
Although each of these boats is rather large, from a distance their motion can  
be analyzed as if each were a particle.

 Chapter 12

(© Lars Johansson/Fotolia)
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Kinematics of a Particle

Chapter Objectives

n	 To introduce the concepts of position, displacement, velocity, 
and acceleration.

n	 To study particle motion along a straight line and represent this 
motion graphically.

n	 To investigate particle motion along a curved path using different 
coordinate systems.

n	 To present an analysis of dependent motion of two particles.

n	 To examine the principles of relative motion of two particles 
using translating axes.

12.1  Introduction

Mechanics is a branch of the physical sciences that is concerned with the 
state of rest or motion of bodies subjected to the action of forces. 
Engineering mechanics is divided into two areas of study, namely, statics 
and dynamics. Statics is concerned with the equilibrium of a body that is 
either at rest or moves with constant velocity. Here we will consider 
dynamics, which deals with the accelerated motion of a body. The subject 
of dynamics will be presented in two parts: kinematics, which treats only 
the geometric aspects of the motion, and kinetics, which is the analysis of 
the forces causing the motion. To develop these principles, the dynamics 
of a particle will be discussed first, followed by topics in rigid-body 
dynamics in two and then three dimensions.

Video Solutions are 
available for selected 
questions in this chapter.
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4 	 Chapter 12    Kinematics of a Part icle

12
Historically, the principles of dynamics developed when it was 

possible to make an accurate measurement of time. Galileo Galilei 
(1564–1642) was one of the first major contributors to this field. His 
work consisted of experiments using pendulums and falling bodies. The 
most significant contributions in dynamics, however, were made by 
Isaac Newton (1642–1727), who is noted for his formulation of the 
three fundamental laws of motion and the law of universal gravitational 
attraction. Shortly after these laws were postulated, important 
techniques for their application were developed by Euler, D’Alembert, 
Lagrange, and others.

There are many problems in engineering whose solutions require 
application of the principles of dynamics. Typically the structural 
design of any vehicle, such as an automobile or airplane, requires 
consideration of the motion to which it is subjected. This is also true 
for many mechanical devices, such as motors, pumps, movable tools, 
industrial manipulators, and machinery. Furthermore, predictions of 
the motions of artificial satellites, projectiles, and spacecraft are based 
on the theory of dynamics. With further advances in technology, there 
will be an even greater need for knowing how to apply the principles 
of this subject.

Problem Solving.  Dynamics is considered to be more involved 
than statics since both the forces applied to a body and its motion must 
be taken into account. Also, many applications require using calculus, 
rather than just algebra and trigonometry. In any case, the most 
effective way of learning the principles of dynamics is to solve problems. 
To be successful at this, it is necessary to present the work in a logical 
and orderly manner as suggested by the following sequence of steps:

	 1.	 Read the problem carefully and try to correlate the actual physical 
situation with the theory you have studied.

	 2.	 Draw any necessary diagrams and tabulate the problem data.

	 3.	 Establish a coordinate system and apply the relevant principles, 
generally in mathematical form.

	 4.	 Solve the necessary equations algebraically as far as practical; then, 
use a consistent set of units and complete the solution numerically. 
Report the answer with no more significant figures than the accuracy 
of the given data.

	 5.	 Study the answer using technical judgment and common sense to 
determine whether or not it seems reasonable.

	 6.	 Once the solution has been completed, review the problem. Try to 
think of other ways of obtaining the same solution.

In applying this general procedure, do the work as neatly as possible. Being 
neat generally stimulates clear and orderly thinking, and vice versa.
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	 12.2 R ectilinear Kinematics: Continuous Motion	 5

1212.2  �Rectilinear Kinematics: Continuous 
Motion

We will begin our study of dynamics by discussing the kinematics of a 
particle that moves along a rectilinear or straight-line path. Recall that a 
particle has a mass but negligible size and shape. Therefore we must limit 
application to those objects that have dimensions that are of no 
consequence in the analysis of the motion. In most problems, we will be 
interested in bodies of finite size, such as rockets, projectiles, or vehicles. 
Each of these objects can be considered as a particle, as long as the motion 
is characterized by the motion of its mass center and any rotation of the 
body is neglected.

Rectilinear Kinematics.  The kinematics of a particle is characterized 
by specifying, at any given instant, the particle’s position, velocity, and 
acceleration.

Position.  The straight-line path of a particle will be defined using a 
single coordinate axis s, Fig. 12–1a. The origin O on the path is a fixed 
point, and from this point the position coordinate s is used to specify the 
location of the particle at any given instant. The magnitude of s is the 
distance from O to the particle, usually measured in meters (m), and 
the sense of direction is defined by the algebraic sign on s. Although the 
choice is arbitrary, in this case s is positive since the coordinate axis is 
positive to the right of the origin. Likewise, it is negative if the particle is 
located to the left of O. Realize that position is a vector quantity since it 
has both magnitude and direction. Here, however, it is being represented 
by the algebraic scalar s, rather than in boldface s, since the direction 
always remains along the coordinate axis.

Displacement.  The displacement of the particle is defined as the 
change in its position. For example, if the particle moves from one point 
to another, Fig. 12–1b, the displacement is

�s = s� - s

In this case �s is positive since the particle’s final position is to the right 
of its initial position, i.e., s� 7 s. Likewise, if the final position were to the 
left of its initial position, �s would be negative.

The displacement of a particle is also a vector quantity, and it should be 
distinguished from the distance the particle travels. Specifically, the 
distance traveled is a positive scalar that represents the total length of 
path over which the particle travels.

s

s

Position

(a)

O

s

s

Displacement

(b)

s¿

O
�s

Fig. 12–1
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6 	 Chapter 12    Kinematics of a Part icle

12
Velocity.  If the particle moves through a displacement �s during the 
time interval �t, the average velocity of the particle during this time 
interval is

vavg =
�s

�t

If we take smaller and smaller values of �t, the magnitude of �s becomes 
smaller and smaller. Consequently, the instantaneous velocity is a vector 
defined as v = lim

�tS0
(�s>�t), or

( S+ )	 v =
ds

dt
	 (12–1)

Since �t or dt is always positive, the sign used to define the sense of the 
velocity is the same as that of �s or ds. For example, if the particle is 
moving to the right, Fig. 12–1c, the velocity is positive; whereas if it is 
moving to the left, the velocity is negative. (This is emphasized here by 
the arrow written at the left of Eq. 12–1.) The magnitude of the velocity is 
known as the speed, and it is generally expressed in units of m>s.

Occasionally, the term “average speed” is used. The average speed is 
always a positive scalar and is defined as the total distance traveled by a 
particle, sT , divided by the elapsed time �t; i.e.,

(vsp)avg =
sT

�t

For example, the particle in Fig. 12–1d travels along the path of length sT 
in time �t, so its average speed is (vsp)avg = sT>�t, but its average velocity 
is vavg = - �s>�t.

s

Velocity

(c)

O
�s

v

�s

s
P

sT

Average velocity and
Average speed

O

P¿

(d)

Fig. 12–1 (cont.) 
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	 12.2 R ectilinear Kinematics: Continuous Motion	 7

12
Acceleration.  Provided the velocity of the particle is known at 
two  points, the average acceleration of the particle during the time 
interval �t is defined as

aavg =
�v

�t

Here �v represents the difference in the velocity during the time interval 
�t, i.e., �v = v� - v, Fig. 12–1e.

The instantaneous acceleration at time t is a vector that is found by 
taking smaller and smaller values of �t and corresponding smaller and 
smaller values of �v, so that a = lim

�tS0
(�v>�t), or

( S+ )	 a =
dv

dt
	 (12–2)

Substituting Eq. 12–1 into this result, we can also write

( S+ )	 a =
d2s

dt2
	

Both the average and instantaneous acceleration can be either positive or 
negative. In particular, when the particle is slowing down, or its speed is 
decreasing, the particle is said to be decelerating. In this case, v� in Fig. 12–1f 
is less than v, and so �v = v� - v will be negative. Consequently, a will also 
be negative, and therefore it will act to the left, in the opposite sense to v. 
Also, notice that if the particle is originally at rest, then it can have an 
acceleration if a moment later it has a velocity v�; and, if the velocity is 
constant, then the acceleration is zero since �v = v - v = 0. Units 
commonly used to express the magnitude of acceleration are m>s2.

Finally, an important differential relation involving the displacement, 
velocity, and acceleration along the path may be obtained by eliminating 
the time differential dt between Eqs. 12–1 and 12–2. We have

dt =
ds
v =

dv
a

or

( S+ )	 a ds = v dv 	 (12–3)

Although we have now produced three important kinematic 
equations, realize that the above equation is not independent of 
Eqs. 12–1 and 12–2.

s

Acceleration

(e)

O

a

v v¿

s
P

Deceleration

(f)

O

P¿

v v¿

a

Fig. 12–1 (cont.)
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8 	 Chapter 12    Kinematics of a Part icle

12
Constant Acceleration, a = ac 

.  When the acceleration is 
constant, each of the three kinematic equations ac = dv>dt, v = ds>dt, 
and ac ds = v dv can be integrated to obtain formulas that relate ac , v, s, 
and t.

Velocity as a Function of Time.  Integrate ac = dv>dt, assuming 
that initially v = v� when t = 0.

L
v

v�

dv = L
t

�
a� dt

( S+ )	
  v = v� + a� t 	 (12–4)

Position as a Function  of  Time.  Integrate v =  ds>dt =  v� +  a�t, 
assuming that initially s = s0 when t = 0.

L
s

s0

ds = L
t

0
(v� + a�t� dt

( S+ )	
s = s0 + v�t +

�
� a� t

�

	 (12–5)

Velocity as a Function of Position.  Either solve for t in 
Eq. 12–4 and substitute into Eq. 12–5, or integrate v dv = a� ds, assuming 
that initially v = v� at s = s0.

L
v

v�

v dv = L
s

s�

a� ds

( S+ )	 
 v� = v�

� + �a��s - s��  
	 (12–6)

The algebraic signs of s0, v� , and ac , used in the above three equations, 
are determined from the positive direction of the s axis as indicated by 
the arrow written at the left of each equation. Remember that these 
equations are useful only when the acceleration is constant and when 
t = 0, s = s0, v = v� . A typical example of constant accelerated motion 
occurs when a body falls freely toward the earth. If air resistance is 
neglected and the distance of fall is short, then the downward acceleration 
of the body when it is close to the earth is constant and approximately 
9.81 m>s2. The proof of this is given in Example 13.2. 

When the ball is released, it has zero 
velocity but an acceleration of 9.81 m>s2. 

Constant Acceleration

Constant Acceleration

Constant Acceleration
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	 12.2 R ectilinear Kinematics: Continuous Motion	 9

12Important Points

	 •	 Dynamics is concerned with bodies that have accelerated motion.

	 •	 Kinematics is a study of the geometry of the motion.

	 •	 Kinetics is a study of the forces that cause the motion.

	 •	 Rectilinear kinematics refers to straight-line motion.

	 •	 Speed refers to the magnitude of velocity.

	 •	 Average speed is the total distance traveled divided by the total 
time. This is different from the average velocity, which is the 
displacement divided by the time.

	 •	 A particle that is slowing down is decelerating.

	 •	 A particle can have an acceleration and yet have zero velocity.

	 •	 The relationship a ds = v dv is derived from a = dv>dt and 
v = ds>dt, by eliminating dt.

During the time this rocket undergoes 
rectilinear motion, its altitude as a function 
of time can be measured and expressed as 
s = s(t). Its velocity can then be found 
using v = ds>dt, and its acceleration 
can  be determined from a = dv>dt�  
(© NASA) 

Procedure for Analysis

Coordinate System.
	 •	 Establish a position coordinate s along the path and specify its fixed origin and positive direction.

	 •	 Since motion is along a straight line, the vector quantities position, velocity, and acceleration can be 
represented as algebraic scalars. For analytical work the sense of s, v, and a is then defined by their 
algebraic signs.

	 •	 The positive sense for each of these scalars can be indicated by an arrow shown alongside each kinematic 
equation as it is applied.

Kinematic Equations.

	 •	 If a relation is known between any two of the four variables a, v, s, and t, then a third variable can be 
obtained by using one of the kinematic equations, a = dv>dt, v = ds>dt or a ds = v dv, since each 
equation relates all three variables.*

	 •	 Whenever integration is performed, it is important that the position and velocity be known at a given 
instant in order to evaluate either the constant of integration if an indefinite integral is used, or the limits 
of integration if a definite integral is used.

	 •	 Remember that Eqs. 12–4 through 12–6 have only limited use. These equations apply only when the 
acceleration is constant and the initial conditions are s = s0 and v = v� when t = 0.

*Some standard differentiation and integration formulas are given in Appendix A.
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10 	 Chapter 12    Kinematics of a Part icle

12

 

The car on the left in the photo and in Fig. 12–2 moves in a straight 
line such that for a short time its velocity is defined by 
v = ����t� + t� m>s, where t is in seconds. Determine its position and 
acceleration when t = 3 s. When t = 0, s = 0.

s

O

a, v

Fig. 12–2 

Example   12.1

Solution
Coordinate System.  The position coordinate extends from the fixed 
origin O to the car, positive to the right.

Position.  Since v = ��t�, the car’s position can be determined from 
v = ds>dt, since this equation relates v, s, and t. Noting that s = 0 
when t = 0, we have*

( S+ )	  v =
ds

dt
= ����t� + t�

	  L
s

0
ds = L

t

0
(0.6t2 + t)dt	

	  s �
s

0
= 0.2t3 + 0.5t2 �

t

0

	  s = (0.2t3 + 0.5t2) m

When t = 3 s,

	 s = 0.2(3)3 + 0.5(3)2 = 9.90 m	 Ans.

Acceleration.  Since v = ��t�, the acceleration is determined from 
a = dv>dt, since this equation relates a, v, and t.

( S+ )	  a =
dv

dt
=

d
dt

 (0.6t2 + t)	

	  = (1.2t + 1) m>s2

When t = 3 s,

	 a = 1.2(3) + 1 = 4.60 m>s2 S 	 Ans.

NOTE: The formulas for constant acceleration cannot be used to solve 
this problem, because the acceleration is a function of time.

*The same result can be obtained by evaluating a constant of integration C rather 
than using definite limits on the integral. For example, integrating ds = (0.6t2 + t)dt 
yields s = 0.2t3 + 0.5t2 + C. Using the condition that at t = 0, s = 0, then C = 0.
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	 12.2 R ectilinear Kinematics: Continuous Motion	 11
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A small projectile is fired vertically downward into a fluid medium with 
an initial velocity of 60 m>s. Due to the drag resistance of the fluid the 
projectile experiences a deceleration of a = (-0.4v�� m>s2, where v is in 
m>s. Determine the projectile’s velocity and position 4 s after it is fired.

Solution
Coordinate System.  Since the motion is downward, the position 
coordinate is positive downward, with origin located at O, Fig. 12–3.

Velocity.  Here a = f(v� and so we must determine the velocity as a 
function of time using a = dv>dt, since this equation relates v, a, and t. 
(Why not use v = v� + a�t�) Separating the variables and integrating, 
with v� = 60 m>s when t = 0, yields

(+ T )	 a =
dv

dt
= -0.4v�

	 L
v

60 m>s
 

dv

-��
v� = L
t

0
dt

	
1

-0.4
 � 1

-2
�  

1

v� �
60

v

= t - �

	
1

0.8
 � 1

v� -
1

(60)2 � = t

	 v = � � �

����� + ���t �
-�>�

�
 

m>s

Here the positive root is taken, since the projectile will continue to 
move downward. When t = 4 s,

	 v = 0.559 m>sT 	 Ans.

Position.  Knowing v = ��t�, we can obtain the projectile’s position 
from v = ds>dt, since this equation relates s, v, and t. Using the initial 
condition s = 0, when t = 0, we have

(+ T )	 v =
ds

dt
= � �

����� + ���t �
-�>�

	 L
s

0
ds = L

t

0
� 1

(60)2 + 0.8t �
-1>2

dt

	 s =
2

0.8
 � 1

(60)2 + 0.8t �
1>2

�
0

t

	 s =
1

0.4
 � � 1

(60)2 + 0.8t �
1>2

-
1

60
�  m

When t = 4 s,

	 s = 4.43 m	 Ans.

Example   12.2

s

O

Fig. 12–3 
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12

During a test a rocket travels upward at 75 m>s, and when it is 40 m 
from the ground its engine fails. Determine the maximum height sB 
reached by the rocket and its speed just before it hits the ground. 
While in motion the rocket is subjected to a constant downward 
acceleration of 9.81 m>s2 due to gravity. Neglect the effect of air 
resistance.

Solution
Coordinate System.  The origin O for the position coordinate s is 
taken at ground level with positive upward, Fig. 12–4.

Maximum Height.  Since the rocket is traveling upward, 
v� = +75 m>s when t = 0. At the maximum height s = sB the velocity 
v
 = �� For the entire motion, the acceleration is ac = -9.81 m>s2 
(negative since it acts in the opposite sense to positive velocity or 
positive displacement). Since ac is constant the rocket’s position may 
be related to its velocity at the two points A and B on the path by using 
Eq. 12–6, namely,

 (+ c )	  v

� = v�

� + �a��s
 - s��

	  0 = (75 m>s)2 + 2(-9.81 m>s2)(sB - 40 m)

	  sB = 327 m 	 Ans.

Velocity.  To obtain the velocity of the rocket just before it hits the 
ground, we can apply Eq. 12–6 between points B and C, Fig. 12–4.

 (+ c )	  v	
� = v


� + �a��s	 - s
�

	  = 0 + 2(-9.81 m>s2)(0 - 327 m)

	  v	 = -80.1 m>s = 80.1 m>s T 	 Ans.

The negative root was chosen since the rocket is moving downward. 
Similarly, Eq. 12–6 may also be applied between points A and C, i.e.,

 (+ c )	  v	
� = v�

� + �a��s	 - s��

	  = (75 m>s)2 + 2(-9.81 m>s2)(0 - 40 m)

	  v	 = -80.1 m>s = 80.1 m>s T 	 Ans.

NOTE: It should be realized that the rocket is subjected to a deceleration 
from A to B of 9.81 m>s2, and then from B to C it is accelerated at this 
rate. Furthermore, even though the rocket momentarily comes to rest 
at B (v
 = �� the acceleration at B is still 9.81 m>s2 downward!

Example   12.3

A

O

vA � 75 m/s

vB � 0

sA � 40 m

s

sB

B

C

Fig. 12–4 
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A metallic particle is subjected to the influence of a magnetic field as 
it travels downward through a fluid that extends from plate A to 
plate B, Fig. 12–5. If the particle is released from rest at the midpoint C, 
s = 100 mm, and the acceleration is a = (4s) m>s2, where s is in 
meters, determine the velocity of the particle when it reaches plate B, 
s = 200 mm, and the time it takes to travel from C to B.

Solution
Coordinate System.  As shown in Fig. 12–5, s is positive downward, 
measured from plate A.

Velocity.  Since a = f(s), the velocity as a function of position can 
be obtained by using v dv = a ds� Realizing that v = � at s = 0.1 m, 
we have

 (+ T )	 v dv = a ds

	  L
v

�
v dv = L

s

��� m

s ds

	  
1

2
 v� �

�

v

=



�
 s� �

��� m

s

	 v = ��s� - ������>� m>s� (1)

At s = 200 mm = 0.2 m,

	 v
 = 0.346 m>s = 346 mm>s T 	 Ans.

The positive root is chosen since the particle is traveling downward, 
i.e., in the +s direction.

Time.  The time for the particle to travel from C to B can be obtained 
using v = ds>dt and Eq. 1, where s = 0.1 m when t = 0. From 
Appendix A,

 (+ T ) 	 ds = v dt

	  = 2(s2 - 0.01)1>2dt

	 L
s

0.1
 

ds

(s2 - 0.01)1>2 = L
t

0
2 dt

	  ln�2s2 - 0.01 + s� �
0.1

s

= 2t �
0

t

	  ln�2s2 - 0.01 + s� + 2.303 = 2t

At s = 0.2 m,

	 t =
ln�2(0.2)2 - 0.01 + 0.2� + 2.303

2
= 0.658 s	 Ans.

NOTE: The formulas for constant acceleration cannot be used here 
because the acceleration changes with position, i.e., a = 4s.

Example   12.4

A

200 mm

100 mm

B

s
C

Fig. 12–5 
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A particle moves along a horizontal path with a velocity of 
v = (3t2 - 6t) m>s, where t is the time in seconds. If it is initially 
located at the origin O, determine the distance traveled in 3.5 s, and the 
particle’s average velocity and average speed during the time interval.

Solution
Coordinate System.  Here positive motion is to the right, measured 
from the origin O, Fig. 12–6a.

Distance Traveled.  Since v = ��t�, the position as a function of time 
may be found by integrating v = ds>dt with t = 0, s = 0.

 ( S+ )	  ds = v dt

	  = (3t2 - 6t) dt

	  L
s

0
ds = L

t

0
(3t2 - 6t) dt 

	  s = (t3 - 3t2) m	 (1)

In order to determine the distance traveled in 3.5 s, it is necessary 
to investigate the path of motion. If we consider a graph of the 
velocity function, Fig. 12–6b, then it reveals that for 0 6 t 6 2 s the 
velocity is negative, which means the particle is traveling to the left, 
and for t 7 2 s the velocity is positive, and hence the particle is 
traveling to the right. Also, note that v = 0 at t = 2 s. The particle’s 
position when t = 0, t = 2 s, and t = 3.5 s can be determined from 
Eq. 1. This yields

s � t = 0 = 0 s � t = 2 s = -4.0 m s � t = 3.5 s = 6.125 m

The path is shown in Fig. 12–6a. Hence, the distance traveled in 3.5 s is

	 sT = 4.0 + 4.0 + 6.125 = 14.125 m = 14.1 m� Ans.

Velocity.  The displacement from t = 0 to t = 3.5 s is

�s = s � t = 3.5 s - s � t = 0 = 6.125 m - 0 = 6.125 m

and so the average velocity is

	 vavg =
�s

�t
=

6.125 m

3.5 s - 0
= 1.75 m>s S 	 Ans.

The average speed is defined in terms of the distance traveled sT . This 
positive scalar is

	 (vsp)avg =
sT

�t
=

14.125 m

3.5 s - 0
= 4.04 m>s	 Ans.

NOTE: In this problem, the acceleration is a = dv>dt = (6t - 6) m>s2, 
which is not constant.

Example   12.5

O

s � �4.0 m s � 6.125 m

t � 2 s t � 0 s t � 3.5 s

(a)

(0, 0)

v (m/s)

v � 3t2 � 6t

(2 s, 0)
t (s)

(1 s, �3 m/s)

(b)

Fig. 12–6 
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It is highly suggested that you test yourself on the solutions to these 

examples, by covering them over and then trying to think about which 
equations of kinematics must be used and how they are applied in 
order to determine the unknowns. Then before solving any of the 
problems, try and solve some of the Preliminary and Fundamental 
Problems which follow. The solutions and answers to all these problems 
are given in the back of the book. Doing this throughout the book will 
help immensely in understanding how to apply the theory, and thereby 
develop your problem-solving skills.

Preliminary Problem

P12–1. 

�a)	� If s = (2t3) m, where t is in seconds, determine  
v when t = 2 s.

 b)	�If v = (5s) m>s, where s is in meters, determine a at s = 1 m.

c)	� If v = (4t + 5) m>s, where t is in seconds, determine a 
when t = 2 s.

d)	� If a = 2 m>s2, determine v when t = 2 s if v = 0 when  
t = 0.

e)	� If a = 2 m>s2, determine v at s = 4 m if v = 3 m>s at s = 0.

f)	� If a = (s) m>s2, where s is in meters, determine v when  
s = 5 m if v = 0 at s = 4 m.

g)	� If a = 4 m>s2, determine s when t = 3 s if v = 2 m>s and  
s = 2 m when t = 0.

h)	� If a = (8t2) m>s2, determine v when t = 1 s if  
v = 0 at t = 0.

i)	� If s = (3t2 + 2) m, determine v when t = 2 s.

j)	� When t = 0 the particle is at A. In four seconds it travels 
to B, then in another six seconds it travels to C. 
Determine the average velocity and the average speed. 
The origin of the coordinate is at O.

O

7 m

B
sA C

1 m

14 m

Prob. P12–1
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F12–5.    The position of the particle is given by 
s = (2t2 - 8t + 6) m, where t is in seconds. Determine the 
time when the velocity of the particle is zero, and the total 
distance traveled by the particle when t = 3 s.

s

Prob. F12–5

F12–6.    A particle travels along a straight line with an 
acceleration of a = (10 - 0.2s) m>s2, where s is measured 
in meters. Determine the velocity of the particle when 
s = 10 m if v = 5 m>s at s = 0. 

s

s

Prob. F12–6

F12–7.    A particle moves along a straight line such that its 
acceleration is a = (4t2 - 2) m>s2, where t is in seconds. 
When t = 0, the particle is located 2 m to the left of the 
origin, and when t = 2 s, it is 20 m to the left of the origin. 
Determine the position of the particle when t = 4 s. 

F12–8.    A particle travels along a straight line with a 
velocity of v = (20 - 0.05s2) m>s, where s is in meters. 
Determine the acceleration of the particle at s = 15 m. 

F12–1.    Initially, the car travels along a straight road with a 
speed of 35 m>s. If the brakes are applied and the speed of 
the car is reduced to 10 m>s in 15 s, determine the constant 
deceleration of the car.

Prob. F12–1

F12–2.    A ball is thrown vertically upward with a speed of 
15 m>s. Determine the time of flight when it returns to its 
original position.

s

Prob. F12–2

F12–3.    A particle travels along a straight line with a 
velocity of v = (4t - 3t2) m>s, where t is in seconds. 
Determine the position of the particle when t = 4 s. 
s = 0 when t = 0.

F12–4.    A particle travels along a straight line with a speed 
v = (0.5t3 - 8t) m>s, where t is in seconds. Determine the 
acceleration of the particle when t = 2 s.

Fundamental Problems
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12–1.  Starting from rest, a particle moving in a straight 
line has an acceleration of a = (2t - 6) m>s2, where t is  
in seconds. What is the particle’s velocity when t = 6 s, and 
what is its position when t = 11 s?

12–2.  The acceleration of a particle as it moves along a 
straight line is given by a = (4t3 - 1) m>s2, where t is in 
seconds. If s = 2 m and v = 5 m>s when t = 0, determine 
the particle’s velocity and position when t = 5 s. Also, 
determine the total distance the particle travels during this 
time period.

12–3.  The velocity of a particle traveling in a straight line 
is given by v = (6t - 3t2) m>s, where t is in seconds. If s = 0 
when t = 0, determine the particle’s deceleration and 
position when t = 3 s. How far has the particle traveled 
during the 3-s time interval, and what is its average speed?

*12–4.  A particle is moving along a straight line such that 
its position is defined by s = (10t2 + 20) mm, where t is in 
seconds. Determine (a) the displacement of the particle 
during the time interval from t = 1 s to t = 5 s, (b) the average 
velocity of the particle during this time interval, and (c) the 
acceleration when t = 1 s.

12–5.  A particle moves along a straight line such that its 
position is defined by s = (t2 - 6t + 5) m. Determine the 
average velocity, the average speed, and the acceleration of 
the particle when t = 6 s.

12–6.  A stone A is dropped from rest down a well, and in 
1  s another stone B is dropped from rest. Determine the 
distance between the stones another second later.

12–7.  A bus starts from rest with a constant acceleration of 
1 m>s2. Determine the time required for it to attain a speed 
of 25 m>s and the distance traveled.

*12–8.  A particle travels along a straight line with a 
velocity v = �12 - 3t2) m>s, where t is in seconds. When  
t = 1 s, the particle is located 10 m to the left of the origin. 
Determine the acceleration when t = 4 s, the displacement 
from t = 0 to t = 10 s, and the distance the particle travels 
during this time period.

12–9.  When two cars A and B are next to one another, 
they are traveling in the same direction with speeds vA and 
vB, respectively. If B maintains its constant speed, while A 
begins to decelerate at aA, determine the distance d between 
the cars at the instant A stops.

BA

d

Prob. 12–9

12–10.  A particle travels along a straight-line path such 
that in 4 s it moves from an initial position sA = -8 m to a 
position sB = +3 m. Then in another 5 s it moves from sB to 
sC = -6 m. Determine the particle’s average velocity and 
average speed during the 9-s time interval.

12–11.  Traveling with an initial speed of 70 km>h, a car 
accelerates at 6000 km>h2 along a straight road. How long 
will it take to reach a speed of 120 km>h? Also, through 
what distance does the car travel during this time?

*12–12.  A particle moves along a straight line with an 
acceleration of a = 5>(3s 1>3 + s 5>2) m>s2, where s is in 
meters. Determine the particle’s velocity when s = 2 m, if it 
starts from rest when s = 1 m. Use a numerical method to 
evaluate the integral.

12–13.  The acceleration of a particle as it moves along a 
straight line is given by a = (2t - 1) m>s2, where t is in 
seconds. If s = 1 m and v = 2 m>s when t = 0, determine 
the particle’s velocity and position when t = 6 s. Also, 
determine the total distance the particle travels during this 
time period.

PROBLEMS
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12
12–14.  A train starts from rest at station A and accelerates 
at 0.5  m>s2 for 60 s. Afterwards it travels with a constant 
velocity for 15 min. It then decelerates at 1 m>s2 until it is 
brought to rest at station B. Determine the distance between 
the stations.

12–15.  A particle is moving along a straight line such that 
its velocity is defined as v = �-4s2) m>s, where s is in 
meters. If s = 2 m when t = 0, determine the velocity and 
acceleration as functions of time.

*12–16.  Determine the time required for a car to travel 
1  km along a road if the car starts from rest, reaches a 
maximum speed at some intermediate point, and then stops 
at the end of the road. The car can accelerate at 1.5 m>s2 and 
decelerate at 2 m>s2.

12–17.  A particle is moving with a velocity of v0 when s = 0 
and t = 0. If it is subjected to a deceleration of a = -kv3, 
where k is a constant, determine its velocity and position as 
functions of time.

12–18.  A particle is moving along a straight line with an 
initial velocity of 6 m>s when it is subjected to a deceleration 
of a = (-1.5v1>2) m>s2, where v is in m>s. Determine how far 
it travels before it stops. How much time does this take?

12–19.  The acceleration of a rocket traveling upward is 
given by a = (6 + 0.02s) m>s2, where s is in meters. Determine 
the rocket’s velocity when s = 2 km and the time needed to 
reach this attitude. Initially, v = 0 and s = 0 when t = 0.

s

Prob. 12–19

*12–20.  The acceleration of a rocket traveling upward is 
given by a = (6 + 0.02s) m>s2, where s is in meters. Determine 
the time needed for the rocket to reach an altitude of  
s = 100 m. Initially, v = 0 and s = 0 when t = 0.

s

Prob. 12–20

12–21.  When a train is traveling along a straight track at 
2 m>s, it begins to accelerate at a = (60v-4) m>s2, where v is 
in m>s. Determine its velocity v and the position 3 s after 
the acceleration.

 

s v

Prob. 12–21
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12
12–22.  The acceleration of a particle along a straight line 
is defined by a = (2t - 9) m>s2, where t is in seconds. At 
t = 0, s = 1 m and v = 10 m>s. When t = 9 s, determine 
(a) the particle’s position, (b) the total distance traveled, 
and (c) the velocity.

12–23.  If the effects of atmospheric resistance are 
accounted for, a freely falling body has an acceleration 
defined by the equation a = 9.81[1 - v 2��� -
�� m>s2, 
where v is in m>s and the positive direction is downward. If 
the body is released from rest at a very high altitude, 
determine (a) the velocity when t = 5 s, and (b) the body’s 
terminal or maximum attainable velocity (as t S �).

*12–24.  A sandbag is dropped from a balloon which is 
ascending vertically at a constant speed of 6 m>s. If the bag 
is released with the same upward velocity of 6 m>s when  
t = 0 and hits the ground when t = 8 s, determine the speed 
of the bag as it hits the ground and the altitude of the 
balloon at this instant.

12–25.  A particle is moving along a straight line such that 
its acceleration is defined as a = (-2v) m>s2, where v is in 
meters per second. If v = 20 m>s when s = 0 and t = 0, 
determine the particle’s position, velocity, and acceleration 
as functions of time.

12–26.  The acceleration of a particle traveling along a 

straight line is a = 
1
4

 s1>2 m>s2, where s is in meters. If v = 0,  

s = 1 m when t = 0, determine the particle’s velocity at s = 2 m. 

12–27.  When a particle falls through the air, its initial 
acceleration a = g diminishes until it is zero, and there-
after it falls at a constant or terminal velocity v� . If this 
variation of the acceleration can be expressed as  
a = (g>v2

 f� (v2
 f - v2�,  determine the time needed for the 

velocity to become v = v�>� . Initially the particle falls 
from rest.

*12–28.  A sphere is fired downwards into a medium with 
an initial speed of 27 m>s. If it experiences a deceleration of 
a = (-6t) m>s2, where t is in seconds, determine the distance 
traveled before it stops.

12–29.  A ball A is thrown vertically upward from the top 
of a 30-m-high building with an initial velocity of 5 m>s. At 
the same instant another ball B is thrown upward from the 
ground with an initial velocity of 20 m>s. Determine the 
height from the ground and the time at which they pass.

12–30.  A boy throws a ball straight up from the top of a 
12-m high tower. If the ball falls past him 0.75 s later, 
determine the velocity at which it was thrown, the velocity 
of the ball when it strikes the ground, and the time of flight.

12–31.  The velocity of a particle traveling along a straight 
line is v = v0 - ks, where k is constant. If s = 0 when t = 0, 
determine the position and acceleration of the particle as a 
function of time.

*12–32.  Ball A is thrown vertically upwards with a velocity 
of v0. Ball B is thrown upwards from the same point with 
the same velocity t seconds later. Determine the elapsed 
time t < 2v0>g from the instant ball A is thrown to when the 
balls pass each other, and find the velocity of each ball at 
this instant.

12–33.  As a body is projected to a high altitude above the 
earth’s surface, the variation of the acceleration of gravity 
with respect to altitude y must be taken into account. 
Neglecting air resistance, this acceleration is determined 
from the formula a = -g0[R

2>(R + y)2], where g0 is the 
constant gravitational acceleration at sea level, R is the 
radius of the earth, and the positive direction is measured 
upward. If g0 = 9.81 m>s2 and R = 6356 km, determine the 
minimum initial velocity (escape velocity) at which a 
projectile should be shot vertically from the earth’s surface 
so that it does not fall back to the earth. Hint: This requires 
that v = � as y S � .

12–34.  Accounting for the variation of gravitational 
acceleration a with respect to altitude y (see Prob. 12–40), 
derive an equation that relates the velocity of a freely 
falling particle to its altitude. Assume that the particle is 
released from rest at an altitude y0 from the earth’s surface. 
With what velocity does the particle strike the earth if it is 
released from rest at an altitude y0 = 500 km? Use the 
numerical data in Prob. 12–33.
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12 12.3  �Rectilinear Kinematics: Erratic 
Motion

When a particle has erratic or changing motion then its position, velocity, 
and acceleration cannot be described by a single continuous mathematical 
function along the entire path. Instead, a series of functions will be 
required to specify the motion at different intervals. For this reason, it is 
convenient to represent the motion as a graph. If a graph of the motion 
that relates any two of the variables s,v, a, t can be drawn, then this graph 
can be used to construct subsequent graphs relating two other variables 
since the variables are related by the differential relationships v = ds>dt, 
a = dv>dt, or a ds = v dv� Several situations occur frequently.

The s–t, v–t, and a–t Graphs.  To construct the v9t graph given 
the s–t graph, Fig. 12–7a, the equation v = ds>dt should be used, since it 
relates the variables s and t to v. This equation states that

	  
ds

dt
= v 	

	  
slope of
s9t graph

 = velocity	

For example, by measuring the slope on the s–t graph when t = t1, the 
velocity is v1, which is plotted in Fig. 12–7b. The v9t graph can be 
constructed by plotting this and other values at each instant.

The a–t graph can be constructed from the v9t graph in a similar 
manner, Fig. 12–8, since

	  
dv

dt
= a

	  
slope of
v9t graph

  = acceleration	

Examples of various measurements are shown in Fig. 12–8a and plotted 
in Fig. 12–8b.

If the s–t curve for each interval of motion can be expressed by a 
mathematical function s = s(t), then the equation of the v9t graph for 
the same interval can be obtained by differentiating this function with 
respect to time since v = ds�dt. Likewise, the equation of the a–t graph 
for the same interval can be determined by differentiating v = v(t) since 
a = dv>dt. Since differentiation reduces a polynomial of degree n to that 
of degree n – 1, then if the s–t graph is parabolic (a second-degree curve), 
the v9t graph will be a sloping line (a first-degree curve), and the  
a–t graph will be a constant or a horizontal line (a zero-degree curve).

tO

v0 � t � 0

(a)

s

ds
dt

v1 � t1

s1

t1 t2 t3

s2
s3

ds
dt

v2 � t2
ds
dt

v3 � t3
ds
dt

tO

(b)

v0

v

v1

v3

v2

t1 t2

t3

Fig. 12–7 

a0 �

v

tt1 t2 t3

v1

v2

v3

v0

a1 �

a2 �

O

(a)

a3 � t3
dv
dt

t2
dv
dtt � 0

dv
dt

t1
dv
dt

t

a

a0 � 0
a1 a2

a3
t1 t2 t3O

(b)

Fig. 12–8 
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t

a

a0

t1

�v � �   a dt
0

t1

t

v

v0

t1

v1
�v

(a)

(b)

Fig. 12–9 

t

v

v0

t1

t

s

s0

t1

s1
�s

(b)

(a)

�s � �   v dt
0

t1

Fig. 12–10 

If the a–t graph is given, Fig. 12–9a, the v9t graph may be constructed 
using a = dv>dt, written as

	  �v = La dt 	

	  
change in
velocity

 =  
area under
a9t graph

	

Hence, to construct the v9t graph, we begin with the particle’s initial 
velocity v� and then add to this small increments of area (�v� determined 
from the a–t graph. In this manner successive points, v1 = v0 + �v, etc., 
for the v9t graph are determined, Fig. 12–9b. Notice that an algebraic 
addition of the area increments of the a–t graph is necessary, since areas 
lying above the t axis correspond to an increase in v (“positive” area), 
whereas those lying below the axis indicate a decrease in v (“negative” 
area). 

Similarly, if the v9t graph is given, Fig. 12–10a, it is possible to determine 
the s–t graph using v = ds>dt, written as

	  �s = Lv dt 	

	  displacement =
area under
v9t graph

In the same manner as stated above, we begin with the particle’s initial 
position s0 and add (algebraically) to this small area increments �s 
determined from the v9t graph, Fig. 12–10b.

If segments of the a–t graph can be described by a series of equations, 
then each of these equations can be integrated to yield equations 
describing the corresponding segments of the v9t graph. In a similar 
manner, the s–t graph can be obtained by integrating the equations 
which describe the segments of the v9t graph. As a result, if the  
a–t graph is linear (a first-degree curve), integration will yield a  
v9t graph that is parabolic (a second-degree curve) and an s–t graph 
that is cubic (third-degree curve).
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