
Sam
ple

 pa
ge

s

http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780134658254
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780134658254
https://plusone.google.com/share?url=http://www.informit.com/title/9780134658254
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780134658254
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780134658254/Free-Sample-Chapter

Table of Contents

Introduction xiii

 1 Relational Databases and SQL 1

What Is SQL? 2

Microsoft SQL Server, MySQL, and Oracle 3

Relational Databases 4

Primary and Foreign Keys 6

Datatypes 6

NULL Values 8

The Significance of SQL 8

Looking Ahead 9

2 Basic Data Retrieval 11

A Simple SELECT 11

Syntax Notes 12

Comments 13

Specifying Columns 14

Column Names with Embedded Spaces 15

Preview of the Full SELECT 16

Looking Ahead 17

3 Calculated Fields and Aliases 19

Literal Values 20

Arithmetic Calculations 21

Concatenating Fields 22

Column Aliases 23

Table Aliases 24

Looking Ahead 25

4 Using Functions 27

What Is a Function? 27

Character Functions 28

Composite Functions 32

Date/Time Functions 33

Sam
ple

 pa
ge

s

vTable of Contents

Numeric Functions 35

Conversion Functions 36

Looking Ahead 39

5 Sorting Data 41

Sorting in Ascending Order 41

Sorting in Descending Order 43

Sorting by Multiple Columns 43

Sorting by a Calculated Field 44

Sort Sequences 45

Looking Ahead 47

6 Selection Criteria 49

Applying Selection Criteria 49

WHERE Clause Operators 50

Limiting Rows 51

Limiting Rows with a Sort 53

Pattern Matching 54

Wildcards 56

Looking Ahead 58

7 Boolean Logic 61

Complex Logical Conditions 61

The AND Operator 62

The OR Operator 62

Using Parentheses 63

Multiple Sets of Parentheses 65

The NOT Operator 66

The BETWEEN Operator 68

The IN Operator 69

Boolean Logic and NULL Values 70

Looking Ahead 72

8 Conditional Logic 73

The CASE Expression 73

The Simple CASE Format 74

The Searched CASE Format 76

Sam
ple

 pa
ge

s

vi Table of Contents

Conditional Logic in ORDER BY Clauses 78

Conditional Logic in WHERE Clauses 79

Looking Ahead 80

9 Summarizing Data 81

Eliminating Duplicates 81

Aggregate Functions 83

The COUNT Function 84

Grouping Data 86

Multiple Columns and Sorting 87

Selection Criteria on Aggregates 89

Conditional Logic in GROUP BY Clauses 91

Conditional Logic in HAVING Clauses 92

Ranking Functions 93

Partitions 97

Looking Ahead 100

10 Subtotals and Crosstabs 101

Adding Subtotals with ROLLUP 102

Adding Subtotals with CUBE 106

Creating Crosstab Layouts 110

Looking Ahead 114

11 Inner Joins 115

Joining Two Tables 116

The Inner Join 118

Table Order in Inner Joins 119

An Alternate Specification of Inner Joins 119

Table Aliases Revisited 120

Looking Ahead 121

12 Outer Joins 123

The Outer Join 123

Left Joins 125

Testing for NULL Values 127

Right Joins 128

Sam
ple

 pa
ge

s

viiTable of Contents

Table Order in Outer Joins 129

Full Joins 129

Cross Joins 131

Looking Ahead 134

13 Self Joins and Views 135

Self Joins 135

Creating Views 137

Referencing Views 139

Benefits of Views 140

Modifying and Deleting Views 141

Looking Ahead 142

14 Subqueries 143

Types of Subqueries 143

Using a Subquery as a Data Source 144

Using a Subquery in Selection Criteria 147

Correlated Subqueries 148

The EXISTS Operator 150

Using a Subquery as a Calculated Column 151

Common Table Expressions 152

Looking Ahead 153

15 Set Logic 155

Using the UNION Operator 156

Distinct and Non-Distinct Unions 158

Intersecting Queries 159

Looking Ahead 161

16 Stored Procedures and Parameters 163

Creating Stored Procedures 164

Parameters in Stored Procedures 165

Executing Stored Procedures 167

Modifying and Deleting Stored Procedures 167

Functions Revisited 168

Looking Ahead 169

Sam
ple

 pa
ge

s

viii Table of Contents

17 Modifying Data 171

Modification Strategies 171

Inserting Data 172

Deleting Data 175

Updating Data 176

Correlated Subquery Updates 177

Looking Ahead 179

18 Maintaining Tables 181

Data Definition Language 181

Table Attributes 182

Table Columns 183

Primary Keys and Indexes 183

Foreign Keys 184

Creating Tables 185

Creating Indexes 187

Looking Ahead 187

19 Principles of Database Design 189

Goals of Normalization 190

How to Normalize Data 191

The Art of Database Design 195

Alternatives to Normalization 196

Looking Ahead 197

20 Strategies for Displaying Data 199

Crosstab Layouts Revisited 199

Excel and External Data 200

Excel Pivot Tables 203

Looking Ahead 207

A Getting Started with Microsoft SQL Server 209

Installing SQL Server 2016 Express 209

Installing SQL Server 2016 Management Studio Express 210

Using SQL Server 2016 Management Studio Express 210

Sam
ple

 pa
ge

s

ixTable of Contents

B Getting Started with MySQL 211

Installing MySQL on Windows 211

Installing MySQL on a Mac 212

Using MySQL Workbench 213

C Getting Started with Oracle 215

Installing Oracle Database Express Edition 215

Using Oracle Database Express Edition 216

Index 217

Sam
ple

 pa
ge

s

4
Using Functions

Keywords Introduced
LEFT • RIGHT • SUBSTRING • LTRIM • RTRIM • UPPER • LOWER • GETDATE •
DATEPART • DATEDIFF • ROUND • PI • POWER • ISNULL

Anyone familiar with Microsoft Excel is probably aware that functions provide a huge
amount of functionality for the typical spreadsheet user. Without the ability to use functions,
most of the data available in spreadsheets would be of limited value. The same is true in the
world of SQL. Familiarity with SQL functions will greatly enhance your ability to generate
dynamic results for anyone viewing data or reports generated from SQL.

This chapter covers a wide variety of some of the most commonly used functions in four
different categories: character functions, date/time functions, numeric functions, and
conversion functions. Additionally, we’ll talk about composite functions—a way of combining
multiple functions into a single expression.

What Is a Function?
Similar to the calculations covered in the previous chapter, functions provide another way to
manipulate data. As was seen, calculations can involve multiple fields, either with arithmetic
operators such as multiplication, or by concatenation. Similarly, functions can involve data
from multiple values, but the end result of a function is always a single value.

What is a function? A function is merely a rule for transforming any number of input values
into one output value. The rule is defined within the function and can’t be altered. However,
the user of a function is allowed to specify any desired value for the inputs to the function.
Some functions may allow some of the inputs to be optional. That means that the specification
of that particular input isn’t required. Functions can also be designed to have no inputs.
However, regardless of the type or number of input values, functions always return precisely
one output value when the function is invoked.

Sam
ple

 pa
ge

s

28 Chapter 4 Using Functions

There are two types of functions: scalar and aggregate. The term scalar comes from mathematics
and refers to an operation that is done on a single number. In computer usage, it means that
the function is performed on data in a single row. For example, the LTRIM function removes
spaces from one specified value in one row of data.

In contrast, aggregate functions are meant to be performed on a larger set of data. For example,
the SUM function can be used to calculate the sum of all the values of a specified column.
Because aggregate functions apply to larger sets or groups of data, we will leave discussion
of this type of function to Chapter 9, “Summarizing Data.”

Every SQL database offers dozens of scalar functions. The actual functions vary widely between
databases, in terms of both their names and how they work. As a result, we will cover only a
few representative examples of some of the more useful functions.

The most common types of scalar functions can be classified under three categories: character,
date/time, and numeric. These are functions that allow you to manipulate character, date/time,
or numeric datatypes. In addition, we will talk about some useful conversion functions that can
be used to convert data from one datatype to another.

Character Functions
Character functions are those that enable you to manipulate character data. Just as character
datatypes are sometimes called string datatypes, character functions are sometimes called string
functions. We’ll cover these seven examples of character functions: LEFT, RIGHT, SUBSTRING,
LTRIM, RTRIM, UPPER, and LOWER.

In this chapter, rather than retrieving data from specific tables, we’ll simply use SELECT
statements with literal values in the columnlist. There will be no FROM clause to indicate a
table. Let’s start with an example for the LEFT function. When this SQL command is issued:

SELECT
LEFT('sunlight',3) AS 'The Answer'

this data is returned:

The Answer

sun

The inclusion of a column alias in this SQL statement allows the output to display “The
Answer” as a column header. Note that there is no FROM clause in the SELECT statement.
Instead of retrieving data from a table, we’re selecting data from a single literal value, namely
‘sunlight’. In many SQL implementations, including SQL Server and MySQL, a FROM clause
isn’t strictly necessary in a SELECT statement, although in practice one would seldom write
a SELECT statement like this. We’re using this format, without a FROM clause, only to more
easily illustrate how functions work.

Sam
ple

 pa
ge

s

29Character Functions

Let’s now look at the format of this function in greater detail. The general format of the LEFT
function is:

LEFT(CharacterValue, NumberOfCharacters)

All functions have any number of arguments within the parentheses. For example, the LEFT
function has two arguments: CharacterValue and NumberOfCharacters. The term argument is a
commonly used mathematical term that describes a component of functions, and has nothing
to do with anything being disagreeable or unpleasant. The various arguments that are defined
for each function are what truly define the meaning of the function. In the case of the LEFT
function, the CharacterValue and NumberOfCharacters arguments are both needed to define what
will happen when the LEFT function is invoked.

The LEFT function has two arguments, and both are required. As mentioned, other functions
may have more or fewer arguments. Functions are even permitted to have no arguments. But
regardless of the number of arguments, even if zero, all functions have a set of parentheses
following the function name. The presence of the parentheses tells you that the expression is
a function and not something else.

The formula for the LEFT function says: Take the specified CharacterValue, look at the specified
NumberOfCharacters on the left, and bring back the result. In the previous example, it looks at
the CharacterValue ‘sunlight’ and brings back the left three characters. The result is “sun”.

The main point to remember is that for any function you want to use, you’ll need to look up
the function in the database’s reference guide and determine how many arguments are required
and what they mean.

The second character function we’ll cover is the RIGHT function. This is the same as the LEFT
function, except that characters are now specified for the right side of the input value. The
general format of the RIGHT function is:

RIGHT(CharacterValue, NumberOfCharacters)

As an example:

SELECT
RIGHT('sunlight',5) AS 'The Answer'

returns:

The Answer

light

In this case, the NumberOfCharacters argument needed to have a value of 5 in order to return
the value “light”. A value of 3 would have only returned “ght”.

Sam
ple

 pa
ge

s

30 Chapter 4 Using Functions

One problem that often arises with the use of the RIGHT function is that character data often
contains spaces on the right-hand side. Let’s look at an example in which a table with only
one row of data contains a column named President, where the column is defined as being
20 characters long. The table looks like:

President

George Washington

If we issue this SELECT statement against the table:

SELECT
RIGHT(President,10) AS 'Last Name'
FROM table1

we get back this data:

Last Name

hington

We expected to get back “Washington” but only got “hington.” The problem is that the
entire column is 20 characters long. In this example, there are three spaces to the right of the
value “George Washington”. Therefore, when we ask for the rightmost 10 characters, SQL
will take the three spaces, plus another seven characters from the original expression. As will
soon be seen, the function RTRIM must be used to remove the ending spaces before using the
RIGHT function.

You might be wondering how to select data from the middle of an expression. This is
accomplished by using the SUBSTRING function. The general format of that function is:

SUBSTRING(CharacterValue, StartingPosition, NumberOfCharacters)

For example:

SELECT
SUBSTRING('thewhitegoat',4,5) AS 'The Answer'

returns this data:

The Answer

white

This function is saying to take five characters, starting with position 4. This results in the
display of the word “white”.

Sam
ple

 pa
ge

s

31Character Functions

Database Differences: MySQL and Oracle
MySQL sometimes requires that there be no space between the function name and the left
parenthesis. It depends on the specific function used. For example, the previous statement in
MySQL must be written exactly as shown. Unlike in Microsoft SQL Server, you can’t type in an
extra space after SUBSTRING.

In Oracle, the equivalent of the SUBSTRING function is SUBSTR. One difference in the Oracle
version of SUBSTR is that the second argument (StartingPosition) can have a negative value.
A negative value for this argument means that you need to count that number of positions
backward from the right side of the column.

As mentioned, Oracle doesn’t permit you to write a SELECT statement without a FROM clause.
However, Oracle does provide a dummy table called DUAL for this type of situation. The Oracle
equivalent of the SELECT with a SUBSTRING function is:
SELECT
SUBSTR('thewhitegoat',4,5) AS "The Answer"
FROM DUAL;

Our next two character functions enable us to remove all spaces, either on the left or the right
side of an expression. The LTRIM function trims characters from the left side of a character
expression. For example:

SELECT
LTRIM(' the apple') AS 'The Answer'

returns this data:

The Answer

the apple

Note that LTRIM is smart enough not to eliminate spaces in the middle of a phrase. It only
removes the spaces to the very left of a character value.

Similar to LTRIM, the RTRIM function removes any spaces to the right of a character value.
An example of RTRIM will be given in the next section, on composite functions.

The final two character functions to be covered are UPPER and LOWER. These functions
convert any word or phrase to upper- or lowercase. The syntax is simple and straightforward.
Here’s an example that covers both functions:

SELECT
UPPER('Abraham Lincoln') AS 'Convert to Uppercase',
LOWER('ABRAHAM LINCOLN') AS 'Convert to Lowercase'

The output is:

Convert to Uppercase Convert to Lowercase

ABRAHAM LINCOLN abraham lincoln

Sam
ple

 pa
ge

s

32 Chapter 4 Using Functions

Composite Functions
An important characteristic of functions, whether they are character, mathematical, or
date/time, is that two or more functions can be combined to create composite functions.
A composite function with two functions can be said to be a function of a function. Let’s go
back to the George Washington query to illustrate. Again, we’re working from this data:

President

George Washington

Remember that the President column is 20 characters long. In other words, there are three
spaces to the right of the value “George Washington”. In addition to illustrating composite
functions, this next example will also cover the RTRIM function mentioned in the previous
section. The statement:

SELECT
RIGHT(RTRIM (President),10) AS 'Last Name'
FROM table1

returns this data:

Last Name

Washington

Why does this now produce the correct value? Let’s examine how this composite function
works. There are two functions involved: RIGHT and RTRIM. When evaluating composite
functions, you always start from the inside and work your way out. In this example, the
innermost function is:

RTRIM(President)

This function takes the value in the President column and eliminates all spaces on the right. After
this is done, the RIGHT function is applied to the result to bring back the desired value. Because

RTRIM(President)

equals “George Washington”, we can say that:

SELECT
RIGHT(RTRIM (President), 10)

is the same as saying:

SELECT
RIGHT('George Washington', 10)

In other words, we can obtain the desired result by first applying the RTRIM function to the
input data and then adding the RIGHT function to the expression to produce the final results.

Sam
ple

 pa
ge

s

33Date/Time Functions

Date/Time Functions
Date/Time functions allow for the manipulation of date and time values. The names of these
functions differ, depending on the database used. In Microsoft SQL Server, the functions we’ll
cover are called GETDATE, DATEPART, and DATEDIFF.

The simplest of the date/time functions is one that returns the current date and time.
In Microsoft SQL Server, the function is named GETDATE. This function has no arguments.
It merely returns the current date and time. For example:

SELECT GETDATE()

brings back an expression with the current date and time. Since the GETDATE function has no
arguments, there is nothing specified between the parentheses. Remember that a date/time field
is a special datatype that contains both a date and a time in a single field. An example of such
a value is:

2017-05-15 08:48:30

This value refers to the 15th of May 2017, at 48 minutes and 30 seconds past 8 am.

Database Differences: MySQL and Oracle
In MySQL, the equivalent of GETDATE is NOW. The above statement would be written as:
SELECT NOW()

The equivalent of GETDATE in Oracle is CURRENT_DATE. The statement is written as:
SELECT CURRENT_DATE

The next date/time function enables us to analyze any specified date and return a value to
represent such elements as the day or week of the date. Again, the name of this function
differs, depending on the database. In Microsoft SQL Server, this function is called DATEPART.
The general format is:

DATEPART(DatePart, DateValue)

The DateValue argument is any date. The DatePart argument can have many different values,
including year, quarter, month, dayofyear, day, week, weekday, hour, minute, and second.

The following chart shows how the DATEPART function evaluates the date '5/6/2017', with
different values for the DatePart argument:

DATEPART Function Expression Resulting Value

DATEPART(month, '5/6/2017') 5
DATEPART(day, '5/6/2017') 6
DATEPART(week, '5/6/2017') 18
DATEPART(weekday, '5/6/2017') 7

Sam
ple

 pa
ge

s

34 Chapter 4 Using Functions

Looking at the values in the previous chart, you can see that the month of 5/6/2017 is 5 (May).
The day is 2 (Monday). The week is 18, because 5/6/2017 is in the 18th week of the year. The
weekday is 7 because 5/6/2017 falls on a Saturday, which is the seventh day of the week.

Database Differences: MySQL and Oracle
In MySQL, the equivalent of the DATEPART function is named DATE_FORMAT, and it utilizes
different values for the DateValue argument. For example, to return the day of the date
‘5/6/2017’, you would issue this SELECT in MySQL:
SELECT DATE_FORMAT('2017-05-06', '%d');

Oracle doesn’t have a function comparable to DATEPART.

The final date/time function we’ll cover, DATEDIFF, enables you to determine quantities such
as the number of days between any two dates. The general format is:

DATEDIFF (DatePart, StartDate, EndDate)

Valid values for the DatePart argument for this function include year, quarter, month,
dayofyear, day, month, hour, minute, and second. Here’s a chart that shows how the
DATEDIFF function evaluates the difference between the dates 7/8/2017 and 8/14/2017,
with different values for the DatePart argument:

DATEPART Function Expression Resulting Value

DATEDIFF(day, '7/8/2017', '8/14/2017’) 37
DATEDIFF(week, '7/8/2017', '8/14/2017’) 6
DATEDIFF(month, '7/8/2017', '8/14/2017’) 1
DATEDIFF(year, '7/8/2017', '8/14/2017’) 0

The above chart indicates that there are 37 days, or 6 weeks, or 1 month, or 0 years between
the two dates.

Database Differences: MySQL and Oracle
In MySQL, the DATEDIFF function only allows you to calculate the number of days between the
two dates, and the end date must be listed first to return a positive value. The general format is:
DATEDIFF(EndDate, StartDate)

Oracle doesn’t have a function comparable to DATEDIFF.

Sam
ple

 pa
ge

s

35Numeric Functions

Numeric Functions
Numeric functions allow for manipulation of numeric values. Numeric functions are sometimes
called mathematical functions. The functions we’ll cover are ROUND, RAND, PI, and POWER.

The ROUND function allows you to round any numeric value. The general format is:

ROUND(NumericValue, DecimalPlaces)

The NumericValue argument can be any positive or negative number, with or without decimal
places, such as 712.863 or –42. The DecimalPlaces argument is trickier. It can contain a positive
or negative integer, or zero. If DecimalPlaces is a positive integer, it means to round to that
many decimal places. If DecimalPlaces is a negative integer, it means to round to that number
of positions to the left of the decimal place. The following chart shows how the number
712.863 is rounded, with different values for the DecimalPlaces argument.

ROUND Function Expression Resulting Value

ROUND(712.863, 3) 712.863
ROUND(712.863, 2) 712.860
ROUND(712.863, 1) 712.900
ROUND(712.863, 0) 713.000
ROUND(712.863, –1) 710.000
ROUND(712.863, –2) 700.000

The PI function merely returns the value of the mathematical number pi. As you may
remember from high school geometry, the number pi is an irrational number approximated
by the value 3.14. This function is seldom used, but nicely illustrates the point that numeric
functions need not have any arguments. For example, the statement:

SELECT PI()

returns the value 3.14159265358979. To take this example a little further, let’s say that we
want the value of pi rounded to two decimal places. This can be accomplished by creating a
composite function with the PI and ROUND functions. The PI function is used to get the initial
value, and the ROUND function is added to round it to two decimal places. The following
statement returns a value of 3.14:

SELECT ROUND(PI(),2)

Database Differences: Oracle
Unlike Microsoft SQL Server and MySQL, Oracle doesn’t have a PI function.

The final numeric function we’ll cover, which is much more commonly used than PI, is
POWER. The POWER function is used to specify a numeric value that includes exponents.
The general format of the function is:

POWER(NumericValue, Exponent)

Sam
ple

 pa
ge

s

36 Chapter 4 Using Functions

Let’s start with an example that illustrates how to display the number 5 raised to the second
power. This is commonly referred to as “5 squared.” The SELECT statement:

SELECT POWER(5,2) AS '5 Squared'

returns this data:

5 Squared

25

In this example, 5 is the numeric value to be evaluated, and 2 is the value of the exponent.
Remembering that the square root of a number can be expressed as an exponent with a decimal
value less than 1, we can calculate the square root of 25 as follows. The statement:

SELECT POWER(25,.5) AS 'Square Root of 25'

returns this data:

Square Root of 25

5

In algebraic terms, the calculation takes 25 to the 1/2 (or .5) power. This is the same as taking
the square root of 25.

Conversion Functions
All of the aforementioned functions pertain to specific ways to manipulate character, date/time,
or numeric datatypes. We now want to address the need to convert data from one datatype to
another, or to convert NULL values to something meaningful. The remainder of this chapter
will cover two special functions that can be used in these situations.

The CAST function converts data from one datatype to another. The general format of the
function is:

CAST(Expression AS DataType)

The format of this function is slightly different from other functions previously seen, as it uses
the word AS to separate the two arguments, rather than a comma. Looking at the usage of the
function, it turns out that the CAST function is unnecessary in most situations. Let’s take the
situation where we want to execute this statement, where the Quantity column is defined as a
character datatype:

SELECT
2 * Quantity
FROM table

Sam
ple

 pa
ge

s

37Conversion Functions

Your first impression might be that the statement would fail, due to the fact that Quantity is not
defined as a numeric column. However, most SQL databases are smart enough to automatically
convert the Quantity column to a numeric value so that it can be multiplied by 2.

Here’s an example where the CAST function becomes necessary. Let’s say we have dates stored
in a column with a character datatype. We’d like to convert those dates to a true date/time
column. This statement illustrates how the CAST function can handle that conversion:

SELECT
'2017-04-11' AS 'Original Date',
CAST('2017-04-11' AS DATETIME) AS 'Converted Date'

The output is:

Original Date Converted Date

2017-04-11 2017-04-11 00:00:00

The Original Date column looks like a date, but it is really just character data. In contrast,
the Converted Date column is a true date/time column, as evidenced by the time value
now shown.

A second useful conversion function is one that converts NULL values to a meaningful value.
In Microsoft SQL Server, the function is called ISNULL. As mentioned in Chapter 1, “Relational
Databases and SQL,” NULL values are those for which there is an absence of data. A NULL
value is not the same as a space or zero. Let’s say we have this table of products:

ProductID Description Weight

1 Printer A NULL
2 Printer B 0
3 Monitor C 2
4 Laptop D 4

Notice that Printer A has a value of NULL in the Weight column. This indicates that a weight
for this printer has not yet been provided. Let’s say we want to produce a list of all products.
When this SELECT is issued:

SELECT
Description,
Weight
FROM Products

Sam
ple

 pa
ge

s

38 Chapter 4 Using Functions

It will show:

Description Weight

Printer A NULL
Printer B 0
Monitor C 2
Laptop D 4

There’s nothing inaccurate about this display. However, users may prefer to see something such
as “Unknown” rather than NULL for missing values. Here’s the solution:

SELECT
Description,
ISNULL(CAST(Weight AS VARCHAR),'Unknown') AS Weight
FROM Products

The following data is displayed:

Description Weight

Printer A Unknown
Printer B 0
Monitor C 2
Laptop D 4

Notice that the solution requires the use of both the ISNULL and CAST functions. The ISNULL
function handles the display of the weight as “Unknown” when NULL values are encountered.
Assuming the Weight column is defined as an integer, the CAST function is needed to convert
the weight to a Varchar datatype, so both integer and character values can be displayed in a
single column.

Database Differences: MySQL and Oracle
The ISNULL function is called IFNULL in MySQL. Furthermore, MySQL doesn’t require the use
of the CAST function in this example. The equivalent of the above statement in MySQL is:
SELECT
Description,
IFNULL(Weight,'Unknown') AS Weight
FROM Products;

The ISNULL function is called NVL (Null Value) in Oracle. The equivalent Oracle statement is:
SELECT
Description,
NVL(CAST(Weight AS CHAR),'Unknown') AS Weight
FROM Products;

Additionally, unlike Microsoft SQL Server and MySQL, Oracle displays a dash rather than the
word NULL when it encounters NULL values.

Sam
ple

 pa
ge

s

	Cover
	Title Page
	Copyright Page
	Table of Contents
	Introduction
	4 Using Functions
	What Is a Function?
	Character Functions
	Composite Functions
	Date/Time Functions
	Numeric Functions
	Conversion Functions
	Looking Ahead

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

