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8
Training Deep Networks

In the preceding chapters, we described artificial neurons comprehensively and we
walked through the process of forward propagating information through a network of
neurons to output a prediction, such as whether a given fast food item is a hot dog, a
juicy burger, or a greasy slice of pizza. In those culinary examples from Chapters 6 and
7, we fabricated numbers for the neuron parameters—the neuron weights and biases. In
real-world applications, however, these parameters are not typically concocted arbitrarily:
They are learned by training the network on data.

In this chapter, you will become acquainted with two techniques—called gradient
descent and backpropagation—that work in tandem to learn artificial neural network param-
eters. As usual in this book, our presentation of these methods is not only theoretical: We
provide pragmatic best practices for implementing the techniques. The chapter culminates
in the application of these practices to the construction of a neural network with more
than one hidden layer.

Cost Functions
In Chapter 7, you discovered that, upon forward propagating some input values all the
way through an artificial neural network, the network provides its estimated output,
which is denoted ŷ. If a network were perfectly calibrated, it would output ŷ values that
are exactly equal to the true label y. In our binary classifier for detecting hot dogs, for
example (Figure 7.3), y = 1 indicated that the object presented to the network is a hot
dog, while y = 0 indicated that it’s something else. In an instance where we have in fact
presented a hot dog to the network, therefore, ideally it would output ŷ = 1.

In practice, the gold standard of ŷ=y is not always attained and so may be an exces-
sively stringent definition of the “correct” ŷ. Instead, if y = 1 we might be quite pleased
to see a ŷ of, say, 0.9997, because that would indicate that the network has an extremely
high confidence that the object is a hot dog. A ŷ of 0.9 might be considered acceptable,
ŷ = 0.6 to be disappointing, and ŷ = 0.1192 (as computed in Equation 7.7) to be awful.

To quantify the spectrum of output-evaluation sentiments from “quite pleased” all the
way down to “awful,” machine learning algorithms often involve cost functions (also known
as loss functions). The two such functions that we cover in this book are called quadratic
cost and cross-entropy cost. Let’s cover them in turn.
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Quadratic Cost
Quadratic cost is one of the simplest cost functions to calculate. It is alternatively called
mean squared error, which handily describes all that there is to its calculation:

C =
1

n

n∑
i=1

(yi − ŷi)
2 (8.1)

For any given instance i, we calculate the difference (the error) between the true label yi

and the network’s estimated ŷi. We then square this difference, for two reasons:

1. Squaring ensures that whether y is greater than ŷ or vice versa, the difference
between the two is stated as a positive value.

2. Squaring penalizes large differences between y and ŷ much more severely than
small differences.

Having obtained a squared error for each instance i by using (yi− ŷi)
2, we can then calcu-

late the mean cost C across all n of our instances by:

1. Summing up cost across all instances using
n∑

i=1

2. Dividing by however many instances we have using 1
n

By taking a peek inside the Quadratic Cost Jupyter notebook from the book’s GitHub
repo, you can play around with Equation 8.1 yourself. At the top of the notebook, we
define a function to calculate the squared error for an instance i:

def squared_error(y, yhat):

return (y - yhat)**2

By plugging a true y of 1 and the ideal yhat of 1 in to the function by using
squared_error(1, 1), we observe that—as desired—this perfect estimate is associated
with a cost of 0. Likewise, minor deviations from the ideal, such as a yhat of 0.9997,
correspond to an extremely small cost: 9.0e-08.1 As the difference between y and yhat

increases, we witness the expected exponential increase in cost: Holding y steady at 1 but
lowering yhat from 0.9 to 0.6, and then to 0.1192, the cost climbs increasingly rapidly
from 0.01 to 0.16 and then to 0.78. As a final bit of amusement in the notebook, we
note that had y truly been 0, our yhat of 0.1192 would be associated with a small cost:
0.0142.

Saturated Neurons
While quadratic cost serves as a straightforward introduction to loss functions, it has a
vital flaw. Consider Figure 8.1, in which we recapitulate the tanh activation function
from Figure 6.10. The issue presented in the figure, called neuron saturation, is com-
mon across all activation functions, but we’ll use tanh as our lone exemplar. A neuron is

1. 9.0e-08 is equivalent to 9.0× 10−8.
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Figure 8.1 Plot reproducing the tanh activation function shown in Figure 6.10, drawing
attention to the high and low values of z at which a neuron is saturated

considered saturated when the combination of its inputs and parameters (interacting as per
“the most important equation,” z = w ·x+b, which is captured in Figure 6.10) produces
extreme values of z—the areas encircled with red in the plot in Figure 8.1. In these areas,
changes in z (via adjustments to the neuron’s underlying parameters w and b) cause only
teensy-weensy changes in the neuron’s activation a.2

Using methods that we cover later in this chapter—namely, gradient descent and
backpropagation—a neural network is able to learn to approximate y through the tuning
of the parameters w and b associated with all of its constituent neurons. In a saturated
neuron, where changes to w and b lead to only minuscule changes in a, this learning
slows to a crawl: If adjustments to w and b make no discernible impact on a given neu-
ron’s activation a, then these adjustments cannot have any discernible impact downstream
(via forward propagation) on the network’s ŷ, its estimate of y.

Cross-Entropy Cost
One of the ways3 to minimize the impact of saturated neurons on learning speed is to
use cross-entropy cost in lieu of quadratic cost. This alternative loss function is configured
to enable efficient learning anywhere within the activation function curve of Figure 8.1.
Because of this, it is a far more popular choice of cost function and it is the selection that
predominates the remainder of this book.4

You need not preoccupy yourself with the equation for cross-entropy cost, but for the
sake of completeness, here it is:

C = − 1

n

n∑
i=1

[yi ln ŷi + (1− yi) ln(1− ŷi)] (8.2)

2. Recall from Chapter 6 that a = σ(z), where σ is some activation function—in this example, the tanh function.
3. More methods for attenuating saturated neurons and their negative effects on a network are covered in Chapter 9.
4. Cross-entropy cost is well suited to neural networks solving classification problems, and such problems dominate
this book. For regression problems (covered in Chapter 9), quadratic cost is a better option than cross-entropy cost.
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The most pertinent aspects of the equation are:
■ Like quadratic cost, divergence of ŷ from y corresponds to increased cost.
■ Analogous to the use of the square in quadratic cost, the use of the natural log-

arithm ln in cross-entropy cost causes larger differences between ŷ and y to be
associated with exponentially larger cost.

■ Cross-entropy cost is structured so that the larger the difference between ŷ and y,
the faster the neuron is able to learn.5

To make it easier to remember that the greater the cost, the more quickly a neural
network incorporating cross-entropy cost learns, here’s an analogy that would absolutely
never involve any of your esteemed authors: Let’s say you’re at a cocktail party leading the
conversation of a group of people that you’ve met that evening. The strong martini you’re
holding has already gone to your head, and you go out on a limb by throwing a risqué
line into your otherwise charming repartee. Your audience reacts with immediate, visible
disgust. With this response clearly indicating that your quip was well off the mark, you
learn pretty darn quickly. It’s exceedingly unlikely you’ll be repeating the joke anytime
soon.

Anyway, that’s plenty enough on disasters of social etiquette. The final item to note on
cross-entropy cost is that, by including ŷ, the formula provided in Equation 8.2 applies
to only the output layer. Recall from Chapter 7 (specifically the discussion of Figure 7.3)
that ŷ is a special case of a: It’s actually just another plain old a value—except that it’s
being calculated by neurons in the output layer of a neural network. With this in mind,
Equation 8.2 could be expressed with ai substituted in for ŷi so that the equation gener-
alizes neatly beyond the output layer to neurons in any layer of a network:

C = − 1

n

n∑
i=1

[yi lnai + (1− yi) ln(1− ai)] (8.3)

To cement all of this theoretical chatter about cross-entropy cost, let’s interactively
explore our aptly named Cross Entropy Cost Jupyter notebook. There is only one depen-
dency in the notebook: the log function from the NumPy package, which enables us to
compute the natural logarithm ln shown twice in Equation 8.3. We load this dependency
using from numpy import log.

Next, we define a function for calculating cross-entropy cost for an instance i:

def cross_entropy(y, a):

return -1*(y*log(a) + (1-y)*log(1-a))

5. To understand how the cross-entropy cost function in Equation 8.2 enables a neuron with larger cost to learn
more rapidly, we require a touch of partial-derivative calculus. (Because we endeavor to minimize the use of
advanced mathematics in this book, we’ve relegated this calculus-focused explanation to this footnote.) Central to
the two computational methods that enable neural networks to learn—gradient descent and backpropagation—is
the comparison of the rate of change of costC relative to neuron parameters like weightw. Using partial-derivative
notation, we can represent these relative rates of change as ∂C

∂w
. The cross-entropy cost function is deliberately

structured so that, when we calculate its derivative, ∂C
∂w

is related to (ŷ − y). Thus, the larger the difference
between the ideal output y and the neuron’s estimated output ŷ, the greater the rate of change of cost C with
respect to weight w.
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Table 8.1 Cross-entropy costs associated with selected example inputs

y a C

1 0.9997 0.0003

1 0.9 0.1

1 0.6 0.5

1 0.1192 2.1

0 0.1192 0.1269

1 1−0.1192 0.1269

Plugging the same values in to our cross_entropy() function as we did the squared_

error() function earlier in this chapter, we observe comparable behavior. As shown in
Table 8.1, by holding y steady at 1 and gradually decreasing a from the nearly ideal esti-
mate of 0.9997 downward, we get exponential increases in cross-entropy cost. The table
further illustrates that—again, consistent with the behavior of its quadratic cousin—cross-
entropy cost would be low, with an a of 0.1192, if y happened to in fact be 0. These
results reiterate for us that the chief distinction between the quadratic and cross-entropy
functions is not the particular cost value that they calculate per se, but rather it is the rate
at which they learn within a neural net—especially if saturated neurons are involved.

Optimization: Learning to Minimize Cost
Cost functions provide us with a quantification of how incorrect our model’s estimate of
the ideal y is. This is most helpful because it arms us with a metric we can leverage to
reduce our network’s incorrectness.

As alluded to a couple of times in this chapter, the primary approach for minimiz-
ing cost in deep learning paradigms is to pair an approach called gradient descent with
another one called backpropagation. These approaches are optimizers and they enable
the network to learn. This learning is accomplished by adjusting the model’s parameters
so that its estimated ŷ gradually converges toward the target of y, and thus the cost de-
creases. We cover gradient descent first and move on to backpropagation immediately
afterward.

Gradient Descent
Gradient descent is a handy, efficient tool for adjusting a model’s parameters with the aim
of minimizing cost, particularly if you have a lot of training data available. It is widely
used across the field of machine learning, not only in deep learning.

In Figure 8.2, we use a nimble trilobite in a cartoon to illustrate how gradient descent
works. Along the horizontal axis in each frame is some parameter that we’ve denoted as p.
In an artificial neural network, this parameter would be either a neuron’s weight w or bias
b. In the top frame, the trilobite finds itself on a hill. Its goal is to descend the gradient,
thereby finding the location with the minimum cost, C. But there’s a twist: The trilobite
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Figure 8.2 A trilobite using gradient descent to find the value of a parameter p
associated with minimal cost, C

is blind! It cannot see whether deeper valleys lie far away somewhere, and so it can only
use its cane to investigate the slope of the terrain in its immediate vicinity.

The dashed orange line in Figure 8.2 indicates the blind trilobite’s calculation of the
slope at the point where it finds itself. According to that slope line, if the trilobite takes a
step to the left (i.e., to a slightly lower value of p), it would be moving to a location with
smaller cost. On the hand, if the trilobite takes a step to the right (a slightly higher value
of p), it would be moving to a location with higher cost. Given the trilobite’s desire to
descend the gradient, it chooses to take a step to the left.

By the middle frame, the trilobite has taken several steps to the left. Here again, we
see it evaluating the slope with the orange line and discovering that, yet again, a step to
the left will bring it to a location with lower cost, and so it takes another step left. In the
lower frame, the trilobite has succeeded in making its way to the location—the value of
the parameter p—corresponding to the minimum cost. From this position, if it were to
take a step to the left or to the right, cost would go up, so it gleefully remains in place.

In practice, a deep learning model would not have only one parameter. It is not
uncommon for deep learning networks to have millions of parameters, and some indus-
trial applications have billions of them. Even our Shallow Net in Keras—one of the smallest
models we build in this book—has 50,890 parameters (see Figure 7.5).
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Figure 8.3 A trilobite exploring along two model parameters—p1 and p2—in order to
minimize cost via gradient descent. In a mountain-adventure analogy, p1 and p2 could be

thought of as latitude and longitude, and altitude represents cost.

Although it’s impossible for the human mind to imagine a billion-dimensional space,
the two-parameter cartoon shown in Figure 8.3 provides a sense of how gradient descent
scales up to minimize cost across multiple parameters simultaneously. Across however
many trainable parameters there are in a model, gradient descent iteratively evaluates
slopes6 to identify the adjustments to those parameters that correspond to the steepest
reduction in cost. With two parameters, as in the trilobite cartoon in Figure 8.3, for
example, this procedure can be likened to a blind hike through the mountains, where:

■ Latitude represents one parameter, say p1.
■ Longitude represents the other parameter, p2.
■ Altitude represents cost—the lower the altitude, the better!

The trilobite randomly finds itself at a location in the mountains. From that point, it feels
around with its cane to identify the direction of the step it can take that will reduce its
altitude the most. It then takes that single step. Repeating this process many times, the
trilobite may eventually find itself at the latitude and longitude coordinates that corre-
spond to the lowest-possible altitude (the minimum cost), at which point the trilobite’s
surreal alpine adventure is complete.

Learning Rate
For conceptual simplicity, in Figure 8.4, let’s return to a blind trilobite navigating a
single-parameter world instead of a two-parameter world. Now let’s imagine that we
have a ray-gun that can shrink or enlarge trilobites. In the middle panel, we’ve used our
ray-gun to make our trilobite very small. The trilobite’s steps will then be correspond-
ingly small, and so it will take our intrepid little hiker a long time to find its way to the

6. Using partial-derivative calculus.
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Figure 8.4 The learning rate (η) of gradient descent expressed as the size of a trilobite.
The middle panel has a small learning rate, and the bottom panel, a large one.

legendary valley of minimum cost. On the other hand, consider the bottom panel, in
which we’ve used our ray-gun to make the trilobite very large. The situation here is even
worse! The trilobite’s steps will now be so large that it will step right over the valley of
minimum cost, and so it never has any hope of finding it.

In gradient descent terminology, step size is referred to as learning rate and denoted
with the Greek letter η (eta, pronounced “ee-ta”). Learning rate is the first of sev-
eral model hyperparameters that we cover in this book. In machine learning, including
deep learning, hyperparameters are aspects of the model that we configure before we
begin training the model. So hyperparameters such as η are preset while, in contrast,
parameters—namely, w and b—are learned during training.

Getting your hyperparameters right for a given deep learning model often re-
quires some trial and error. For the learning rate η, it’s something like the fairy tale of
“Goldilocks and the Three Bears”: Too small and too large are both inadequate, but
there’s a sweet spot in the middle. More specifically, as we portray in Figure 8.4, if η is
too small, then it will take many, many iterations of gradient descent (read: an unnec-
essarily long time) to reach the minimal cost. On the other hand, selecting a value for η
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that is too large means we might never reach minimal cost at all: The gradient descent
algorithm will act erratically as it jumps right over the parameters associated with minimal
cost.

Coming up in Chapter 9, we have a clever trick waiting for you that will circumnav-
igate the need for you to manually select a given neural network’s η hyperparameter. In
the interim, however, here are our rules of thumb on the topic:

■ Begin with a learning rate of about 0.01 or 0.001.
■ If your model is able to learn (i.e., if cost decreases consistently epoch over epoch)

but training happens very slowly (i.e., each epoch, the cost decreases only a small
amount), then increase your learning rate by an order of magnitude (e.g., from 0.01
to 0.1). If the cost begins to jump up and down erratically epoch over epoch, then
you’ve gone too far, so rein in your learning rate.

■ At the other extreme, if your model is unable to learn, then your learning rate may
be too high. Try decreasing it by orders of magnitude (e.g., from 0.001 to 0.0001)
until cost decreases consistently epoch over epoch. For a visual, interactive way to
get a handle on the erratic behavior of a model when its learning rate is too high,
you can return to the TensorFlow Playground example from Figure 1.18 and dial
up the value within the “Learning rate” dropdown box.

Batch Size and Stochastic Gradient Descent
When we introduced gradient descent, we suggested that it is efficient for machine
learning problems that involve a large dataset. In the strictest sense, we outright lied to
you. The truth is that if we have a very large quantity of training data, ordinary gradient
descent would not work at all because it wouldn’t be possible to fit all of the data into the
memory (RAM) of our machine.

Memory isn’t the only potential snag; compute power could cause us headaches, too.
A relatively large dataset might squeeze into the memory of our machine, but if we tried
to train a neural network containing millions of parameters with all those data, vanilla
gradient descent would be highly inefficient because of the computational complexity of
the associated high-volume, high-dimensional calculations.

Thankfully, there’s a solution to these memory and compute limitations: the stochastic
variant of gradient descent. With this variation, we split our training data into mini-
batches—small subsets of our full training dataset—to render gradient descent both man-
ageable and productive.

Although we didn’t focus on it at the time, when we trained the model in our Shal-
low Net in Keras notebook back in Chapter 5 we were already using stochastic gradient
descent by setting our optimizer to SGD in the model.compile() step. Further, in the
subsequent line of code when we called the model.fit() method, we set batch_size to
128 to specify the size of our mini-batches—the number of training data points that we
use for a given iteration of SGD. Like the learning rate η presented earlier in this chapter,
batch size is also a model hyperparameter.

Let’s work through some numbers to make the concepts of batches and stochastic
gradient descent more tangible. In the MNIST dataset, there are 60,000 training images.
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With a batch size of 128 images, we then have ⌈468.75⌉ = 469 batches7,8 of gradient
descent per epoch:

number of batches =
⌈
size of training dataset

batch size

⌉
=

⌈
60, 000 images
128 images

⌉
= ⌈468.75⌉
= 469

(8.4)

Before carrying out any training, we initialize our network with random values for each
neuron’s parameters w and b.9 To begin the first epoch of training:

1. We shuffle and divide the training images into mini-batches of 128 images each.
These 128 MNIST images provide 784 pixels each, which all together constitute
the inputs x that are passed into our neural network. It’s this shuffling step that puts
the stochastic (which means random) in “stochastic gradient descent.”

2. By forward propagation, information about the 128 images is processed by the
network, layer through layer, until the output layer ultimately produces ŷ values.

3. A cost function (e.g., cross-entropy cost) evaluates the network’s ŷ values against the
true y values, providing a cost C for this particular mini-batch of 128 images.

4. To minimize cost and thereby improve the network’s estimates of y given x, the
gradient descent part of stochastic gradient descent is performed: Every single w
and b parameter in the network is adjusted proportional to how much each con-
tributed to the error (i.e., the cost) in this batch (note that the adjustments are scaled
by the learning rate hyperparameter η).10

These four steps constitute a round of training, as summarized by Figure 8.5.
Figure 8.6 captures how rounds of training are repeated until we run out of training

images to sample. The sampling in step 1 is done without replacement, meaning that at the
end of an epoch each image has been seen by the algorithm only once, and yet between
different epochs the mini-batches are sampled randomly. After a total of 468 rounds, the
final batch contains only 96 samples.

This marks the end of the first epoch of training. Assuming we’ve set our model up
to train for further epochs, we begin the next epoch by replenishing our pool with all
60,000 training images. As we did through the previous epoch, we then proceed through
a further 469 rounds of stochastic gradient descent.11 Training continues in this way until
the total desired number of epochs is reached.

7. Because 60,000 is not perfectly divisible by 128, that 469th batch would contain only 0.75×128 = 96 images.
8. The square brackets we use here and in Equation 8.4 that appear to be missing the horizontal element from the
bottom are used to denote the calculation of an integer-value ceiling. The whole-integer ceiling of 468.75, for
example, is 469.
9. We delve into the particulars of parameter initialization with random values in Chapter 9.
10. This error-proportional adjustment is calculated during backpropagation. We haven’t covered backpropagation
explicitly yet, but it’s coming up in the next section, so hang on tight!
11. Because we’re sampling randomly, the order in which we select training images for our 469 mini-batches is
completely different for every epoch.
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Figure 8.5 An individual round of training with stochastic gradient descent. Although
mini-batch size is a hyperparameter that can vary, in this particular case, the mini-batch
consists of 128 MNIST digits, as exemplified by our hike-loving trilobite carrying a small

bag of data.

Figure 8.6 An outline of the overall process for training a neural network with
stochastic gradient descent. The entire dataset is shuffled and split into batches. Each
batch is forward propagated through the network; the output ŷ is compared to the

ground truth y and the cost C is calculated; backpropagation calculates the gradients;
and the model parameters w and b are updated. The next batch (indicated by a dashed
line) is forward propagated, and so on until all of the batches have moved through the
network. Once all the batches have been used, a single epoch is complete and the

process starts again with a reshuffling of the full training dataset.



122 Chapter 8 Training Deep Networks

The total number of epochs that we set our network to train for is yet another hyperpa-
rameter, by the way. This hyperparameter, though, is one of the easiest to get right:

■ If the cost on your validation data is going down epoch over epoch, and if your
final epoch attained the lowest cost yet, then you can try training for additional
epochs.

■ Once the cost on your validation data begins to creep upward, that’s an indicator
that your model has begun to overfit to your training data because you’ve trained for
too many epochs. (We elaborate much more on overfitting in Chapter 9.)

■ There are methods12 you can use to automatically monitor training and validation
cost and stop training early if things start to go awry. In this way, you could set
the number of epochs to be arbitrarily large and know that training will continue
until the validation cost stops improving—and certainly before the model begins
overfitting!

Escaping the Local Minimum
In all of the examples of gradient descent thus far in the chapter, our hiking trilobite has
encountered no hurdles on its journey toward minimum cost. There are no guarantees
that this would be the case, however. Indeed, such smooth sailing is unusual.

Figure 8.7 shows the mountaineering trilobite exploring the cost of some new model
that is being used to solve some new problem. With this new problem, the relationship
between the parameter p and cost C is more complex. To have our neural network esti-
mate y as accurately as possible, gradient descent needs to identify the parameter values
associated with the lowest-attainable cost. However, as our trilobite makes its way from
its random starting point in the top panel, gradient descent leads it to getting trapped in
a local minimum. As shown in the middle panel, while our intrepid explorer is in the local
minimum, a step to the left or a step to the right both lead to an increase in cost, and so
the blind trilobite stays put, completely oblivious of the existence of a deeper valley—the
global minimum—lying yonder.

All is not lost, friends, for stochastic gradient descent comes to the rescue here again.
The sampling of mini-batches can have the effect of smoothing out the cost curve, as
exemplified by the dashed curve shown in the bottom panel of Figure 8.7. This smooth-
ing happens because the estimate is noisier when estimating the gradient from a smaller
mini-batch (versus from the entire dataset). Although the actual gradient in the local
minimum truly is zero, estimates of the gradient from small subsets of the data don’t pro-
vide the complete picture and might give an inaccurate reading, causing our trilobite to
take a step left thinking there is a gradient when there really isn’t one. This noisiness and
inaccuracy is paradoxically a good thing! The incorrect gradient may result in a step that
is large enough for the trilobite to escape the local valley and continue making its way
down the mountain. Thus, by estimating the gradient many times on these mini-batches,
the noise is smoothed out and we are able to avoid local minima. In summary, although
each mini-batch on its own lacks complete information about the cost curve, in the long
run—over a large number of mini-batches—this tends to work to our advantage.

12. See keras.io/callbacks/#earlystopping.

http://keras.io/callbacks/


Optimization: Learning to Minimize Cost 123

Figure 8.7 A trilobite applying vanilla gradient descent from a random starting point
(top panel) is ensnared by a local minimum of cost (middle panel). By turning to

stochastic gradient descent in the bottom panel, the daring trilobite is able to bypass the
local minimum and make its way toward the global minimum.

Like the learning rate hyperparameter η, there is also a Goldilocks-style sweet spot for
batch size. If the batch size is too large, the estimate of the gradient of the cost function is
far more accurate. In this way, the trilobite has a more exacting impression of the gradient
in its immediate vicinity and is able to take a step (proportional to η) in the direction of
the steepest possible descent. However, the model is at risk of becoming trapped in local
minima as described in the preceding paragraph.13 Besides that, the model might not fit
in memory on your machine, and the compute time per iteration of gradient descent
could be very long.

On the other hand, if the batch size is too small, each gradient estimate may be exces-
sively noisy (because a very small subset of the data is being used to estimate the gradient
of the entire dataset) and the corresponding path down the mountain will be unneces-
sarily circuitous; training will take longer because of these erratic gradient descent steps.
Furthermore, you’re not taking advantage of the memory and compute resources on your

13. It’s worth noting that the learning rate η plays a role here. If the size of the local minimum was smaller than
the step size, the trilobite would likely breeze right past the local minimum, akin to how we step over cracks in
the sidewalk.



124 Chapter 8 Training Deep Networks

machine.14 With that in mind, here are our rules of thumb for finding the batch-size
sweet spot:

■ Start with a batch size of 32.
■ If the mini-batch is too large to fit into memory on your machine, try decreasing

your batch size by powers of 2 (e.g., from 32 to 16).
■ If your model trains well (i.e., cost is going down consistently) but each epoch

is taking very long and you are aware that you have RAM to spare,15 you could
experiment with increasing your batch size. To avoid getting trapped in local min-
ima, we don’t recommend going beyond 128.

Backpropagation
Although stochastic gradient descent operates well on its own to adjust parameters and
minimize cost in many types of machine learning models, for deep learning models in
particular there is an extra hurdle: We need to be able to efficiently adjust parameters
through multiple layers of artificial neurons. To do this, stochastic gradient descent is part-
nered up with a technique called backpropagation.

Backpropagation—or backprop for short—is an elegant application of the “chain rule”
from calculus.16 As shown along the bottom of Figure 8.6 and as suggested by its very
name, backpropagation courses through a neural network in the opposite direction of
forward propagation. Whereas forward propagation carries information about the input
x through successive layers of neurons to approximate y with ŷ, backpropagation carries
information about the cost C backwards through the layers in reverse order and, with the
overarching aim of reducing cost, adjusts neuron parameters throughout the network.

Although the nitty-gritty of backpropagation has been relegated to Appendix B, it’s
worth understanding (in broad strokes) what the backpropagation algorithm does: Any
given neural network model is randomly initialized with parameter (w and b) values
(such initialization is detailed in Chapter 9). Thus, prior to any training, when the first
x value is fed in, the network outputs a random guess at ŷ. This is unlikely to be a good
guess, and the cost associated with this random guess will probably be high. At this point,
we need to update the weights in order to minimize the cost—the very essence of ma-
chine learning. To do this within a neural network, we use backpropagation to calculate
the gradient of the cost function with respect to each weight in the network.

14. Stochastic gradient descent with a batch size of 1 is known as online learning. It’s worth noting that this is
not the fastest method in terms of compute. The matrix multiplication associated with each round of mini-batch
training is highly optimized, and so training can be several orders of magnitude quicker when using moderately
sized mini-batches relative to online learning.
15. On a Unix-based operating system, including macOS, RAM usage may be assessed by running the top or
htop command within a Terminal window.
16. To elucidate the mathematics underlying backpropagation, a fair bit of partial-derivative calculus is necessary.
While we encourage the development of an in-depth understanding of the beauty of backprop, we also appreciate
that calculus might not be the most appetizing topic for everyone. Thus, we’ve placed our content on backprop
mathematics in Appendix B.
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