiiiin... 599
Optimizing column storageoooiiiiiiiin i 602
Using column split optimization.......................ooooee. 602
Optimizing high-cardinality columns 603
Disabling attribute hierarchies..................., 604
Optimizing drill-through attributes............................ 604
Managing VertiPag Aggregations ... 604
CONCIUSIONS . .o .o 607

xiv Contents

Chapter 19 Analyzing DAX query plans 609

Capturing DAX qQUETIES ..ot 609
Introducing DAX query plans.o.oi i 612
Collectingqueryplans....... ..o 613
Introducing logical query plans. ... 614
Introducing physical queryplans............... 614
Introducing storage engine queries. ..., 616
Capturing profiling information.............l 617
Using DAX StUdio. oo 617
Using the SQL Server Profiler.......... ... ooiiiiiimmeenennnn. 620
Reading VertiPaq storage engine queries W 0. ... 624
Introducing xmSQLsyntaxLa 8. 624
Understanding scantime 0 oo 632
Understanding DISTINCTCOUNT intefhalstas” . L. 634
Understanding parallelism and dataca¢he 635
Understanding the VertiPagqcathe . 0.t 637
Understanding CallbackDatalD. 640
Reading DirectQuery storage enging queriesc...o.o... 645
Analyzing compositeymodels. ... 646
Using aggregations infhe datamodel 647
Reading query plans. . .o . 0 L 649
ConcluSIONS M . M. oo 655
Chapter 20 Optiniizing DAX 657
Definingoptimization strategies ..., 658
Identifying a single DAX expression to optimize................ 658
Creating a reproduction querycoiiiiiiiiinnenn... 661
Analyzing server timings and query plan information........... 664
Identifying bottlenecks in the storage engine or
formulaengine...... ... 667
Implementing changes and rerunning the test query........... 668
Optimizing bottlenecks in DAX expressions.coveven... 668
Optimizing filter conditionso, 668
Optimizing context transitionsl 672

Contents xv

Optimizing IFconditions. ...t 678

Reducing the impact of CallbackDatalD. 690
Optimizing nested iterators..............cooiiiiiiiiiinn.. 693
Avoiding table filters for DISTINCTCOUNT 699
Avoiding multiple evaluations by using variables 704
CONCIUSIONS . .« .o 709
Index 71

xvi Contents

Understanding evaluation contexts

At this point in the book, you have learned the basics of the DAX language. You know how to create
calculated columns and measures, and you have a good understanding of common functions used in
DAX. This is the chapter where you move to the next level in this language: After learning a solid theo-
retical background of the DAX language, you become a real DAX champion.

With the knowledge you have gained so far, you can already create manyjinteresting reports, but
you need to learn evaluation contexts in order to create more complexfofmulas. Indeed, evaluation
contexts are the basis of all the advanced features of DAX.

We want to give a few words of warning to our readersaLheiconcept of evaluation contexts is simple,
and you will learn and understand it soon. Nevertheless}ygu needto thoroughly understand several
subtle considerations and details. Otherwise, you will feel lost at a certain point on your DAX learning
path. We have been teaching DAX to thousands of users/in public and private classes, so we know that
this is normal. At a certain point, you have the®feeling that formulas work like magic because they work,
but you do not understand why. Do notworky: you will be in good company. Most DAX students reach
that point, and many others will reachsitsin the future. It simply means that evaluation contexts are not
clear enough to them. The solution, at that point, is easy: Come back to this chapter, read it again, and
you will probably find something new that you missed during your first read.

Moreover, evaluation contexts play an important role when using the CALCULATE function—which
is probably the most powerfuland hard-to-learn DAX function. We introduce CALCULATE in
Chapter 5, "Undérstanding.€ALCULATE and CALCULATETABLE," and then we use it throughout the rest
of the book. Understanding CALCULATE without having a solid understanding of evaluation contexts
is problematic. On the other hand, understanding the importance of evaluation contexts without hav-
ing ever tried to use CALCULATE is nearly impossible. Thus, in our experience with previous books we
have written, this chapter and the subsequent one are the two that are always marked up and have the
corners of pages folded over.

In the rest of the book we will use these concepts. Then in Chapter 14, “Advanced DAX concepts,”
you will complete your learning of evaluation contexts with expanded tables. Beware that the content
of this chapter is not the definitive description of evaluation contexts just yet. A more detailed descrip-
tion of evaluation contexts is the description based on expanded tables, but it would be too hard to
learn about expanded tables before having a good understanding of the basics of evaluation contexts.
Therefore, we introduce the whole theory in different steps.

79

Introducing evaluation contexts

80

There are two evaluation contexts: the filter context and the row context. In the next sections, you learn
what they are and how to use them to write DAX code. Before learning what they are, it is important to
state one point: They are different concepts, with different functionalities and a completely different usage.

The most common mistake of DAX newbies is that of confusing the two contexts as if the row con-
text was a slight variation of a filter context. This is not the case. The filter context filters data, whereas
the row context iterates tables. When DAX is iterating, it is not filtering; and when it is filtering, it is not
iterating. Even though this is a simple concept, we know from experience that it is hard to imprint in
the mind. Our brain seems to prefer a short path to learning—when it believes there are some similari-
ties, it uses them by merging the two concepts into one. Do not be fooled. Whenever you have the
feeling that the two evaluation contexts look the same, stop and repeat this sentence in your mind like
a mantra: "The filter context filters, the row context iterates, they are not the same.”

An evaluation context is the context under which a DAX expression is eval@iated. In fact, any DAX
expression can provide different values in different contexts. This behaviofistintuitive, and this is
the reason why one can write DAX code without learning about eyaltation®€ontexts in advance. You
probably reached this point in the book having authored DAX code without learning about evaluation
contexts. Because you want more, it is now time to be more precise, taxsét up the foundations of DAX
the right way, and to prepare yourself to unleash the fullggoweref DAX.

Understanding filter contexts

Let us begin by understanding what an evaluation context is. All DAX expressions are evaluated inside a
context. The context is the “environment within which the formula is evaluated. For example, consider
a measure such as

Sales Amount := SUMX (Sales, ‘Sales[Quantity] * Sales[Net Price])

This formula computes the sum of quantity multiplied by price in the Sales table. We can use this
measure in a report anddookiat the results, as shown in Figure 4-1.

Sales Amount

30,591,343.98

FIGURE 4-1 The measure Sales Amount, without a context, shows the grand total of sales.

This number alone does not look interesting. However, if you think carefully, the formula computes
exactly what one would expect: the sum of all sales amounts. In a real report, one is likely to slice the
value by a certain column. For example, we can select the product brand, use it on the rows, and the
matrix report starts to reveal interesting business insights as shown in Figure 4-2.

Understanding Evaluation Contexts

Brand Sales Amount

A. Datum 2,096,184.64
Adventure Works 4,011,112.28
Contoso 7,352,399.03
Fabrikam 5,554,015.73
Litware 3,255,704.03
Northwind Traders 1,040,552.13
Proseware 2,546,144.16
Southridge Video 1,384,413.85
Tailspin Toys 325,042.42
The Phone Company 1,123,819.07
Wide World Importers 1,901,956.66
Total 30,591,343.98

FIGURE 4-2 Sum of Sales Amount, sliced by brand, shows the sales of each6rand imsséparate rows.

The grand total is still there, but now it is the sum of smallér values. Each value, together with all the
others, provides more detailed insights. However, you shotild Rote that something weird is happening:
The formula is not computing what we apparently asked: iV fact, inside each cell of the report, the
formula is no longer computing the sum of all saleslInstead, it computes the sales of a given brand.
Finally, note that nowhere in the code does it say thatit«€an (or should) work on subsets of data. This
filtering happens outside of the formula.

Each cell computes a different value beeause’of the evaluation context under which DAX executes
the formula. You can think of the evaluation context of a formula as the surrounding area of the cell
where DAX evaluates the formula:

DAX evaluates all formulas within a respective context. Even though the formula is
the same, the resultiis different because DAX executes the same code against different
subsets of/data.

This context is named Filter Context and, as the name suggests, it is a context that filters tables.
Any formula ever authored will have a different value depending on the filter context used to perform
its evaluation. This behavior, although intuitive, needs to be well understood because it hides many
complexities.

Every cell of the report has a different filter context. You should consider that every cell has a dif-
ferent evaluation—as if it were a different query, independent from the other cells in the same report.
The engine might perform some level of internal optimization to improve computation speed, but you
should assume that every cell has an independent and autonomous evaluation of the underlying DAX
expression. Therefore, the computation of the Total row in Figure 4-2 is not computed by summing the
other rows of the report. It is computed by aggregating all the rows of the Sales table, although this
means other iterations were already computed for the other rows in the same report. Consequently,

Understanding Evaluation Contexts 81

82

depending on the DAX expression, the result in the Total row might display a different result, unrelated
to the other rows in the same report.

Note Inthese examples, we are using a matrix for the sake of simplicity. We can define an
evaluation context with queries too, and you will learn more about it in future chapters. For
now, it is better to keep it simple and only think of reports, to have a simplified and visual
understanding of the concepts.

When Brand is on the rows, the filter context filters one brand for each cell. If we increase the com-
plexity of the matrix by adding the year on the columns, we obtain the report in Figure 4-3.

Brand CY 2007 CY 2008 CY 2009 Total

A. Datum 1,181,110.71 463,721.61 451,352.33 2]096,184.64
Adventure Works 2,249,988.11 892,674.52 868,449.65, '4/011,112.28
Contoso 2,729,818.54 2,369,167.68 2,253,412080 7,352,399.03
Fabrikam 1,652,751.34 1,993,123.48 1,908440.94+5,554,015.73
Litware 647,385.82 1,487,846.74 1,120,471.47 <3,255,704.03
Northwind Traders 372,199.93 469,827.70 198,524.49 1,040,552.13
Proseware 880,095.80 763,586.23 902/462.12 2,546,144.16
Southridge Video 688,107.56 29463504 409,671.25 1,384,413.85
Tailspin Toys 74,603.14 97,193.87 153,245.41 325,042.42
The Phone Company 362,444.46 355,629.36 405,745.25 1,123,819.07
Wide World Importers 471,440.71 740,176.76 690,339.18 1,901,956.66
Total 11,309,946.1279,927,582.99 9,353,814.87 30,591,343.98

FIGURE 4-3 Sales amount is sliced bybrandiand year.

Now each cell shows asulpsetof data pertinent to one brand and one year. The reason for this is that
the filter context of each celllnow filters both the brand and the year. In the Total row, the filter is only
on the brand, whereas in the Total column the filter is only on the year. The grand total is the only cell
that computes the sum of all sales because—there—the filter context does not apply any filter to the
model.

The rules of the game should be clear at this point: The more columns we use to slice and dice,
the more columns are being filtered by the filter context in each cell of the matrix. If one adds the
Store[Continent] column to the rows, the result is—again—different, as shown in Figure 4-4.

Understanding Evaluation Contexts

Brand CY 2007 CY 2008 CY 2009 Total

A. Datum 1,181,110.71 463,721.61 451,352.33 2,096,184.64
Asia 281,936.73 125,055.80 145,386.55 552,379.08
Europe 395,159.31 165,924.22 146,867.73 707,951.26
North America 504,014.67 172,741.59 159,098.05 835,854.31

Adventure Works 2,249,988.11 892,674.52 868,449.65 4,011,112.28
Asia 620,545.52 347,150.65 414,507.89 1,382,204.07
Europe 662,553.70 275,126.51 264,973.65 1,202,653.86
North America 966,888.88 270,397.36 188,968.10 1,426,254.35

Contoso 2,729,818.54 2,369,167.68 2,253,412.80 7,352,399.03
Asia 838,967.94 998,113.24 753,146.22 2,590,227.39
Europe 905,295.91 529,596.05 694,250.12 2,129,142.08
North America 985,554.69 841,458.40 806,01647 2,633,029.56

Fabrikam 1,652,751.34 1,993,123.48 1,908,140.91 5,554,015.73
Asia 640,664.16 727,025.63 783,871.11 2,513560.89
Europe 503,428.83 383,827.59 454,944.80 4"1;,342,201.22

Total 11,309,946.12 9,927,582.99 9,353,814,87,30,591,343.98

FIGURE 4-4 The context is defined by the set of fields on rows and on columns.

Now the filter context of each cell is filtering brapd, €euntfy, and year. In other words, the filter con-
text contains the complete set of fields that one uses,on rows and columns of the report.

Note Whether a field is on the rows'er of the columns of the visual, or on the slicer and/or
page/report/visual filter, or in any other kind of filter we can create with a report—all this

is irrelevant. All these filterscontribtite to define a single filter context, which DAX uses to
evaluate the formula. Digplaying a field on rows or columns is useful for aesthetic purposes,
but nothing changesifytheyway DAX computes values.

Visual interactions in'Power Bl compose a filter context by combining different elements from a
graphical interface. Indeed, the filter context of a cell is computed by merging together all the filters
coming from rows, columns, slicers, and any other visual used for filtering. For example, look at
Figure 4-5.

Understanding Evaluation Contexts 83

Brand CY 2007 CY 2008 CY 2009 Total
Clerical A. Datum 57,276.00 57,276.00
Manual Adventure Works 77,413.46 8,110.53 85,523.99
i Contoso 125,596.01 2,638.18 14,156.95 142,391.14
Fabrikam 434062 8,640.00 2985498 42,835.60
Litware 17,910.87 7,956.00 25,866.87
onn 1 Northwind Traders 3416139 12,733.92 212232 49,017.63
Proseware 13,183.70 10,647.00 23,830.70
Continent Southridge Video 27,239.71 77423 387418 31,888.12
Asia Tailspin Toys 458153 397638 588667 14,444.57
W furope The Phone Company 138480 86490 2,249.70

Narth America

Wide World Importers 2,395.37 2,395.37
Total 365,483.46 29,627.61 82,608.63 477,719.70

FIGURE 4-5 In a typical report, the context is defined in many ways, including slicers, filters, and other visuals.

The filter context of the top-left cell (A.Datum, CY 2007, 57,276.00) netenlyfilters the row and the
column of the visual, but it also filters the occupation (Professional) andithe continent (Europe), which
are coming from different visuals. All these filters contribute to thé definition of a single filter context
valid for one cell, which DAX applies to the whole data modelpfiortes€valuating the formula.

A more formal definition of a filter context is to say that@a/filter’context is a set of filters. A filter,
in turn, is a list of tuples, and a tuple is a set of values forsome defined columns. Figure 4-6 shows a
visual representation of the filter context under which the highlighted cell is evaluated. Each element
of the report contributes to creating the filter contektfand every cell in the report has a different filter
context.

® Calendar Year

CY 2007 A. Datum 645 . GY 2007
Adventure Works 1,639

CY 2008
Contoso

CY 2009

Fabrikam

1
1
1
1 |
1 1
1 1
1 |
1 I
oK 5K 1 1
1 High School :
1
Education 1 Partial College | 1
1
(Blank) Southridge Video X |
zaczelotrsD Tailspin Toys 3,670 ! !
raduate Degree
B High School The Phone Company 103 1 Brand 1
Wide World Importers ! :
W Partial College P 1 !
Partial High School Total !)

FIGURE 4-6 The figure shows a visual representation of a filter context in a Power Bl report.
The filter context of Figure 4-6 contains three filters. The first filter contains a tuple for Calendar Year

with the value CY 2007. The second filter contains two tuples for Education with the values High School
and Partial College. The third filter contains a single tuple for Brand, with the value Contoso. You might

Understanding Evaluation Contexts

notice that each filter contains tuples for one column only. You will learn how to create tuples with
multiple columns later. Multi-column tuples are both powerful and complex tools in the hand of a DAX
developer.

Before leaving this introduction, let us recall the measure used at the beginning of this section:
Sales Amount := SUMX (Sales, Sales[Quantity] * Sales[Net Price])

Here is the correct way of reading the previous measure: The measure computes the sum of Quantity
multiplied by Net Price for all the rows in Sales which are visible in the current filter context.

The same applies to simpler aggregations. For example, consider this measure:
Total Quantity := SUM (Sales[Quantity])

It sums the Quantity column of all the rows in Sales that are visible in the current filter context. You
can better understand its working by considering the corresponding SUM Xaversion:

Total Quantity := SUMX (Sales, Sales[Quantity])

Looking at the SUMX definition, we might consider that the filtegcontext affects the evaluation of
the Sales expression, which only returns the rows of the Sales,table that are visible in the current filter
context. This is true, but you should consider that the filter'context also applies to the following mea-
sures, which do not have a corresponding iterator:

Customers := DISTINCTCOUNT (Sales[CusgomerkKey]) -- Count customers in filter context
Colors :=

VAR ListColors = DISTINCT ('Producti[Color]) -- Unique colors in filter context
RETURN COUNTROWS (ListColorss) -- Count unique colors

It might look pedantic, atgthis point, to spend so much time stressing the concept that a filter con-
text is always active, andgthat itaffects the formula result. Nevertheless, keep in mind that DAX requires
you to be extremelyaprecise. Most of the complexity of DAX is not in learning new functions. Instead,
the complexity comesfrom the presence of many subtle concepts. When these concepts are mixed
together, what emerges'is a complex scenario. Right now, the filter context is defined by the report. As
soon as you learn how to create filter contexts by yourself (a critical skill described in the next chapter),
being able to understand which filter context is active in each part of your formula will be of para-
mount importance.

Understanding the row context

In the previous section, you learned about the filter context. In this section, you now learn the second
type of evaluation context: the row context. Remember, although both the row context and the filter
context are evaluation contexts, they are not the same concept. As you learned in the previous section,
the purpose of the filter context is, as its name implies, to filter tables. On the other hand, the row con-
text is not a tool to filter tables. Instead, it is used to iterate over tables and evaluate column values.

Understanding Evaluation Contexts 85

86

This time we use a different formula for our considerations, defining a calculated column to com-
pute the gross margin:

Sales[Gross Margin] = Sales[Quantity] * (Sales[Net Price] - Sales[Unit Cost])

There is a different value for each row in the resulting calculated column, as shown in Figure 4-7.

Quantity Unit Cost Net Price Gross Margin

1 915.08 1,989.90 1,074.82
1 96082 2464.99 1,504.17
1 1,06022 2,559.99 1,499.77
1 1,06022 2,719.99 1,659.77
1 1,060.22 2,879.99 1,819.77
1 1,060.22 3,199.99 213977
2 048 0.76 0.56
2 048 0.88 0.81
2 1.01 1.79 1.56
2 1.01 1.85 1.68

FIGURE 4-7 There is a different value in each row of Gross Margin, depending on the value of other columns.

As expected, for each row of the table there is a differentValue in the calculated column. Indeed,
because there are given values in each row for thie thtee columns used in the expression, it comes as a
natural consequence that the final expressiontecomputes different values. As it happened with the filter
context, the reason is the presence of an gvaltiation context. This time, the context does not filter a
table. Instead, it identifies the row forwhich, the calculation happens.

Note The row context references a row in the result of a DAX table expression. It should
not be confused with,a row in the report. DAX does not have a way to directly reference a
row or a column in the'feport. The values displayed in a matrix in Power Bl and in a Pivot-
Table in Excel are the result of DAX measures computed in a filter context, or are values
stored in the table as native or calculated columns.

In other words, we know that a calculated column is computed row by row, but how does DAX know
which row it is currently iterating? It knows the row because there is another evaluation context provid-
ing the row—it is the row context. When we create a calculated column over a table with one million
rows, DAX creates a row context that evaluates the expression iterating over the table row by row,
using the row context as the cursor.

Understanding Evaluation Contexts

When we create a calculated column, DAX creates a row context by default. In that case, there is no
need to manually create a row context: A calculated column is always executed in a row context. You
have already learned how to create a row context manually—by starting an iteration. In fact, one can
write the gross margin as a measure, like in the following code:

Gross Margin :=
SUMX (
Sales,
Sales[Quantity] * (Sales[Net Price] - Sales[Unit Cost])

In this case, because the code is for a measure, there is no automatic row context. SUMX, being an
iterator, creates a row context that starts iterating over the Sales table, row by row. During the iteration,
it executes the second expression of SUMX inside the row context. Thus, during each step of the itera-
tion, DAX knows which value to use for the three column names used in the expression.

The row context exists when we create a calculated column or when\we"are computing an expres-
sion inside an iteration. There is no other way of creating a row conitext Méreover, it helps to think
that a row context is needed whenever we want to obtain the yalue‘ef.a’column for a certain row. For
example, the following measure definition is invalid. Indeed, it tries to compute the value of Sales[Net
Price] and there is no row context providing the row for which the calculation needs to be executed:

Gross Margin := Sales[Quantity] * (Sales[Net Price] - Sales[Unit Cost])

This same expression is valid when executed,for a calgulated column, and it is invalid if used in a
measure. The reason is not that measures andsCalculated columns have different ways of using DAX.
The reason is that a calculated column,has‘an automatic row context, whereas a measure does not. If
one wants to evaluate an expressiomrow by row inside a measure, one needs to start an iteration to
create a row context.

Note A column refergncerequires a row context to return the value of the column from a
table. A columin referénge can be also used as an argument for several DAX functions with-
out a row context. For example, DISTINCT and DISTINCTCOUNT can have a column refer-
ence as a parameter, without defining a row context. Nonetheless, a column reference in a
DAX expression requires a row context to be evaluated.

At this point, we need to repeat one important concept: A row context is not a special kind of filter
context that filters one row. The row context is not filtering the model in any way; the row context only
indicates to DAX which row to use out of a table. If one wants to apply a filter to the model, the tool to
use is the filter context. On the other hand, if the user wants to evaluate an expression row by row, then
the row context will do the job.

Understanding Evaluation Contexts 87

Testing your understanding of evaluation contexts

88

Before moving on to more complex descriptions about evaluation contexts, it is useful to test your
understanding of contexts with a couple of examples. Please do not look at the explanation immedi-
ately; stop after the question and try to answer it. Then read the explanation to make sense of it. As a
hint, try to remember, while thinking, “The filter context filters; the row context iterates. This means that
the row context does not filter, and the filter context does not iterate.”

Using SUM in a calculated column

The first test uses an aggregator inside a calculated column. What is the result of the following expres-
sion, used in a calculated column, in Sales?

Sales[SumOfSalesQuantity] = SUM (Sales[Quantity])
Remember, this internally corresponds to this equivalent syntax:

Sales[SumOfSalesQuantity] = SUMX (Sales, Sales[Quantity]

Because it is a calculated column, it is computed row by row'ih,afew context. What number do you
expect to see? Choose from these three answers:

m The value of Quantity for that row, that is, a different value for each row.

m The total of Quantity for all the rows, that'is,.the same value for all the rows.
m An error; we cannot use SUM insidesa,caleulated column.

Stop reading, please, while we waitsfor yeureducated guess before moving on.

Here is the correct reasoning.<fYou have learned that the formula means, "the sum of quantity for all
the rows visible in the currentfilter context.” Moreover, because the code is executed for a calculated
column, DAX evaluatesrthe formularow by row, in a row context. Nevertheless, the row context is not
filtering the table. The only context that can filter the table is the filter context. This turns the question
into a different one: What.isfthe filter context, when the formula is evaluated? The answer is straight-
forward: The filter context is empty. Indeed, the filter context is created by visuals or by queries, and a
calculated column is computed at data refresh time when no filtering is happening. Thus, SUM works
on the whole Sales table, aggregating the value of Sales[Quantity] for all the rows of Sales.

The correct answer is the second answer. This calculated column computes the same value for each
row, that is, the grand total of Sales[Quantity] repeated for all the rows. Figure 4-8 shows the result of
the SumOfSalesQuantity calculated column.

Understanding Evaluation Contexts

Quantity Unit Cost Net Price SumOfSalesQuantity
1 0.48 0.76 140,180.00
1 0.48 0.86 140,180.00
1 0.48 0.88 140,180.00
1 0.48 0.95 140,180.00
1 1.01 1.79 140,180.00
1 1.01 1.85 140,180.00
1 1.01 1.99 140,180.00
1 1.50 2.35 140,180.00
1 1.50 2.50 140,180.00
1 1.50 2.65 140,180.00
1 1.50 2.79 140,180.00
1 1.50 2.94 140,180.00

FIGURE 4-8 SUM (Sales[Quantity]), in a calculated column, is computed against the®€ntire database.

This example shows that the two evaluation contexts exist/at the,same time, but they do not interact.
The evaluation contexts both work on the result of a formula, butthey do so in different ways.
Aggregators like SUM, MIN, and MAX only use the filtericontext, and they ignore the row context. If
you have chosen the first answer, as many students typically’do, it is perfectly normal. The thing is that
you are still confusing the filter context and the row centext. Remember, the filter context filters; the
row context iterates. The first answer is the moShcommon, when using intuitive logic, but it is wrong—
now you know why. However, if you chose thé correct answer ... then we are glad this section helped
you in learning the important differep€ebetween the two contexts.

Using columns in @' measure

The second test is slightly different. Imagine we define the formula for the gross margin in a measure
instead of in a calétlated €olumn. We have a column with the net price, another column for the product
cost, and we write the following expression:

GrossMargin% := (Sales[Net Price] - Sales[Unit Cost]) / Sales[Unit Cost]
What will the result be? As it happened earlier, choose among the three possible answers:
m The expression works correctly, time to test the result in a report.
m An error, we should not even write this formula.
m We can define the formula, but it will return an error when used in a report.

As in the previous test, stop reading, think about the answer, and then read the following
explanation.

Understanding Evaluation Contexts 89

The code references Sales[Net Price] and Sales[Unit Cost] without any aggregator. As such, DAX
needs to retrieve the value of the columns for a certain row. DAX has no way of detecting which row
the formula needs to be computed for because there is no iteration happening and the code is notin a
calculated column. In other words, DAX is missing a row context that would make it possible to retrieve
a value for the columns that are part of the expression. Remember that a measure does not have an
automatic row context; only calculated columns do. If we need a row context in a measure, we should
start an iteration.

Thus, the second answer is the correct one. We cannot write the formula because it is syntactically
wrong, and we get an error when trying to enter the code.

Using the row context with iterators

920

You learned that DAX creates a row context whenever we define a calculated column or when we start
an iteration with an X-function. When we use a calculated column, the presence of the row context is
simple to use and understand. In fact, we can create simple calculated colimns without even knowing
about the presence of the row context. The reason is that the row €ontextis created automatically by
the engine. Therefore, we do not need to worry about the presenceofshe row context. On the other
hand, when using iterators we are responsible for the creation ahd the®iandling of the row context.
Moreover, by using iterators we can create multiple nested row'€ontexts; this increases the complexity
of the code. Therefore, it is important to understand more,precisely the behavior of row contexts with
iterators.

For example, look at the following DAX measure:
IncreasedSales := SUMX (Sales, Sales[Net Price] * 1.1)

Because SUMX is an iterator, SUMXicreates a row context on the Sales table and uses it during the
iteration. The row context iterates the Sales table (first parameter) and provides the current row to the
second parameter durimgythe iteration. In other words, DAX evaluates the inner expression (the second
parameter of SUMX) in ag&W,context containing the currently iterated row on the first parameter.

Please note that the tWo parameters of SUMX use different contexts. In fact, any piece of DAX code
works in the context where it is called. Thus, when the expression is executed, there might already be a
filter context and one or many row contexts active. Look at the same expression with comments:

SUMX (

Sales, -- External filter and row contexts

Sales[Net Price] * 1.1 -- External filter and row contexts + new row context
)

The first parameter, Sales, is evaluated using the contexts coming from the caller. The second
parameter (the expression) is evaluated using both the external contexts plus the newly created row
context.

Understanding Evaluation Contexts

All iterators behave the same way:
1. Evaluate the first parameter in the existing contexts to determine the rows to scan.
2. Create a new row context for each row of the table evaluated in the previous step.

3. Iterate the table and evaluate the second parameter in the existing evaluation context, includ-
ing the newly created row context.

4. Aggregate the values computed during the previous step.

Be mindful that the original contexts are still valid inside the expression. Iterators add a new row
context; they do not modify existing filter contexts. For example, if the outer filter context contains a
filter for the color Red, that filter is still active during the whole iteration. Besides, remember that the
row context iterates; it does not filter. Therefore, no matter what, we cannot override the outer filter
context using an iterator.

This rule is always valid, but there is an important detail that is not trivial. If the previous contexts
already contained a row context for the same table, then the newly créated row context hides the
previous existing row context on the same table. For DAX newbies, this‘is a possible source of mistakes.
Therefore, we discuss row context hiding in more detail in theinext two sections.

Nested row contexts on different tables

The expression evaluated by an iterator can beyery complex. Moreover, the expression can, on its own,
contain further iterations. At first sightstarting afi iteration inside another iteration might look strange.
Still, it is a common DAX practice because hestifig iterators produce powerful expressions.

For example, the following code contains three nested iterators, and it scans three tables: Catego-
ries, Products, and Sales.

SUMX (
'Product Category" 4 -- Scans the Product Category table
SUMX (-- For each category
RELATEDPABLE ('Product'), -- Scans the category products
SUMX (-- For each product
RELATEDTABLE (Sales) -- Scans the sales of that product
Sales[Quantity] -
* '"Product'[Unit Pricel] -- Computes the sales amount of that sale
* 'Product Category'[Discount]
D)
)
)

The innermost expression—the multiplication of three factors—references three tables. In fact,
three row contexts are opened during that expression evaluation: one for each of the three tables that
are currently being iterated. It is also worth noting that the two RELATEDTABLE functions return the
rows of a related table starting from the current row context. Thus, RELATEDTABLE (Product), being

Understanding Evaluation Contexts 91

executed in a row context from the Categories table, returns the products of the given category. The
same reasoning applies to RELATEDTABLE (Sales), which returns the sales of the given product.

The previous code is suboptimal in terms of both performance and readability. As a rule, it is fine to
nest iterators provided that the number of rows to scan is not too large: hundreds is good, thousands
is fine, millions is bad. Otherwise, we may easily hit performance issues. We used the previous code to
demonstrate that it is possible to create multiple nested row contexts; we will see more useful examples
of nested iterators later in the book. One can express the same calculation in a much faster and read-
able way by using the following code, which relies on one individual row context and the RELATED
function:

SUMX (
Sales,
Sales[Quantity]
* RELATED ('Product'[Unit Price])
* RELATED ('Product Category'[Discount])
)

Whenever there are multiple row contexts on different tables, one cafl use them to reference the
iterated tables in a single DAX expression. There is one scenario, howevefwhich proves to be challenging.
This happens when we nest multiple row contexts on the samé tablemwhich is the topic covered in the
following section.

Nested row contexts on the same table

The scenario of having nested row contexts onthe,same table might seem rare. However, it does hap-
pen quite often, and more frequently in calculated columns. Imagine we want to rank products based
on the list price. The most expensive product should be ranked 1, the second most expensive product
should be ranked 2, and so on. Wescould selvéythe scenario using the RANKX function. But for educa-
tional purposes, we show how to selveitusing simpler DAX functions.

To compute the ranking, for'each product we can count the number of products whose price is
higher than the current préduct’s. If there is no product with a higher price than the current product
price, then the current proddct is the most expensive and its ranking is 1. If there is only one product
with a higher price, then the ranking is 2. In fact, what we are doing is computing the ranking of a
product by counting the number of products with a higher price and adding 1to the result.

Therefore, one can author a calculated column using this code, where we used PriceOfCurrent-
Product as a placeholder to indicate the price of the current product.

1 'Product' [UnitPriceRank] =

2 COUNTROWS (

3 FILTER (

4. 'Product"',

5 '"Product'[Unit Price] > PriceOfCurrentProduct
6)

7) + 1

Understanding Evaluation Contexts

FILTER returns the products with a price higher than the current products’ price, and COUNTROWS
counts the rows of the result of FILTER. The only remaining issue is finding a way to express the price of
the current product, replacing PriceOfCurrentProduct with a valid DAX syntax. By “current,” we mean
the value of the column in the current row when DAX computes the column. It is harder than you might
expect.

Focus your attention on line 5 of the previous code. There, the reference to Product[Unit Price] refers
to the value of Unit Price in the current row context. What is the active row context when DAX executes
row number 5? There are two row contexts. Because the code is written in a calculated column, there is
a default row context automatically created by the engine that scans the Product table. Moreover,
FILTER being an iterator, there is the row context generated by FILTER that scans the product table

again. This is shown graphically in Figure 4-9.
| Row context of the
| calculated column

Product [UnitPriceRank] =

COUNTROWS (
FILTER (
Product,
Product[Unit Price] >= PriceOfCurren E’m

Row context of thell
FILTER function |

FIGURE 4-9 During the evaluation of the innerm@st.expression, there are two row contexts on the
same table.

The outer box includes the rowfeontext of the calculated column, which is iterating over Product.
However, the inner box shows’the rowrcontext of the FILTER function, which is iterating over Product
too. The expression Product[Unit Price] depends on the context. Therefore, a reference to Product{Unit
Price] in the inner box can @nly,refer to the currently iterated row by FILTER. The problem is that, in that
box, we need tofevaluate the value of Unit Price that is referenced by the row context of the calculated
column, which is now hidden.

Indeed, when one does not create a new row context using an iterator, the value of Product[Unit
Price] is the desired value, which is the value in the current row context of the calculated column, as in
this simple piece of code:

Product[Test] = Product[Unit Price]

To further demonstrate this, let us evaluate Product[Unit Price] in the two boxes, with some dummy
code. What comes out are different results as shown in Figure 4-10, where we added the evaluation of
Product[Unit Price] right before COUNTROWS, only for educational purposes.

Understanding Evaluation Contexts 93

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 0
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /None
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (RR Donnelley 2009 Standard for creating press quality PDF files.)
 >>
 /ExportLayers /ExportVisiblePrintableLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames false
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 13.500000
 13.500000
 13.500000
 13.500000
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /WorkingCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 30
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

