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P hysics is one of the most fundamental of the sciences. Scientists of all  disciplines 
use the ideas of physics, including chemists who study the structure of molecules, 
paleontologists who try to reconstruct how  dinosaurs walked, and climatologists 

who study how human activities affect the atmosphere and oceans. Physics is also the 
foundation of all engineering and technology. No engineer could design a flat-screen TV, 
a prosthetic leg, or even a better mousetrap without first understanding the basic laws  
of physics.

The study of physics is also an adventure. You’ll find it challenging, sometimes frus-
trating, occasionally painful, and often richly rewarding. If you’ve ever wondered why the 
sky is blue, how radio waves can travel through empty space, or how a satellite stays in 
orbit, you can find the answers by using fundamental physics. You’ll come to see phys-
ics as a towering achievement of the human intellect in its quest to understand our world  
and ourselves.

In this opening chapter, we’ll go over some important preliminaries that we’ll need 
throughout our study. We’ll discuss the nature of physical theory and the use of ideal-
ized models to represent physical systems. We’ll introduce the systems of units used to 
describe physical quantities and discuss ways to describe the accuracy of a number. We’ll 
look at examples of problems for which we can’t (or don’t want to) find a precise answer, 
but for which rough estimates can be useful and interesting. Finally, we’ll study several 
aspects of vectors and vector algebra. We’ll need vectors throughout our study of physics 
to help us describe and analyze physical quantities, such as velocity and force, that have 
direction as well as magnitude.

1.1 THE NATURE OF PHYSICS
Physics is an experimental science. Physicists observe the phenomena of nature and try to 
find patterns that relate these phenomena. These patterns are called physical theories or, 
when they are very well established and widely used, physical laws or principles.

LEARNING OUTCOMES

In this chapter, you'll learn...
 1.1 What a physical theory is.
 1.2 The four steps you can use to solve any 

physics problem.
 1.3 Three fundamental quantities of physics 

and the units physicists use to measure 
them.

 1.4 How to work with units in your 
 calculations.

 1.5 How to keep track of significant figures 
in your calculations.

 1.6 How to make rough, order-of-magnitude 
estimates.

 1.7 The difference between scalars and 
 vectors, and how to add and subtract 
 vectors graphically.

 1.8 What the components of a vector are 
and how to use them in calculations.

 1.9 What unit vectors are and how to use 
them with components to describe 
vectors.

 1.10 Two ways to multiply vectors: the  scalar 
(dot) product and the vector (cross) 
 product.

? Tornadoes are spawned by severe 
 thunderstorms, so being able to predict 

the path of thunderstorms is essential.  
If a thunderstorm is moving at 15 km>h in  
a direction 37° north of east, how far north 
does the thunderstorm move in 2.0 h?  
(i) 30 km; (ii) 24 km; (iii) 18 km; (iv) 12 km; 
(v) 9 km.

 1  Units, Physical  
Quantities, and Vectors
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30    CHAPTER 1 Units, Physical Quantities, and Vectors

   CAUTION    The meaning of “theory” A theory is not just a random thought or an  unproven  
concept. Rather, a theory is an explanation of natural phenomena based on observation and ac-
cepted fundamental principles. An example is the well-established theory of biological evolution, 
which is the result of extensive research and observation by generations of biologists. ❙

To develop a physical theory, a physicist has to ask appropriate questions, design exper-
iments to try to answer the questions, and draw appropriate conclusions from the results. 
Figure 1.1 shows two important facilities used for physics experiments.

Legend has it that Galileo Galilei (1564–1642) dropped light and heavy objects from 
the top of the Leaning Tower of Pisa (Fig. 1.1a) to find out whether their rates of fall were 
different. From examining the results of his experiments (which were actually much more 
sophisticated than in the legend), he deduced the theory that the acceleration of a freely 
falling object is independent of its weight.

The development of physical theories such as Galileo’s often takes an indirect path, 
with blind alleys, wrong guesses, and the discarding of unsuccessful theories in favor of 
more promising ones. Physics is not simply a collection of facts and principles; it is also 
the process by which we arrive at general principles that describe how the physical uni-
verse behaves.

No theory is ever regarded as the ultimate truth. It’s always possible that new observa-
tions will require that a theory be revised or discarded. Note that we can disprove a theory 
by finding behavior that is inconsistent with it, but we can never prove that a theory is 
always correct.

Getting back to Galileo, suppose we drop a feather and a cannonball. They certainly 
do not fall at the same rate. This does not mean that Galileo was wrong; it means that his 
theory was incomplete. If we drop the feather and the cannonball in a vacuum to elimi-
nate the effects of the air, then they do fall at the same rate. Galileo’s theory has a range 
of validity: It applies only to objects for which the force exerted by the air (due to air 
resistance and buoyancy) is much less than the weight. Objects like feathers or parachutes 
are clearly outside this range.

1.2 SOLVING PHYSICS PROBLEMS
At some point in their studies, almost all physics students find themselves  thinking, “I 
understand the concepts, but I just can’t solve the problems.” But in physics, truly under-
standing a concept means being able to apply it to a variety of problems. Learning how to 
solve problems is absolutely essential; you don’t know physics unless you can do physics.

How do you learn to solve physics problems? In every chapter of this book you’ll find 
Problem-Solving Strategies that offer techniques for setting up and solving problems 
efficiently and accurately. Following each Problem-Solving Strategy are one or more 
worked Examples that show these techniques in action. (The Problem-Solving Strategies 
will also steer you away from some incorrect techniques that you may be tempted to use.) 
You’ll also find additional examples that aren’t associated with a particular Problem-
Solving Strategy. In addition, at the end of each chapter you’ll find a Bridging Problem 
that uses more than one of the key ideas from the chapter. Study these strategies and 
problems carefully, and work through each example for yourself on a piece of paper.

Different techniques are useful for solving different kinds of physics problems, which 
is why this book offers dozens of Problem-Solving Strategies. No matter what kind of 
problem you’re dealing with, however, there are certain key steps that you’ll always fol-
low. (These same steps are equally useful for problems in math, engineering, chemistry, 
and many other fields.) In this book we’ve organized these steps into four stages of solving 
a problem.

All of the Problem-Solving Strategies and Examples in this book will follow these four 
steps. (In some cases we’ll combine the first two or three steps.) We encourage you to follow 
these same steps when you solve problems yourself. You may find it useful to remember the 
acronym I SEE—short for Identify, Set up, Execute, and Evaluate.

(b) By doing experiments in apparent
weightlessness on board the International
Space Station, physicists have been able to
make sensitive measurements that would be
impossible in Earth’s surface gravity.

(a) According to legend, Galileo investigated
falling objects by dropping them from the
Leaning Tower of Pisa, Italy, ...

... and he studied pendulum motion
by observing the swinging chandelier
in the adjacent cathedral.

Figure 1.1 Two research laboratories.
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 1.3 Standards and Units    31

Idealized Models
In everyday conversation we use the word “model” to mean either a small-scale replica, 
such as a model railroad, or a person who displays articles of clothing (or the absence 
thereof). In physics a model is a simplified version of a physical system that would be too 
complicated to analyze in full detail.

For example, suppose we want to analyze the motion of a thrown baseball (Fig. 1.2a). 
How complicated is this problem? The ball is not a perfect sphere (it has raised seams), 
and it spins as it moves through the air. Air resistance and wind influence its motion, the 
ball’s weight varies a little as its altitude changes, and so on. If we try to include all these 
effects, the analysis gets hopelessly complicated. Instead, we invent a simplified version of 
the problem. We ignore the size, shape, and rotation of the ball by representing it as a point 
object, or particle. We ignore air resistance by making the ball move in a vacuum, and 
we make the weight constant. Now we have a problem that is simple enough to deal with  
(Fig. 1.2b). We’ll analyze this model in detail in Chapter 3.

We have to overlook quite a few minor effects to make an idealized model, but we must 
be careful not to neglect too much. If we ignore the effects of gravity completely, then our 
model predicts that when we throw the ball up, it will go in a straight line and disappear 
into space. A useful model simplifies a problem enough to make it manageable, yet keeps 
its essential features.

The validity of the predictions we make using a model is limited by the validity of 
the model. For example, Galileo’s prediction about falling objects (see Section 1.1) corre-
sponds to an idealized model that does not include the effects of air resistance. This model 
works fairly well for a dropped cannonball, but not so well for a feather.

Idealized models play a crucial role throughout this book. Watch for them in discus-
sions of physical theories and their applications to specific problems.

1.3 STANDARDS AND UNITS
As we learned in Section 1.1, physics is an experimental science. Experiments require 
measurements, and we generally use numbers to describe the results of measurements. 
Any number that is used to describe a physical phenomenon quantitatively is called 

IDENTIFY the relevant concepts:

• Use the physical conditions stated in the problem to help you 
 decide which physics concepts are relevant.

• Identify the target variables of the problem—that is, the 
 quantities whose values you’re trying to find, such as the speed at 
which a projectile hits the ground, the intensity of a sound made 
by a siren, or the size of an image made by a lens.

• Identify the known quantities, as stated or implied in the problem. 
This step is essential whether the problem asks for an algebraic 
expression or a numerical answer.

SET UP the problem:

• Given the concepts, known quantities, and target variables that 
you found in the IDENTIFY step, choose the equations that you’ll 
use to solve the problem and decide how you’ll use them. Study 
the worked examples in this book for tips on how to select the 
proper equations. If this seems challenging, don’t worry—you’ll 
get better with practice!

• Make sure that the variables you have identified correlate exactly 
with those in the equations.

• If appropriate, draw a sketch of the situation described in the 
problem. (Graph paper and a ruler will help you make clear, 
 useful sketches.)

EXECUTE the solution:

• Here’s where you’ll “do the math” with the equations that you 
selected in the SET UP step to solve for the target variables that 
you found in the IDENTIFY step. Study the worked examples to 
see what’s involved in this step.

EVALUATE your answer:

• Check your answer from the SOLVE step to see if it’s reasonable. 
(If you’re calculating how high a thrown baseball goes, an  answer 
of 1.0 mm is unreasonably small and an answer of 100 km is 
 unreasonably large.) If your answer includes an algebraic expres-
sion, confirm that it correctly represents what would happen if the 
variables in it had very large or very small values.

• For future reference, make note of any answer that represents a 
quantity of particular significance. Ask yourself how you might 
answer a more general or more difficult version of the problem 
you have just solved.

PROBLEM-SOLVING STRATEGY 1.1 Solving Physics Problems

Direction of
motion

Direction of
motion

Treat the baseball as a point object (particle).

No air resistance.

A baseball spins and has a complex shape.

Air resistance and
wind exert forces
on the ball.

Gravitational force on ball
depends on altitude.

Gravitational force
on ball is constant.

(a) A real baseball in flight

(b) An idealized model of the baseball

Figure 1.2 To simplify the analysis of  
(a) a baseball in flight, we use (b) an 
idealized model.
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32    CHAPTER 1 Units, Physical Quantities, and Vectors

a physical quantity. For example, two physical quantities that describe you are your 
weight and your height. Some physical quantities are so fundamental that we can define 
them only by describing how to measure them. Such a definition is called an operational 
definition. Two examples are measuring a distance by using a ruler and measuring a 
time interval by using a stopwatch. In other cases we define a physical quantity by de-
scribing how to calculate it from other quantities that we can measure. Thus we might 
define the average speed of a moving object as the distance traveled (measured with a 
ruler) divided by the time of travel (measured with a stopwatch).

When we measure a quantity, we always compare it with some reference standard. When 
we say that a basketball hoop is 3.05 meters above the ground, we mean that this distance is 
3.05 times as long as a meter stick, which we define to be 1 meter long. Such a standard de-
fines a unit of the quantity. The meter is a unit of distance, and the second is a unit of time. 
When we use a number to describe a physical quantity, we must always specify the unit that 
we are using; to describe a distance as simply “3.05” wouldn’t mean anything.

To make accurate, reliable measurements, we need units of measurement that do not 
change and that can be duplicated by observers in various locations. The system of units used 
by scientists and engineers around the world is commonly called “the metric system,” but 
since 1960 it has been known officially as the International System, or SI (the abbreviation 
for its French name, Système International). Appendix A gives a list of all SI units as well as 
definitions of the most fundamental units. The United States and a few other countries use the 
British System of Units. Appendix C gives a list of British units as well as their definitions.

Time
From 1889 until 1967, the unit of time was defined as a certain fraction of the mean solar 
day, the average time between successive arrivals of the sun at its highest point in the sky. 
The present standard, adopted in 1967, is much more precise. It is based on an atomic 
clock, which uses the energy difference between the two lowest energy states of the  
cesium atom (133Cs). When bombarded by microwaves of precisely the proper frequency, 
cesium atoms undergo a transition from one of these states to the other. One second  
(abbreviated s) is defined as the time required for 9,192,631,770 cycles of this microwave 
radiation (Fig. 1.3a).

Length
In 1960 an atomic standard for the meter was also established, using the wavelength of the 
orange-red light emitted by excited atoms of krypton 186Kr2. From this length standard, 
the speed of light in vacuum was measured to be 299,792,458 m>s. In November 1983, the 
length standard was changed again so that the speed of light in vacuum was defined to be 
precisely 299,792,458 m>s. Hence the new definition of the meter (abbreviated m) is the 
distance that light travels in vacuum in 1>299,792,458 second (Fig. 1.3b). This modern 
definition provides a much more precise standard of length than the one based on a wave-
length of light.

Mass
Until recently the unit of mass, the kilogram (abbreviated kg), was defined to be the 
mass of a metal cylinder kept at the International Bureau of Weights and Measures in 
France (Fig. 1.4). This was a very inconvenient standard to use. Since 2018 the value of 
the  kilogram has been based on a fundamental constant of nature called Planck’s constant 
(symbol h), whose defined value h = 6.62607015 * 10-34 kg # m2>s is related to those of 
the kilogram, meter, and second. Given the values of the meter and the second, the masses 
of objects can be experimentally determined in terms of h. (We’ll explain the meaning of 
h in Chapter 28.) The gram (which is not a fundamental unit) is 0.001 kilogram.

Light
source

Cesium-133
atom

Cesium-133
atom

Microwave radiation with a frequency of
exactly 9,192,631,770 cycles per second ...

... causes the outermost electron of a
cesium-133 atom to reverse its spin direction.

An atomic clock uses this phenomenon to tune
microwaves to this exact frequency. It then
counts 1 second for each 9,192,631,770 cycles.

Light travels exactly
299,792,458 m in 1 s.

(a) Measuring the second

(b) Measuring the meter

0:00 s 0:01 s

Outermost
electron

Figure 1.3 The measurements used to 
determine (a) the duration of a second 
and (b) the length of a meter. These 
measurements are useful for setting 
standards because they give the same 
results no matter where they are made.
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 1.3 Standards and Units    33

Other derived units can be formed from the fundamental units. For example, the units 
of speed are meters per second, or m>s; these are the units of length (m) divided by the 
units of time (s).

Unit Prefixes
Once we have defined the fundamental units, it is easy to introduce larger and smaller 
units for the same physical quantities. In the metric system these other units are related to 
the fundamental units (or, in the case of mass, to the gram) by multiples of 10 or 1

10. Thus 
one kilometer 11 km2 is 1000 meters, and one centimeter 11 cm2 is 1

100 meter. We usually 
express multiples of 10 or 1

10 in exponential notation: 1000 = 103, 1
1000 = 10-3, and so on. 

With this notation, 1 km = 103 m and 1 cm = 10-2 m.
The names of the additional units are derived by adding a prefix to the name of the 

fundamental unit. For example, the prefix “kilo-,” abbreviated k, always means a unit 
larger by a factor of 1000; thus

 1 kilometer = 1 km  = 103 meters = 103 m

 1 kilogram = 1 kg  = 103 grams  = 103 g

 1 kilowatt  = 1 kW = 103 watts  = 103 W

A table in Appendix A lists the standard SI units, with their meanings and abbreviations.
Table 1.1 gives some examples of the use of multiples of 10 and their prefixes with the 

units of length, mass, and time. Figure 1.5 (next page) shows how these prefixes are used 
to describe both large and small distances.

Figure 1.4 Until 2018 a metal cylinder 
was used to define the value of the 
kilogram. (The one shown here, a copy 
of the one in France, was maintained by 
the U. S. National Institute of Standards 
and Technology.) Today the kilogram is 
defined in terms of one of the fundamental 
constants of nature.

TABLE 1.1 Some Units of Length, Mass, and Time

Length Mass Time

1 nanometer  = 1 nm  = 10-9 m 
(a few times the size of the largest atom)

1 micrometer = 1 mm = 10-6 m 
(size of some bacteria and other cells)

1 millimeter  = 1 mm = 10-3 m 
(diameter of the point of a ballpoint pen)

1 centimeter  = 1 cm  = 10-2 m 
(diameter of your little finger)

1 kilometer  = 1 km  = 103 m 
(distance in a 10 minute walk)

1 microgram  = 1 mg  = 10-6 g = 10-9 kg 
(mass of a very small dust particle)

1 milligram  = 1 mg  = 10-3 g = 10-6 kg 
(mass of a grain of salt)

1 gram  = 1 g  = 10-3 kg 
(mass of a paper clip)

1 nanosecond  = 1 ns  = 10-9 s 
(time for light to travel 0.3 m)

1 microsecond = 1 ms  = 10-6 s 
(time for space station to move 8 mm)

1 millisecond  = 1 ms = 10-3 s 
(time for a plane flying at cruising speed  
to travel 25 cm)
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34    CHAPTER 1 Units, Physical Quantities, and Vectors

1.4 USING AND CONVERTING UNITS
We use equations to express relationships among physical quantities, represented  
by algebraic symbols. Each algebraic symbol always denotes both a number and a 
unit. For example, d might represent a distance of 10 m, t a time of 5 s, and v a speed  
of 2 m>s.

An equation must always be dimensionally consistent. You can’t add apples and au-
tomobiles; two terms may be added or equated only if they have the same units. For ex-
ample, if an object moving with constant speed v travels a distance d in a time t, these 
quantities are related by the equation

d = vt

If d is measured in meters, then the product vt must also be expressed in meters. Using the 
above numbers as an example, we may write

10 m = a2 
m
s
b (5 s)

Because the unit s in the denominator of m>s cancels, the product has units of meters, as 
it must. In calculations, units are treated just like algebraic symbols with respect to multi-
plication and division.

   CAUTION    Always use units in calcula tions Make it a habit to always write numbers with 
the correct units and carry the units through the calculation as in the example above. This pro-
vides a very useful check. If at some stage in a calculation you find that an equation or an 
expression has inconsistent units, you know you have made an error. In this book we’ll always 
carry units through all calculations, and we strongly urge you to follow this practice when you 
solve problems. ❙

(g) 10-14 m
Radius of an
atomic nucleus

(f) 10-10 m
Radius of an
atom

Note: (f) is a scanning tunneling
microscope image of atoms on a
crystal surface; (g) is an artist’s
impression.

(e) 10-5 m
Diameter of a
red blood cell

(d) 1 m
Human
dimensions

(c) 107 m
Diameter of
the earth

(b) 1011 m
Distance to
the sun

(a) 1026 m
Limit of the
observable
universe

Figure 1.5 Some typical lengths in the universe.
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 1.4 Using and Converting Units    35

IDENTIFY the relevant concepts: In most cases, it’s best to use the 
fundamental SI units (lengths in meters, masses in kilograms, and 
times in seconds) in every problem. If you need the answer to be in a 
different set of units (such as kilometers, grams, or hours), wait until 
the end of the problem to make the conversion.

SET UP the problem and EXECUTE the solution: Units are multi-
plied and divided just like ordinary algebraic symbols. This gives us 
an easy way to convert a quantity from one set of units to another: 
Express the same physical quantity in two different units and form 
an equality.

For example, when we say that 1 min = 60 s, we don’t mean 
that the number 1 is equal to the number 60; rather, we mean that 
1 min represents the same physical time interval as 60 s. For this 
reason, the ratio (1 min)>(60 s) equals 1, as does its reciprocal, 
(60 s)>(1 min). We may multiply a quantity by either of these  factors 

(which we call unit multipliers) without changing that quantity’s 
physical meaning. For example, to find the number of seconds in 
3 min, we write

3 min = (3 min)a 60 s
1 min

b = 180 s

EVALUATE your answer: If you do your unit conversions correctly, 
unwanted units will cancel, as in the example above. If, instead, you 
had multiplied 3 min by (1 min)>(60 s), your result would have been 
the nonsensical 1

20 min2>s. To be sure you convert units properly, in-
clude the units at all stages of the calculation.

Finally, check whether your answer is reasonable. For exam-
ple, the result 3 min = 180 s is reasonable because the second is a 
smaller unit than the minute, so there are more seconds than minutes 
in the same time interval.

PROBLEM-SOLVING STRATEGY 1.2 Unit Conversions

EXAMPLE 1.1 Converting speed units

The world land speed record of 1228.0 km>h was set on October 15, 
1997, by Andy Green in the jet-engine car Thrust SSC. Express this 
speed in meters per second.

IDENTIFY, SET UP, and EXECUTE We need to convert the units of a 
speed from km>h to m>s. We must therefore use unit multipliers that re-
late (i) kilometers to meters and (ii) hours to seconds. We have 1 km =  
1000 m, and 1 h = 3600 s. We set up the conversion as follows, which 
ensures that all the desired cancellations by division take place:

 1228.0 km>h = a1228.0 
km
h

b a1000 m
1 km

b a 1 h
3600 s

b

 = 341.1 m>s

EVALUATE This example shows a useful rule: A speed expressed in m>s 
is the value expressed in km>h divided by 3.6 (hence, between one third 
and one quarter of the value in km>h). A speed expressed in km>h is the 
value expressed in m>s times 3.6. For example 20 m>s = 72 km>h and 
90 km>h = 25 m>s.

KEYCONCEPT To convert units, multiply by an appropriate unit 
multiplier.

EXAMPLE 1.2 Converting volume units

One of the world’s largest cut diamonds is the First Star of Africa 
(mounted in the British Royal Sceptre and kept in the Tower of 
London). Its volume is 30.2 cubic centimeters. What is its volume in 
cubic millimeters? In cubic meters?

IDENTIFY, SET UP, and EXECUTE Here we are to convert the units of a 
volume from cubic centimeters 1cm32 to both cubic millimeters 1mm32 
and cubic meters 1m32. Since 1 cm = 10 mm we have

 30.2 cm3 = 130.2 cm32a10 mm
1 cm

b
3

 = 130.2211023 
cm3 mm3

cm3 = 30,200 mm3

Since 1 m = 100 cm, we also have

 30.2 cm3 = 130.2 cm32a 1 m
100 cm

b
3

 = 130.22a 1
100

b
3

 
cm3 m3

cm3 = 30.2 * 10-6 m3

 = 3.02 * 10-5 m3

EVALUATE Following the pattern of these conversions, can you show 
that 1 km3 = 109 m3 and that 1 mm3 = 10-18  m3?

KEYCONCEPT If the units of a quantity are a product of simpler 
units, such as m3 = m * m * m, use a product of unit multipliers to 
convert these units.
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36    CHAPTER 1 Units, Physical Quantities, and Vectors

1.5 UNCERTAINTY AND SIGNIFICANT FIGURES
Measurements always have uncertainties. If you measure the thickness of the cover of a 
hardbound version of this book using an ordinary ruler, your measurement is reliable to 
only the nearest millimeter, and your result will be 3 mm. It would be wrong to state this 
result as 3.00 mm; given the limitations of the measuring  device, you can’t tell whether 
the actual thickness is 3.00 mm, 2.85 mm, or 3.11 mm. But if you use a micrometer cali-
per, a device that measures distances reliably to the nearest 0.01 mm, the result will be 
2.91 mm. The distinction between the measurements with a ruler and with a caliper is in 
their uncertainty; the measurement with a caliper has a smaller uncertainty. The uncer-
tainty is also called the error because it indicates the maximum difference there is likely 
to be between the measured value and the true value. The uncertainty or error of a mea-
sured value depends on the measurement technique used.

We often indicate the accuracy of a measured value—that is, how close it is likely 
to be to the true value—by writing the number, the symbol { , and a second number 
indicating the uncertainty of the measurement. If the diameter of a steel rod is given as 
56.47 { 0.02 mm, this means that the true value is likely to be within the range from 
56.45 mm to 56.49 mm. In a commonly used shorthand notation, the number 1.64541212 
means 1.6454 { 0.0021. The numbers in parentheses show the uncertainty in the final 
digits of the main number.

We can also express accuracy in terms of the maximum likely fractional error or 
percent error (also called fractional uncertainty and percent uncertainty). A resistor la-
beled ;47 ohms { 10%< probably has a true resistance that differs from 47 ohms by no 
more than 10% of 47 ohms—that is, by about 5 ohms. The resistance is probably between 
42 and 52 ohms. For the diameter of the steel rod given above, the fractional error is 
10.02 mm2>156.47 mm2, or about 0.0004; the percent error is 10.000421100%2, or about 
0.04%. Even small percent errors can be very significant (Fig. 1.6).

In many cases the uncertainty of a number is not stated explicitly. Instead, the uncer-
tainty is indicated by the number of meaningful digits, or significant  figures, in the mea-
sured value. We gave the thickness of the cover of the book as 2.91 mm, which has three 
significant figures. By this we mean that the first two digits are known to be correct, while 
the third digit is uncertain. The last digit is in the  hundredths place, so the uncertainty is 
about 0.01 mm. Two values with the same number of significant figures may have different 
uncertainties; a distance given as 137 km also has three significant figures, but the uncer-
tainty is about 1 km. A distance given as 0.25 km has two significant figures (the zero to the 
left of the decimal point doesn’t count); if given as 0.250 km, it has three significant figures.

When you use numbers that have uncertainties to compute other numbers, the com-
puted numbers are also uncertain. When numbers are multiplied or divided, the result 
can have no more significant figures than the factor with the fewest significant figures 
has. For example, 3.1416 * 2.34 * 0.58 = 4.3. When we add and subtract numbers, it’s 
the location of the decimal point that matters, not the number of significant figures. For 
example, 123.62 + 8.9 = 132.5. Although 123.62 has an uncertainty of about 0.01, 8.9 
has an uncertainty of about 0.1. So their sum has an uncertainty of about 0.1 and should 
be written as 132.5, not 132.52. Table 1.2 summarizes these rules for significant figures.

To apply these ideas, suppose you want to verify the value of p, the ratio of the circum-
ference of a circle to its diameter. The true value of this ratio to ten digits is 3.141592654. 
To test this, you draw a large circle and measure its circumference and diameter to the 
nearest millimeter, obtaining the values 424 mm and 135 mm (Fig. 1.7). You enter these 
into your calculator and obtain the quotient 1424 mm2>1135 mm2 = 3.140740741. This 
may seem to disagree with the true value of p, but keep in mind that each of your mea-
surements has three significant figures, so your measured value of p can have only three 
significant figures. It should be stated simply as 3.14. Within the limit of three significant 
figures, your value does agree with the true value.

In the examples and problems in this book we usually give numerical values with three 
significant figures, so your answers should usually have no more than three significant fig-
ures. (Many numbers in the real world have even less accuracy. The speedometer in a car, 
for example, usually gives only two significant figures.) Even if you do the arithmetic with a 

Figure 1.6 This spectacular mishap was 
the  result of a very small percent error— 
traveling a few meters too far at the end 
of a journey of hundreds of thousands of 
meters.

TABLE 1.2 Using Significant Figures

Multiplication or division:
Result can have no more significant figures
than the factor with the fewest significant figures:

Addition or subtraction:
Number of significant figures is determined by
the term with the largest uncertainty (i.e., fewest
digits to the right of the decimal point):

0.745 *  2.2

1.32578 *  107 *  4.11 *  10 - 3 =  5.45 *  104

27.153 +  138.2 -  11.74 =  153.6

3.885
 =  0.42

The measured values have only three significant
figures, so their calculated  ratio (p) also has
only three significant figures.

424 mm

135 mm

Figure 1.7 Determining the value of p from 
the circumference and diameter of a circle.
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calculator that displays ten digits, a ten-digit answer would misrepresent the accuracy of the 
results. Always round your final answer to keep only the correct number of significant figures 
or, in doubtful cases, one more at most. In Example 1.1 it would have been wrong to state 
the answer as 341.01861 m>s. Note that when you reduce such an answer to the appropriate 
number of significant figures, you must round, not truncate. Your calculator will tell you that 
the ratio of 525 m to 311 m is 1.688102894; to three significant figures, this is 1.69, not 1.68.

Here’s a special note about calculations that involve multiple steps: As you work, it’s helpful 
to keep extra significant figures in your calculations. Once you have your final answer, round it 
to the correct number of significant figures. This will give you the most accurate results.

When we work with very large or very small numbers, we can show significant figures 
much more easily by using scientific notation, sometimes called powers-of-10 notation. 
The distance from the earth to the moon is about 384,000,000 m, but writing the number in 
this form doesn’t indicate the number of significant figures. Instead, we move the decimal 
point eight places to the left (corresponding to dividing by 108) and multiply by 108; that is,

384,000,000 m = 3.84 * 108 m

In this form, it is clear that we have three significant figures. The number 4.00 * 10-7 
also has three significant figures, even though two of them are zeros. Note that in scien-
tific notation the usual practice is to express the quantity as a number between 1 and 10 
multiplied by the appropriate power of 10.

When an integer or a fraction occurs in an algebraic equation, we treat that number 
as having no uncertainty at all. For example, in the equation vx

 2 = v0x
 2  + 2ax 1x - x02, 

which is Eq. (2.13) in Chapter 2, the coefficient 2 is exactly 2. We can consider this coeffi-
cient as having an infinite number of significant figures (2.000000 c). The same is true 
of the exponent 2 in vx

 2 and v0x
 2.

Finally, let’s note that precision is not the same as accuracy. A cheap digital watch that 
gives the time as 10:35:17 a.m. is very precise (the time is given to the second), but if the watch 
runs several minutes slow, then this value isn’t very accurate. On the other hand, a grandfather 
clock might be very accurate (that is, display the correct time), but if the clock has no second 
hand, it isn’t very precise. A high-quality measurement is both precise and accurate.

EXAMPLE 1.3 Significant figures in multiplication

The rest energy E of an object with rest mass m is given by Albert 
Einstein’s famous equation E = mc2, where c is the speed of light 
in vacuum. Find E for an electron for which (to three significant 
figures) m = 9.11 * 10-31 kg. The SI unit for E is the joule (J); 
1 J = 1 kg # m2>s2.

IDENTIFY and SET UP Our target variable is the energy E. We are given 
the value of the mass m; from Section 1.3 (or Appendix G) the speed of 
light is c = 2.99792458 * 108 m>s.

EXECUTE Substituting the values of m and c into Einstein’s equation, 
we find

 E = 19.11 * 10-31 kg212.99792458 * 108 m>s22
 = 19.11212.9979245822110-312110822 kg # m2>s2

 = 181.8765967821103-31+12*8242 kg # m2>s2

 = 8.187659678 * 10-14 kg # m2>s2

Since the value of m was given to only three significant figures, we 
must round this to

E = 8.19 * 10-14 kg # m2>s2 = 8.19 * 10-14 J

EVALUATE While the rest energy contained in an electron may seem 
ridiculously small, on the atomic scale it is tremendous. Compare our 
answer to 10-19 J, the energy gained or lost by a single atom during 
a typical chemical reaction. The rest energy of an electron is about 
1,000,000 times larger! (We’ll discuss the significance of rest energy in 
Chapter 37.)

KEYCONCEPT When you are multiplying (or dividing) quantities, 
the result can have no more significant figures than the quantity with the 
fewest significant figures.

TEST YOUR UNDERSTANDING OF SECTION 1.5 The density of a material is equal to its 
mass divided by its volume. What is the density 1in kg>m32 of a rock of mass 1.80 kg and volume 
6.0 * 10-4 m3? (i) 3 * 103 kg>m3; (ii) 3.0 *  103 kg >m3; (iii) 3.00 * 103 kg>m3;  
(iv) 3.000 * 103 kg>m3; (v) any of these—all of these answers are mathematically equivalent.

ANSWER

❙ (ii) Density=11.80 kg2>16.0*10-4 m32=3.0*103 kg>m3. When we multiply or divide, the 
number with the fewest significant figures controls the number of significant figures in the result.
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38    CHAPTER 1 Units, Physical Quantities, and Vectors

1.6 ESTIMATES AND ORDERS OF MAGNITUDE
We have stressed the importance of knowing the accuracy of numbers that represent phys-
ical quantities. But even a very crude estimate of a quantity often gives us useful informa-
tion. Sometimes we know how to calculate a certain quantity, but we have to guess at the 
data we need for the calculation. Or the calculation might be too complicated to carry out 
exactly, so we make rough approximations. In either case our result is also a guess, but 
such a guess can be useful even if it is uncertain by a factor of two, ten, or more. Such cal-
culations are called order-of-magnitude estimates. The great Italian-American nuclear 
physicist Enrico Fermi (1901–1954) called them “back-of-the-envelope calculations.”

Exercises 1.15 through 1.20 at the end of this chapter are of the estimating, or order-of-
magnitude, variety. Most require guesswork for the needed input data. Don’t try to look up 
a lot of data; make the best guesses you can. Even when they are off by a factor of ten, the 
results can be useful and interesting.

TEST YOUR UNDERSTANDING OF SECTION 1.6 Can you estimate the total number of teeth in the 
mouths of all the students on your campus? (Hint: How many teeth are in your mouth? Count them!)

ANSWER

APPLICATION Scalar 
Temperature, Vector Wind The 
comfort level on a wintry day depends 
on the temperature, a scalar quantity 
that can be positive or negative (say, 
+5°C or -20°C) but has no direction. 
It also depends on the wind velocity, a 
vector quantity with both magnitude and 
direction (for example, 15 km>h from 
the west).

1.7 VECTORS AND VECTOR ADDITION
Some physical quantities, such as time, temperature, mass, and density, can be described 
completely by a single number with a unit. But many other important quantities in physics 
have a direction associated with them and cannot be described by a single number. A simple 
example is the motion of an airplane: We must say not only how fast the plane is moving but 
also in what direction. The speed of the airplane combined with its direction of motion con-
stitute a quantity called velocity. Another example is force, which in physics means a push 
or pull exerted on an object. Giving a complete description of a force means describing both 
how hard the force pushes or pulls on the object and the direction of the push or pull.

When a physical quantity is described by a single number, we call it a  scalar quantity. 
In contrast, a vector quantity has both a magnitude (the “how much” or “how big” part) 
and a direction in space. Calculations that combine scalar quantities use the operations of 
ordinary arithmetic. For example, 6 kg + 3 kg = 9 kg, or 4 * 2 s = 8 s. However, com-
bining vectors requires a different set of operations.

To understand more about vectors and how they combine, we start with the simplest 
vector quantity, displacement. Displacement is a change in the position of an object. 

❙ The answer depends on how many students are enrolled at your campus.
EXAMPLE 1.4 An order-of-magnitude estimate

You are writing an adventure novel in which the hero escapes with a 
billion dollars’ worth of gold in his suitcase. Could anyone carry that 
much gold? Would it fit in a suitcase?

IDENTIFY, SET UP, and EXECUTE Gold sells for about $40 a gram 
(the price per gram has varied between $34 and $45 over the past five 
years or so), or about $1000 for 25 grams, that is about $1 million for  
25 kilograms. A billion (1 * 109) dollars’ worth of gold has a mass 103 
times greater, about 25,000 kilograms or 25 tonnes! No human could 
lift it, let alone carry it. (25 tonnes is about the same as the mass of five 
asian elephants or two double-decker buses.)

What would the density of gold need to be in order for this amount 
to fit in a suitcase? The same amount of water would have the volume of  
25 m3 or 25,000 liters (the density of water is 1 g>cm3 = 1000 kg>m3 and  
1 liter = 1 L = 10−3 m3). This is more than 100 times the capacity of even 
the largest suitcase (120 to 160 L). Therefore, for 25,000 kilograms of gold 
to fit in a suitcase, gold would need to be at least 100 times denser than 

water. In other words, a cube of gold of side 10 cm would have a mass 
larger than 100 kg, which is certainly not the case. Gold is much denser 
than water, but not that dense. (The density of gold is actually 19.3 g>cm3,  
which is roughly 20 times that of water; the densest naturally occurring 
element on earth is osmium which has the density of 22.6 g>cm3.)

EVALUATE Clearly your novel needs rewriting. Maybe your hero could 
be satisfied with 1 million dollars’ worth of gold? We have seen that the 
mass of gold in this case is about 25 kilograms, an amount which your 
hero should be able to carry and which would easily fit in a briefcase. 
If you want a more spectacular amount, try the calculation again with 
a suitcase full of five-carat (1-gram) diamonds, each worth $500,000. 
Would this work?

KEYCONCEPT To decide whether the numerical value of a quantity 
is reasonable, assess the quantity in terms of other quantities that you 
can estimate, even if only roughly. 
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 1.7 Vectors and Vector Addition    39

Displacement is a vector quantity because we must state not only how far the object moves 
but also in what direction. Walking 3 km north from your front door doesn’t get you to the 
same place as walking 3 km southeast; these two displacements have the same magnitude 
but different directions.

We usually represent a vector quantity such as displacement by a single letter, such as 
A
S

 in Fig. 1.8a. In this book we always print vector symbols in boldface italic type with 
an arrow above them. We do this to remind you that vector quantities have different prop-
erties from scalar quantities; the arrow is a reminder that vectors have direction. When 
you handwrite a symbol for a vector, always write it with an arrow on top. If you don’t dis-
tinguish between scalar and vector quantities in your notation, you probably won’t make 
the distinction in your thinking either, and confusion will result.

We always draw a vector as a line with an arrowhead at its tip. The length of the line 
shows the vector’s magnitude, and the direction of the arrowhead shows the vector’s direc-
tion. Displacement is always a straight-line segment directed from the starting point to the 
ending point, even though the object’s actual path may be curved (Fig. 1.8b). Note that dis-
placement is not related directly to the total distance traveled. If the object were to continue 
past P2 and then return to P1 , the displacement for the entire trip would be zero (Fig. 1.8c).

If two vectors have the same direction, they are parallel. If they have the same mag-
nitude and the same direction, they are equal, no matter where they are  located in space. 
The vector A

S
′ from point P3 to point P4 in Fig. 1.9 has the same length and direction as 

the vector A
S

 from P1 to P2 . These two displacements are equal, even though they start at 
different points. We write this as A

S
′ ∙ A

S
 in Fig. 1.9; the boldface equals sign emphasizes 

that equality of two vector quantities is not the same relationship as equality of two scalar 
quantities. Two vector quantities are equal only when they have the same magnitude and 
the same direction.

Vector B
S

 in Fig. 1.9, however, is not equal to A
S

 because its direction is  opposite that 
of A

S
. We define the negative of a vector as a vector having the same magnitude as the 

original vector but the opposite direction. The negative of vector quantity A
S

 is denoted as 
∙A

S
, and we use a boldface minus sign to emphasize the vector nature of the quantities. 

If A
S

 is 87 m south, then ∙A
S

 is 87 m north. Thus we can write the relationship between  
A
S

 and B
S

 in Fig. 1.9 as A
S

∙ ∙ B
S

 or B
S

∙ ∙ A
S

. When two vectors A
S

 and B
S

 have opposite di-
rections, whether their magnitudes are the same or not, we say that they are antiparallel.

We usually represent the magnitude of a vector quantity by the same letter used for 
the vector, but in lightface italic type with no arrow on top. For example, if displacement 
vector A

S
 is 87 m south, then A = 87 m. An alternative notation is the vector symbol with 

vertical bars on both sides:

 1Magnitude of A
S2 = A = 0  AS 0  (1.1)

The magnitude of a vector quantity is a scalar quantity (a number) and is  always positive. 
Note that a vector can never be equal to a scalar because they are different kinds of quan-
tities. The expression ;A

S
= 6 m< is just as wrong as ;2 oranges = 3 apples<!

When we draw diagrams with vectors, it’s best to use a scale similar to those used for 
maps. For example, a displacement of 5 km might be represented in a diagram by a vector 
1 cm long, and a displacement of 10 km by a vector 2 cm long.

Vector Addition and Subtraction
Suppose a particle undergoes a displacement A

S
 followed by a second displacement B

S
. The 

final result is the same as if the particle had started at the same initial point and undergone 
a single displacement C

S
 (Fig. 1.10a, next page). We call displacement C

S
 the vector sum, 

or resultant, of displacements A
S

 and B
S

. We express this relationship symbolically as

 C
S

∙ A
S

∙ B
S

 (1.2)

The boldface plus sign emphasizes that adding two vector quantities requires a geo-
metrical process and is not the same operation as adding two scalar quantities such as 
2 + 3 = 5. In vector addition we usually place the tail of the second vector at the head, 
or tip, of the first vector (Fig. 1.10a).

Displacement B has
the same magnitude
as A but opposite
direction; B is the
negative of A.

P2 P4 P5

P1 P3 P6

A′ = A B = −AA

Displacements A and A′
are equal because they
have the same length
and direction.

S

S

S S

SS S

S

SS S

Figure 1.9 The meaning of vectors that 
have the same magnitude and the same or 
opposite direction.

A
S

S

Ending position: P2

Displacement A

Starting position: P1

P2

P1

P1

Path taken

Handwritten notation:

(a) We represent a displacement by an arrow that
points in the direction of displacement.

(b) A displacement is always a straight arrow
directed from the starting position to the ending
position. It does not depend on the path taken,
even if the path is curved.

(c) Total displacement for a round trip is 0,
regardless of the path taken or distance traveled.

Figure 1.8 Displacement as a vector 
quantity.
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40    CHAPTER 1 Units, Physical Quantities, and Vectors

If we make the displacements A
S

 and B
S

 in reverse order, with B
S

 first and A
S

 second, the 
result is the same (Fig. 1.10b). Thus

 C
S

∙ B
S

∙ A
S
 and A

S
∙ B

S
∙ B

S
∙ A

S
 (1.3)

This shows that the order of terms in a vector sum doesn’t matter. In other words, vector 
addition obeys the commutative law.

Figure 1.10c shows another way to represent the vector sum: If we draw vectors A
S

 
and B

S
 with their tails at the same point, vector C

S
 is the diagonal of a parallelogram con-

structed with A
S

 and B
S

 as two adjacent sides.

   CAUTION    Magnitudes in vector addition It’s a common error to conclude that if C
S

∙ A
S

∙ B
S
, 

then magnitude C equals magnitude A plus magnitude B. In general, this conclusion is wrong; for 
the vectors shown in Fig. 1.10, C 6 A + B. The magnitude of A

S
∙ B

S
 depends on the magnitudes 

of A
S

 and B
S

 and on the angle between A
S

 and B
S

. Only in the special case in which A
S

 and B
S

 are par-
allel is the magnitude of C

S
∙ A

S
∙ B

S
 equal to the sum of the magnitudes of A

S
 and B

S
 (Fig. 1.11a). 

When the vectors are antiparallel (Fig. 1.11b), the magnitude of C
S

 equals the difference of the mag-
nitudes of A

S
 and B

S
. Be careful to distinguish between scalar and vector quantities, and you’ll avoid 

making errors about the magnitude of a vector sum. ❙

Figure 1.12a shows three vectors A
S

, B
S

, and C
S

. To find the vector sum of all three, in 
Fig. 1.12b we first add A

S
 and B

S
 to give a vector sum D

S
; we then add  vectors C

S
 and D

S
 by 

the same process to obtain the vector sum R
S

:

R
S

∙ 1A
S

∙ B
S2 ∙ C

S
∙ D

S
∙ C

S

Alternatively, we can first add B
S

 and C
S

 to obtain vector E
S

 (Fig. 1.12c), and then add A
S

 and 
E
S

 to obtain R
S

:

R
S

∙ A
S

∙ 1B
S

∙ C
S  2 ∙ A

S
∙ E

S

We don’t even need to draw vectors D
S

 and E
S

; all we need to do is draw A
S

, B
S

, and C
S

 in suc-
cession, with the tail of each at the head of the one preceding it. The sum vector R

S
 extends 

from the tail of the first vector to the head of the last vector (Fig. 1.12d). The order makes 
no difference; Fig. 1.12e shows a different order, and you should try others. Vector addi-
tion obeys the associative law.

We can subtract vectors as well as add them. To see how, recall that vector ∙A
S

 has the 
same magnitude as A

S
 but the opposite direction. We define the difference A

S
∙ B

S
 of two 

vectors A
S

 and B
S

 to be the vector sum of A
S

 and ∙B
S

:

 A
S

∙ B
S

∙ A
S

∙ 1∙B
S2 (1.4)

Figure 1.13 shows an example of vector subtraction.

S

S

S

S

(a) We can add two vectors by placing them 
head to tail.

S
A

S
B

A

B

(c) We can also add two vectors by placing them
tail to tail and constructing a parallelogram.

A

B

S

S
C = B + A

S S

C = A + B
S S

S
C = A + B

S S

The vector sum C 
extends from the
tail of vector A ...

S

S
... to the head
of vector B.

S

(b) Adding them in reverse order gives the same
result: A + B = B + A. The order doesn’t
matter in vector addition.

S SS S

Figure 1.10 Three ways to add two vectors.

A
S

B
S

A
S

B
S

S
C = A + B

S S

S
C = A + B

SS

(a) Only when vectors A and B are parallel
does the magnitude of their vector sum C equal
the sum of their magnitudes: C =  A +  B.

S

S S

(b) When A and B are antiparallel, the
magnitude of their vector sum C equals the
difference of their magnitudes: C =  0A -  B 0.

S S

S

Figure 1.11 Adding vectors that are (a) 
parallel and (b) antiparallel.

E
S R

S
R
S

R
S

R
S

A
S

A
S

A
S

A
S

A
S

B
S

B
S

B
S

B
S

B
S

C
S

C
S

C
S

C
S

C
S

D
S

(a) To find the sum of
these three vectors ...

S S

S

S

SS

(c) ... or add B and C
to get E and then add
E to A to get R ...

S S

SS
(d) ... or add A, B, and
C to get R directly ...

S S

S

S

(e) ... or add A, B, and
C in any other order and
still get R.

(b) ... add A and B
to get D and then add
C to D to get the final
sum (resultant) R ...

S S

S

S

S

S

Figure 1.12 Several constructions for finding the vector sum A
S

∙ B
S

∙ C
S

.
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S
A + 1−B2
      = A − BA

S S
A
S

A
S

A
S

B
S

−B
S−B

S

B
S

... is equivalent to adding −B to A. 
SS

Subtracting B from A ...
SS

S
S S

With  A and  B head to head,
A − B is the vector from the
tail of A to the tail of B.

S

S

S

S

S

S

A + 1−B2 = A − B
S S SS

S

A − B+− = = =

With  A and −B head to tail,
A − B is the vector from the
tail of A to the head of −B.

S

S

S

S

SS

Figure 1.13 To construct the vector difference A
S

∙ B
S

, you can either place the tail of ∙B
S

 at the  
head of A

S
 or place the two vectors A

S
 and B

S
 head to head.

A
S

S

A
S

S
2A

- 3A

(a) Multiplying a vector by a positive scalar
changes the magnitude (length) of the vector
but not its direction.

(b) Multiplying a vector by a negative scalar
changes its magnitude and reverses its direction.

2A is twice as long as A.

- 3A is three times as long as A and points
in the opposite direction.

S S

SS

Figure 1.14 Multiplying a vector by a scalar.

EXAMPLE 1.5 Adding two vectors at right angles

A cross-country skier skis 1.00 km north and then 2.00 km east on a 
horizontal snowfield. How far and in what direction is she from the 
starting point?

IDENTIFY and SET UP The problem involves combining two displace-
ments at right angles to each other. This vector addition amounts to 
solving a right triangle, so we can use the Pythagorean theorem and 
trigonometry. The target variables are the skier’s straight-line distance 
and direction from her starting point. Figure 1.15 is a scale diagram of 
the two displacements and the resultant net displacement. We denote the 
direction from the starting point by the angle f (the Greek letter phi). 
The displacement appears to be a bit more than 2 km. Measuring the 
angle with a protractor indicates that f is about 63°.

EXECUTE The distance from the starting point to the ending point is 
equal to the length of the hypotenuse:211.00 km22 + 12.00 km22 = 2.24 km

A little trigonometry (from Appendix D) allows us to find angle f:

 tan f =
Opposite side

Adjacent side
=

2.00 km
1.00 km

= 2.00

 f = arctan 2.00 = 63.4°

We can describe the direction as 63.4° east of north or 
90° - 63.4° = 26.6° north of east.

EVALUATE Our answers (2.24 km and f = 63.4°) are close to our pre-
dictions. In Section 1.8 we’ll learn how to easily add two vectors not at 
right angles to each other.

KEYCONCEPT In every problem involving vector addition, draw the 
two vectors being added as well as the vector sum. The head-to-tail ar-
rangement shown in Figs. 1.10a and 1.10b is easiest. This will help you 
to visualize the vectors and understand the direction of the vector sum. 
Drawing the vectors is equally important for problems involving vector 
subtraction (see Fig. 1.13).

f

0 1 km 2 km

1.00 km

2.00 km

Resultant displacement

N

EW

S

Figure 1.15 The vector diagram, drawn to scale, for a ski trip.

A vector quantity such as a displacement can be multiplied by a scalar quantity (an 
ordinary number). The displacement 2A

S
 is a displacement (vector quantity) in the same 

direction as vector A
S

 but twice as long; this is the same as adding A
S

 to itself (Fig. 1.14a). 
In general, when we multiply a vector A

S
 by a scalar c, the result cA

S
 has magnitude 0 c 0A 

(the absolute value of c multiplied by the magnitude of vector A
S

). If c is positive, cA
S

 is in 
the same direction as A

S
; if c is negative, cA

S
 is in the direction opposite to A

S
. Thus 3A

S
 is 

parallel to A
S

, while -3A
S

 is antiparallel to A
S

 (Fig. 1.14b).
A scalar used to multiply a vector can also be a physical quantity. For example, 

you may be familiar with the relationship F
S

∙ maS; the net force F
S

 (a vector quantity) 
that acts on an object is equal to the product of the object’s mass m (a scalar quan-
tity) and its acceleration aS (a vector quantity). The direction of F

S
 is the same as that 

of aS because m is positive, and the magnitude of F
S

 is equal to the mass m multiplied 
by the magnitude of aS. The unit of force is the unit of mass multiplied by the unit  
of acceleration.
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42    CHAPTER 1 Units, Physical Quantities, and Vectors

TEST YOUR UNDERSTANDING OF SECTION 1.7 Two displacement vectors, S
S

 and T
S

, have 
magnitudes S = 3 m and T = 4 m. Which of the following could be the magnitude of the differ-
ence vector S

S
∙ T

S
? (There may be more than one correct answer.) (i) 9 m; (ii) 7 m; (iii) 5 m; (iv) 1 m;  

(v) 0 m; (vi) -1 m.

ANSWER

u

A
S

S

x

y

O
Ax =  Acosu

Ay =  Asinu

The components of A
are the projections
of the vector onto
the x- and y-axes.

In this case, both Ax and Ay are positive.

Figure 1.16 Representing a vector A
S

 in 
terms of its components Ax and Ay.

u

u

B
S

C
S

S

By is positive.

Bx is negative.

Both components of C are negative.

(a) y

x
Bx 1-2

By 1+2 

(b) y

x
Cx 1-2

Cy 1-2

Figure 1.17 The components of a vector 
may be positive or negative numbers.

❙ (ii), (iii), and (iv) Vector ∙T
S

 has the same magnitude as vector T
S

, so S
S

∙T
S

∙S
S

∙1∙T
S
2 is 

the sum of one vector of magnitude 3 m and one of magnitude 4 m. This sum has magnitude 7 m 
if S

S
 and ∙T

S
 are parallel and magnitude 1 m if S

S
 and ∙T

S
 are antiparallel. The magnitude of S

S
∙T

S
 

is 5 m if S
S

 and ∙T
S

 are perpendicular, when vectors S
S

, T
S

, and S
S

∙T
S

 form a 3–4–5 right triangle. 
Answer (i) is impossible because the magnitude of the sum of two vectors cannot be greater than 
the sum of the magnitudes; answer (v) is impossible because the sum of two vectors can be zero 
only if the two vectors are antiparallel and have the same magnitude; and answer (vi) is impossible 
because the magnitude of a vector cannot be negative.

1.8 COMPONENTS OF VECTORS
In Section 1.7 we added vectors by using a scale diagram and properties of right triangles. 
But calculations with right triangles work only when the two vectors are perpendicular. 
So we need a simple but general method for adding vectors. This is called the method of 
components.

To define what we mean by the components of a vector A
S

, we begin with a rectangular 
(Cartesian) coordinate system of axes (Fig. 1.16). If we think of A

S
 as a displacement vec-

tor, we can regard A
S

 as the sum of a displacement parallel to the x-axis and a displacement 
parallel to the y-axis. We use the numbers Ax and Ay to tell us how much displacement 
there is parallel to the x-axis and how much there is parallel to the y-axis, respectively. 
For example, if the +x-axis points east and the +y-axis points north, A

S
 in Fig. 1.16 could  

be the sum of a 2.00 m displacement to the east and a 1.00 m displacement to the north. 
Then Ax = +2.00 m and Ay = +1.00 m. We can use the same idea for any vectors, not 
just displacement vectors. The two numbers Ax and Ay are called the components of A

S
.

   CAUTION    Components are not vectors The components Ax and Ay of a vector A
S

 are numbers; 
they are not vectors themselves. This is why we print the symbols for components in lightface italic 
type with no arrow on top instead of in boldface italic with an arrow, which is reserved for vectors. ❙ 

We can calculate the components of vector A
S

 if we know its magnitude A and its 
direction. We’ll describe the direction of a vector by its angle relative to some refer-
ence direction. In Fig. 1.16 this reference direction is the positive x-axis, and the angle 
between vector A

S
 and the positive x-axis is u (the Greek letter theta). Imagine that vector 

A
S

 originally lies along the +x@axis and that you then rotate it to its true direction, as indi-
cated by the arrow in Fig. 1.16 on the arc for angle u. If this rotation is from the +x@axis 
toward the +y@axis, as is the case in Fig. 1.16, then u is positive; if the rotation is from the 
+x@axis toward the -y@axis, then u is negative. Thus the +y@axis is at an angle of 90°, the 
-x@axis at 180°, and the -y@axis at 270° (or -90°). If u is measured in this way, then from 
the definition of the trigonometric functions,

 
Ax

A
= cos u and 

Ay

A
 = sin u

 Ax = A cos u and Ay = A sin u

 1u measured from the +x@axis, rotating toward the +y@axis2

 (1.5)

In Fig. 1.16 Ax and Ay are positive. This is consistent with Eqs. (1.5); u is in the first 
quadrant (between 0° and 90°), and both the cosine and the sine of an angle in this quad-
rant are positive. But in Fig. 1.17a the component Bx is negative and the component By 
is positive. (If the +x-axis points east and the +y-axis points north, B

S
 could represent a 

displacement of 2.00 m west and 1.00 m north. Since west is in the –x-direction and north 
is in the +y-direction, Bx = -2.00 m is negative and By = +1.00 m is positive.) Again, 

?
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 1.8 Components of Vectors    43

this is consistent with Eqs. (1.5); now u is in the second quadrant, so cos u is negative and 
sin u is positive. In Fig. 1.17b both Cx and Cy are negative (both cos u and sin u are negative 
in the third quadrant).

   CAUTION    Relating a vector’s magnitude and direction to its components Equations (1.5) are 
correct only when the angle u is measured from the positive x-axis. If the angle of the vector is 
given from a different reference direction or you use a different rotation direction, the relationships 
are different! Example 1.6 illustrates this point. ❙

EXAMPLE 1.6 Finding components

(a) What are the x- and y-components of vector D
S

 in Fig. 1.18a? The 
magnitude of the vector is D = 3.00 m, and angle a = 45°. (b) What 
are the x- and y-components of vector E

S
 in Fig. 1.18b? The magnitude 

of the vector is E = 4.50 m, and angle b = 37.0°.

IDENTIFY and SET UP We can use Eqs. (1.5) to find the components of 
these vectors, but we must be careful: Neither angle a nor b in Fig. 1.18 
is measured from the +x@axis toward the +y@axis. We estimate from the 
figure that the lengths of both components in part (a) are roughly 2 m, 
and that those in part (b) are 3 m and 4 m. The figure indicates the signs 
of the components.

EXECUTE (a) The angle a (the Greek letter alpha) between the positive 
x-axis and D

S
 is measured toward the negative y-axis. The angle we 

must use in Eqs. (1.5) is u = -a = -45°. We then find

Dx = D cos u = 13.00 m21cos1-45°22 = +2.1 m

Dy = D sin u = 13.00 m21sin1-45°22 = -2.1 m

Had we carelessly substituted +45° for u in Eqs. (1.5), our result for Dy 
would have had the wrong sign.

(b) The x- and y-axes in Fig. 1.18b are at right angles, so it doesn’t 
matter that they aren’t horizontal and vertical, respectively. But we 
can’t use the angle b (the Greek letter beta) in Eqs. (1.5), because 
b is measured from the +y-axis. Instead, we must use the angle 
u = 90.0° - b = 90.0° - 37.0° = 53.0°. Then we find

Ex = E cos 53.0° = 14.50 m21cos 53.0°2 = +2.71 m

Ey = E sin 53.0° = 14.50 m21sin 53.0°2 = +3.59 m

EVALUATE Our answers to both parts are close to our predictions. 
But why do the answers in part (a) correctly have only two significant 
figures?

KEYCONCEPT When you are finding the components of a vector, 
always use a diagram of the vector and the coordinate axes to guide 
your calculations.

Using Components to Do Vector Calculations
Using components makes it relatively easy to do various calculations involving  
vectors. Let’s look at three important examples: finding a vector’s magnitude and direc-
tion, multiplying a vector by a scalar, and calculating the vector sum of two or more 
vectors.

1. Finding a vector’s magnitude and direction from its components. We can de-
scribe a vector completely by giving either its magnitude and direction or its x- and 
y-components. Equations (1.5) show how to find the components if we know the 
magnitude and direction. We can also reverse the process: We can find the magni-
tude and direction if we know the components. By applying the Pythagorean theo-
rem to Fig. 1.16, we find that the magnitude of vector A

S
 is

 A = 2Ax
 2 + Ay

 2 (1.6)

(We always take the positive root.) Equation (1.6) is valid for any choice of x-axis 
and y-axis, as long as they are mutually perpendicular. The expression for the vector 
direction comes from the definition of the tangent of an angle. If u is measured from 

a 

b

D
S

E
S

(a) (b)

Dy 1-2

Dx 1+2

y

x

Ex 1+2
Ey 1+2

y
x

Angle a is
measured in the
wrong sense from
the +x-axis, so in
Eqs. (1.5) we
must use -a.

Angle b is measured from the
+y-axis, not from the +x-axis.

We must use u,
which is measured from
the +x-axis toward the
+y-axis, in Eqs. (1.5).

u

Figure 1.18 Calculating the x- and y-components of vectors.
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44    CHAPTER 1 Units, Physical Quantities, and Vectors

the positive x-axis, and a positive angle is measured toward the positive y-axis (as in 
Fig. 1.16), then

 tan u =
Ay

Ax
  and  u = arctan 

Ay

Ax
 (1.7)

We’ll always use the notation arctan for the inverse tangent function (see Example 
1.5 in Section 1.7). The notation tan-1 is also commonly used, and your calculator 
may have an INV or 2ND button to be used with the TAN button.

   CAUTION    Finding the direction of a vector from its components There’s one complica-
tion in using Eqs. (1.7) to find u: Any two angles that differ by 180° have the same tangent. 
For example, in Fig. 1.19 the tangent of the angle u is tan u = Ay>Ax = +1. A calculator will 
tell you that u =  tan-11+12 = 45°. But the tangent of 180° + 45° = 225° is also equal to 
+1, so u could also be 225° (which is actually the case in Fig. 1.19). Always draw a sketch 
like Fig. 1.19 to  determine which of the two possibilities is  correct. ❙

2. Multiplying a vector by a scalar. If we multiply a vector A
S

 by a scalar c, each compo-
nent of the product D

S
∙ cA

S
 is the product of c and the corresponding component of A

S
:

 Dx = cAx ,  Dy = cAy (components of D
S

∙ cA
S

) (1.8)

For example, Eqs. (1.8) say that each component of the vector 2A
S

 is twice as great as 
the corresponding component of A

S
, so 2A

S
 is in the same direction as A

S
 but has twice 

the magnitude. Each component of the vector -3A
S

 is three times as great as the cor-
responding component of A

S
 but has the opposite sign, so -3A

S
 is in the opposite direc-

tion from A
S

 and has three times the magnitude. Hence Eqs. (1.8) are consistent with 
our discussion in Section 1.7 of multiplying a vector by a scalar (see Fig. 1.14).

3. Using components to calculate the vector sum (resultant) of two or more vectors. 
Figure 1.20 shows two vectors A

S
 and B

S
 and their vector sum R

S
, along with the x- and 

y-components of all three vectors. The x-component Rx of the vector sum is simply the 
sum 1Ax + Bx2 of the x-components of the vectors being added. The same is true for 
the y-components. In symbols,

Rx =  Ax +  Bx, Ry =  Ay +  By (1.9)

Each component of R = A + B ...
S SS

... is the sum of the corresponding components of A and B. 
SS

Figure 1.20 shows this result for the case in which the components Ax , Ay , Bx , and 
By are all positive. Draw additional diagrams to verify for yourself that Eqs. (1.9) are 
valid for any signs of the components of A

S
 and B

S
.

If we know the components of any two vectors A
S

 and B
S

, perhaps by using Eqs. 
(1.5), we can compute the components of the vector sum R

S
. Then if we need the 

magnitude and direction of R
S

, we can obtain them from Eqs. (1.6) and (1.7) with the 
A’s replaced by R’s.

We can use the same procedure to find the sum of any number of vectors. If R
S

 is 
the vector sum of A

S
, B

S
, C

S
, D

S
, E

S
, c, the components of R

S
 are

Rx = Ax + Bx + Cx + Dx + Ex + g
 Ry = Ay + By + Cy + Dy + Ey + g  (1.10)

We have talked about vectors that lie in the xy-plane only, but the compo-
nent method works just as well for vectors having any direction in space. We can 
 introduce a z-axis perpendicular to the xy-plane; then in general a vector A

S
 has com-

ponents Ax, Ay, and Az in the three coordinate directions. Its magnitude A is

 A = 2Ax
 2 + Ay

 2 + Az
 2 (1.11)

Again, we always take the positive root (Fig. 1.21). Also, Eqs. (1.10) for the vector 
sum R

S
 have a third component:

Rz = Az + Bz + Cz + Dz + Ez + g

A
S

Suppose that tanu =  

Two angles have tangents of  +1: 45° and 225°.
The diagram shows that u must be 225°.

 =  +1. What is u?

y

x

Ay =  - 2 m 

Ax

45°

225°

Ax =  - 2 m 

Ay

Figure 1.19 Drawing a sketch of a vector 
reveals the signs of its x- and y-components.

The components of R are the sums
of the components of A and B:

R is the vector sum
(resultant) of A and B.

A
S

B
S

R
S

S

S

S

S

S

S

O
x

y

By

BxAx

Rx

Ry

Ry =  Ay +  By Rx =  Ax +  Bx

Ay

Figure 1.20 Finding the vector sum 
 (resultant) of A

S
 and B

S
 using components.

In three dimensions, a vector has
x-, y-, and z-components.

Az

Ay

Ax

z

y

x

A
S

The magnitude of vector A

is A =  Ax
2 +  Ay

2 +  Az
2 .

S2

Figure 1.21 A vector in three dimensions.
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IDENTIFY the relevant concepts: Decide what the target variable is. It 
may be the magnitude of the vector sum, the direction, or both.

SET UP the problem: Sketch the vectors being added, along with suit-
able coordinate axes. Place the tail of the first vector at the origin of 
the  coordinates, place the tail of the second vector at the head of the 
first  vector, and so on. Draw the vector sum R

S
 from the tail of the first 

 vector (at the origin) to the head of the last vector. Use your sketch to 
estimate the magnitude and direction of R

S
. Select the equations you’ll 

need: Eqs. (1.5) to obtain the components of the vectors given, if neces-
sary, Eqs. (1.10) to obtain the components of the vector sum, Eq. (1.11) 
to obtain its magnitude, and Eqs. (1.7) to obtain its direction.

EXECUTE the solution as follows:

1. Find the x- and y-components of each individual vector and 
 record your results in a table, as in Example 1.7 below. If a vector 
is described by a magnitude A and an angle u, measured from the 
+x@axis toward the +y@axis, then its components are given by 
Eqs. (1.5):

Ax = A cos u  Ay = A sin u

If the angles of the vectors are given in some other way, perhaps 
using a different reference direction, convert them to  angles mea-
sured from the +x@axis as in Example 1.6.

2. Add the individual x-components algebraically (including signs) 
to find Rx, the x-component of the vector sum. Do the same for 
the y-components to find Ry. See Example 1.7.

3. Calculate the magnitude R and direction u of the vector sum by 
using Eqs. (1.6) and (1.7):

R = 2R 2
x + R 2

y   u = arctan 
Ry

Rx

EVALUATE your answer: Confirm that your results for the magnitude 
and direction of the vector sum agree with the estimates you made 
from your sketch. The value of u that you find with a calculator may 
be off by 180°; your drawing will indicate the correct value. (See 
Example 1.7 below for an illustration of this.)

PROBLEM-SOLVING STRATEGY 1.3 Vector Addition

WITH ARIATION PROBLEMS

Three players on a reality TV show are brought to the center of a 
large, flat field. Each is given a meter stick, a compass, a calculator, a 
shovel, and (in a different order for each contestant) the following three 
displacements:

A
S

: 72.4 m, 32.0° east of north

B
S

: 57.3 m, 36.0° south of west

C
S

: 17.8 m due south

The three displacements lead to the point in the field where the keys to 
a new Porsche are buried. Two players start measuring immediately, 
but the winner first calculates where to go. What does she calculate?

IDENTIFY and SET UP The goal is to find the sum (resultant) of the 
three displacements, so this is a problem in vector addition. See  
Fig. 1.22. We have chosen the +x@axis as east and the +y@axis as north. 
We estimate from the diagram that the vector sum R

S
 is about 10 m, 40° 

west of north (so u is about 90° plus 40°, or about 130°).

EXECUTE The angles of the vectors, measured from the +x@axis toward 
the +y@axis, are 190.0° - 32.0°2 = 58.0°, 1180.0° + 36.0°2 = 216.0°, 
and 270.0°, respectively. We may now use Eqs. (1.5) to find the compo-
nents of A

S
:

Ax = A cos uA = 172.4 m21cos 58.0°2 = 38.37 m

Ay = A sin uA = 172.4 m21sin 58.0°2 = 61.40 m

We’ve kept an extra significant figure in the components; we’ll round to 
the correct number of significant figures at the end of our calculation. 
The table at right shows the components of all the displacements, the 
addition of the components, and the other calculations from Eqs. (1.6) 
and (1.7).

Distance Angle x-component y-component

A = 72.4 m 58.0° 38.37 m 61.40 m

B = 57.3 m 216.0° -46.36 m -33.68 m

C = 17.8 m 270.0° 0.00 m -17.80 m

Rx = -7.99 m Ry = 9.92 m

 R = 21-7.99 m22 + 19.92 m22 = 12.7 m

 u = arctan 
9.92 m

-7.99 m
= -51°

u

A
S

B
S

C
S

R
S

57.3 m

y (north)

36.0°

x (east)
O

17.8 m
72.4 m

32.0°

Figure 1.22 Three successive displacements A
S

, B
S

, and C
S

 and the 
resultant (vector sum) displacement R

S
∙ A

S
∙ B

S
∙ C

S
.

EXAMPLE 1.7 Using components to add vectors

We’ve focused on adding displacement vectors, but the method is applicable to 
all vector quantities. When we study the concept of force in Chapter 4, we’ll find 
that forces are vectors that obey the same rules of vector addition.

Continued

M01_YOUN7335_15_GE_C01.indd   45 28/06/19   11:12 AM

Sam
ple

 p
ag

es



46    CHAPTER 1 Units, Physical Quantities, and Vectors

Comparing to angle u in Fig. 1.22 shows that the calculated angle is 
clearly off by 180°. The correct value is u = 180° + 1-51°2 = 129°,  
or 39° west of north.

EVALUATE Our calculated answers for R and u agree with our esti-
mates. Notice how drawing the diagram in Fig. 1.22 made it easy to 
avoid a 180° error in the direction of the vector sum.

KEYCONCEPT When you are adding vectors, the x-component of 
the vector sum is equal to the sum of the x-components of the vectors 
being added, and likewise for the y-component. Always use a diagram 
to help determine the direction of the vector sum.

TEST YOUR UNDERSTANDING OF SECTION 1.8 Two vectors A
S

 and B
S

 lie in the xy-plane. 
(a) Can A

S
 have the same magnitude as B

S
 but different components? (b) Can A

S
 have the same com-

ponents as B
S

 but a different magnitude?

ANSWER

❙ (a) yes, (b) no Vectors A
S

 and B
S

 can have the same magnitude but different components if they 
point in different directions. If they have the same components, however, they are the same vector 
1A

S
∙B

S
2 and so must have the same magnitude.

1.9 UNIT VECTORS
A unit vector is a vector that has a magnitude of 1, with no units. Its only purpose is to 
point—that is, to describe a direction in space. Unit vectors provide a convenient notation 
for many expressions involving components of vectors. We’ll always include a caret, or 
“hat” 1^2, in the symbol for a unit vector to distinguish it from ordinary vectors whose 
magnitude may or may not be equal to 1.

In an xy-coordinate system we can define a unit vector dn that points in the direction 
of the positive x-axis and a unit vector en that points in the direction of the positive y-axis 
(Fig. 1.23a). Then we can write a vector A

S
 in terms of its components as

 A
S

∙ Ax dn ∙ Ay en (1.12)

Equation (1.12) is a vector equation; each term, such as Ax dn, is a vector quantity (Fig. 1.23b).
Using unit vectors, we can express the vector sum R

S
 of two vectors A

S
 and B

S
 as follows:

 A
S

∙ Ax  dn ∙ Ay en
 B
S

∙ Bx  dn ∙ By  en
 R
S

∙ A
S

∙ B
S

 ∙ 1Ax dn ∙ Ay en2 ∙ 1Bx dn ∙ By en2
 ∙ 1Ax + Bx2 dn ∙ 1Ay + By2 en

  ∙ Rx dn ∙ Ry en  

(1.13)

Equation (1.13) restates the content of Eqs. (1.9) in the form of a single vector equation 
rather than two component equations.

If not all of the vectors lie in the xy-plane, then we need a third component. We in-
troduce a third unit vector kn that points in the direction of the positive z-axis (Fig. 1.24). 
Then Eqs. (1.12) and (1.13) become

Any vector can be expressed in terms
of its x-, y-, and z-components ...

... and unit vectors d, e, and k.n n
n

(1.14)
A = Axd + Aye + Azk

B = Bx d + Bye + Bzk

n n
n

S

n n
n

S

 R
S

∙ 1Ax + Bx2 dn ∙ 1Ay + By2en ∙ 1Az + Bz2 kn

  ∙ Rx dn ∙ Ryen ∙ Rz kn  (1.15)

Unit vectors d and e point in the
directions of the positive x- and y-axes.
Each has a magnitude of 1.

We can express a vector A in
terms of its components as

A
S

S

dn

n

y

x
O

y

x
O

(b)

(a)

en

n

Ayen

en

dn Axdn

A = Axd + Ay e
S

nn

Figure 1.23 (a) The unit vectors dn and en. 
(b) Expressing a vector A

S
 in terms of its 

components.

dn

en

kn

y

x
z

O

Unit vectors d, e, and k point in the
directions of the positive x-, y-, and
z-axes. Each has a magnitude of 1.

n n
n

Figure 1.24 The unit vectors dn, en, 
and kn.
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EXAMPLE 1.8 Using unit vectors

Given the two displacements

D
S

∙ 16.00 dn ∙ 3.00 en ∙ 1.00kn2 m and

E
S

∙ 14.00 dn ∙ 5.00 en ∙ 8.00kn2  m

find the magnitude of the displacement 2D
S

∙ E
S

.

IDENTIFY and SET UP We are to multiply vector D
S

 by 2 (a scalar) and 
subtract vector E

S
 from the result, so as to obtain the vector F

S
∙ 2D

S
∙ E

S
.  

Equation (1.8) says that to multiply D
S

 by 2, we multiply each of its 
components by 2. We can use Eq. (1.15) to do the subtraction; recall 
from Section 1.7 that subtracting a vector is the same as adding the neg-
ative of that vector.

EXECUTE We have

 F
S

∙ 216.00dn ∙ 3.00 en ∙ 1.00kn2 m ∙ 14.00dn ∙ 5.00 en ∙ 8.00kn2 m

 ∙ 3112.00 - 4.002dn ∙ 16.00 + 5.002 en ∙ 1-2.00 - 8.002kn4  m

 ∙ 18.00dn ∙ 11.00 en ∙ 10.00kn2 m

From Eq. (1.11) the magnitude of F
S

 is

 F = 2F  2
x + F  2

y + F  2
z

 = 218.00 m22 + 111.00 m22 + 1-10.00 m22

 = 16.9 m

EVALUATE Our answer is of the same order of magnitude as the larger 
components that appear in the sum. We wouldn’t expect our answer to 
be much larger than this, but it could be much smaller.

KEYCONCEPT By using unit vectors, you can write a single equa-
tion for vector addition that incorporates the x-, y-, and z-components.

TEST YOUR UNDERSTANDING OF SECTION 1.9 Arrange the following vectors in order of 
their magnitude, with the vector of largest magnitude first. (i) A

S
∙ (3dn ∙ 5en ∙ 2kn) m;  

(ii) B
S

∙ 1-3dn ∙ 5en ∙ 2kn2 m; (iii) C
S

∙ 13dn ∙ 5en ∙ 2kn2 m; (iv) D
S

∙ 13dn ∙ 5en ∙ 2kn2 m.

ANSWER

❙ All have the same magnitude. Vectors A
S

, B
S

, C
S

, and D
S

 point in different directions but have the 
same magnitude:

 A=B=C=D=21{3 m22+1{5 m22+1{2 m22

 = 29 m2+25 m2+4 m2=238 m2=6.2 m
1.10 PRODUCTS OF VECTORS

We saw how vector addition develops naturally from the problem of combining displace-
ments. It will prove useful for calculations with many other vector quantities. We can also 
express many physical relationships by using products of vectors. Vectors are not ordinary 
numbers, so we can’t directly apply ordinary multiplication to vectors. We’ll define two 
different kinds of products of vectors. The first, called the scalar product, yields a result 
that is a scalar quantity. The second, the vector product, yields another vector.

Scalar Product
We denote the scalar product of two vectors A

S
 and B

S
 by A

S # B
S

. Because of this notation, 
the scalar product is also called the dot product. Although A

S
 and B

S
 are vectors, the quan-

tity A
S # B

S
 is a scalar.

To define the scalar product A
S # B

S
 we draw the two vectors A

S
 and B

S
 with their tails at the 

same point (Fig. 1.25a). The angle f (the Greek letter phi) between their directions ranges 
from 0° to 180°. Figure 1.25b shows the projection of  vector B

S
 onto the direction of A

S
; this 

projection is the component of B
S

 in the direction of A
S

 and is equal to B cos f. (We can take 
components along any direction that’s convenient, not just the x- and y-axes.) We define 
A
S # B

S
 to be the magnitude of A

S
 multiplied by the component of B

S
 in the direction of A

S
, or

Angle between A and B when placed tail to tail
S S

Scalar (dot) product
of vectors A and B

S S
Magnitudes of
A and B
S S

A ~ B =  AB cosf =  0 A 0 0 B  0 cosf (1.16)
S SS S

(Magnitude of A) *    Component of B
                                    in direction of A

(Magnitude of B) *    Component of A
                                    in direction of B

f

A
S

A
S

A
S

B
S

B
S

B
S

S

S

S S

S

S

Place the vectors tail to tail.

(a)

f

B cos f

f

A cos f

a b

a b

(b) A # B equals A(B cos f).
SS

(c) A # B also equals B(A cos f).
SS

Figure 1.25 Calculating the scalar product 
of two vectors, A

S # B
S

= AB cos f.
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Alternatively, we can define A
S # B

S
 to be the magnitude of B

S
 multiplied by the compo-

nent of A
S

 in the direction of B
S

, as in Fig. 1.25c. Hence A
S # B

S =  B1A cos f2 = AB cos f, 
which is the same as Eq. (1.16).

The scalar product is a scalar quantity, not a vector, and it may be positive, negative, 
or zero. When f is between 0° and 90°, cos f 7 0 and the scalar product is positive 
(Fig. 1.26a). When f is between 90° and 180° so cos f 6 0, the component of B

S
 in the 

direction of A
S

 is negative, and A
S # B

S
 is negative (Fig. 1.26b). Finally, when f = 90°, 

A
S # B

S
= 0 (Fig. 1.26c). The scalar product of two perpendicular vectors is always zero.

For any two vectors A
S

 and B
S

, AB cos f = BA cos f. This means that A
S # B

S
= B

S # A
S

. 
The scalar product obeys the commutative law of multiplication; the order of the two vec-
tors does not matter.

We’ll use the scalar product in Chapter 6 to describe work done by a force. In later 
chapters we’ll use the scalar product for a variety of purposes, from calculating electric 
potential to determining the effects that varying magnetic fields have on electric circuits.

Using Components to Calculate the Scalar Product
We can calculate the scalar product A

S # B
S

 directly if we know the x-, y-, and z-components 
of A

S
 and B

S
. To see how this is done, let’s first work out the scalar products of the unit 

vectors dn, en, and kn. All unit vectors have magnitude 1 and are perpendicular to each other. 
Using Eq. (1.16), we find

 dn # dn = en # en = kn # kn = 112112 cos 0° = 1

  dn # en = dn # kn = en # kn = 112112 cos 90° = 0 
(1.17)

Now we express A
S

 and B
S

 in terms of their components, expand the product, and use these 
products of unit vectors:

 A
S # B

S
= 1Ax dn ∙ Ay en ∙ Az kn2 # 1Bx dn ∙ By en ∙ Bz kn2

 = Ax dn # Bx dn + Ax dn # By en + Ax dn # Bz kn

 + Ay en # Bx dn + Ay en # By  en + Ay en # Bz kn

 + Az kn # Bx dn + Az kn # By en + Az kn # Bz kn

 = Ax Bx dn # dn + Ax By dn # en + Ax Bz  dn # kn

 + Ay Bx en # dn + Ay By en # en + Ay Bz en # kn

  + Az  Bx kn # dn + Az  By kn # en + Az  Bz kn # kn  

(1.18)

From Eqs. (1.17) you can see that six of these nine terms are zero. The three that sur-
vive give

Scalar (dot) product
of vectors A and B

S S Components of A
S

Components of B
S

A ~ B =  AxBx +  AyBy +  AzBz (1.19)
S S

Thus the scalar product of two vectors is the sum of the products of their respective 
components.

The scalar product gives a straightforward way to find the angle f between any two 
vectors A

S
 and B

S
 whose components are known. In this case we can use Eq. (1.19) to find 

the scalar product of A
S

 and B
S

. Example 1.10 shows how to do this.

A
S

B
S

A
S

B
S

A
S

B
S

S

If f =  90°, A # B =  0
because B has zero component
in the direction of A.

S S

S

If f is between 90° and 180°,
A # B is negative ...
S S

... because B cos f 7  0.

(a)

f

... because B cos f 6  0.

(b)

f

(c)

f =  90°

If f is between
0° and 90°, A # B
is positive ...

S S

Figure 1.26 The scalar product 
A
S # B

S
= AB cos f can be positive, 

negative, or zero, depending on the 
angle between A

S
 and B

S
.

M01_YOUN7335_15_GE_C01.indd   48 28/06/19   11:12 AM

Sam
ple

 p
ag

es


