
Sam
ple

 p
ag

es

Table of Contents

 Preface xi

 Introduction 1

I: Spark Foundations

 1 Introducing Big Data, Hadoop, and Spark 5

Introduction to Big Data, Distributed Computing, and Hadoop 5

A Brief History of Big Data and Hadoop 6

Hadoop Explained 7

Introduction to Apache Spark 13

Apache Spark Background 13

Uses for Spark 14

Programming Interfaces to Spark 14

Submission Types for Spark Programs 14

Input/Output Types for Spark Applications 16

The Spark RDD 16

Spark and Hadoop 16

Functional Programming Using Python 17

Data Structures Used in Functional Python Programming 17

Python Object Serialization 20

Python Functional Programming Basics 23

Summary 25

 2 Deploying Spark 27

Spark Deployment Modes 27

Local Mode 28

Spark Standalone 28

Spark on YARN 29

Spark on Mesos 30

Preparing to Install Spark 30

Getting Spark 31

Installing Spark on Linux or Mac OS X 32

Installing Spark on Windows 34

Exploring the Spark Installation 36

Deploying a Multi-Node Spark Standalone Cluster 37

Sam
ple

 p
ag

es

viiContents

Deploying Spark in the Cloud 39

Amazon Web Services (AWS) 39

Google Cloud Platform (GCP) 41

Databricks 42

Summary 43

 3 Understanding the Spark Cluster Architecture 45

Anatomy of a Spark Application 45

Spark Driver 46

Spark Workers and Executors 49

The Spark Master and Cluster Manager 51

Spark Applications Using the Standalone Scheduler 53

Spark Applications Running on YARN 53

Deployment Modes for Spark Applications Running on YARN 53

Client Mode 54

Cluster Mode 55

Local Mode Revisited 56

Summary 57

 4 Learning Spark Programming Basics 59

Introduction to RDDs 59

Loading Data into RDDs 61

Creating an RDD from a File or Files 61

Methods for Creating RDDs from a Text File or Files 63

Creating an RDD from an Object File 66

Creating an RDD from a Data Source 66

Creating RDDs from JSON Files 69

Creating an RDD Programmatically 71

Operations on RDDs 72

Key RDD Concepts 72

Basic RDD Transformations 77

Basic RDD Actions 81

Transformations on PairRDDs 85

MapReduce and Word Count Exercise 92

Join Transformations 95

Joining Datasets in Spark 100

Transformations on Sets 103

Transformations on Numeric RDDs 105

Summary 108

Sam
ple

 p
ag

es

viii Contents

II: Beyond the Basics

 5 Advanced Programming Using the Spark Core API 111

Shared Variables in Spark 111

Broadcast Variables 112

Accumulators 116

Exercise: Using Broadcast Variables and Accumulators 119

Partitioning Data in Spark 120

Partitioning Overview 120

Controlling Partitions 121

Repartitioning Functions 123

Partition-Specific or Partition-Aware API Methods 125

RDD Storage Options 127

RDD Lineage Revisited 127

RDD Storage Options 128

RDD Caching 131

Persisting RDDs 131

Choosing When to Persist or Cache RDDs 134

Checkpointing RDDs 134

Exercise: Checkpointing RDDs 136

Processing RDDs with External Programs 138

Data Sampling with Spark 139

Understanding Spark Application and Cluster Configuration 141

Spark Environment Variables 141

Spark Configuration Properties 145

Optimizing Spark 148

Filter Early, Filter Often 149

Optimizing Associative Operations 149

Understanding the Impact of Functions and Closures 151

Considerations for Collecting Data 152

Configuration Parameters for Tuning and Optimizing Applications 152

Avoiding Inefficient Partitioning 153

Diagnosing Application Performance Issues 155

Summary 159

 6 SQL and NoSQL Programming with Spark 161

Introduction to Spark SQL 161

Introduction to Hive 162

Spark SQL Architecture 166

Sam
ple

 p
ag

es

ixContents

Getting Started with DataFrames 168

Using DataFrames 179

Caching, Persisting, and Repartitioning DataFrames 187

Saving DataFrame Output 188

Accessing Spark SQL 191

Exercise: Using Spark SQL 194

Using Spark with NoSQL Systems 195

Introduction to NoSQL 196

Using Spark with HBase 197

Exercise: Using Spark with HBase 200

Using Spark with Cassandra 202

Using Spark with DynamoDB 204

Other NoSQL Platforms 206

Summary 206

 7 Stream Processing and Messaging Using Spark 209

Introducing Spark Streaming 209

Spark Streaming Architecture 210

Introduction to DStreams 211

Exercise: Getting Started with Spark Streaming 218

State Operations 219

Sliding Window Operations 221

Structured Streaming 223

Structured Streaming Data Sources 224

Structured Streaming Data Sinks 225

Output Modes 226

Structured Streaming Operations 227

Using Spark with Messaging Platforms 228

Apache Kafka 229

Exercise: Using Spark with Kafka 234

Amazon Kinesis 237

Summary 240

 8 Introduction to Data Science and Machine Learning Using Spark 243

Spark and R 243

Introduction to R 244

Using Spark with R 250

Exercise: Using RStudio with SparkR 257

Sam
ple

 p
ag

es

x Contents

Machine Learning with Spark 259

Machine Learning Primer 259

Machine Learning Using Spark MLlib 262

Exercise: Implementing a Recommender Using Spark MLlib 267

Machine Learning Using Spark ML 271

Using Notebooks with Spark 275

Using Jupyter (IPython) Notebooks with Spark 275

Using Apache Zeppelin Notebooks with Spark 278

Summary 279

 Index 281

Sam
ple

 p
ag

es

3
Understanding the Spark

Cluster Architecture

It is not the beauty of a building you should look at; it’s the construction
of the foundation that will stand the test of time.

David Allan Coe, American songwriter

In This Chapter:

 Detailed overview of the Spark application and cluster components

 Spark resource schedulers and Cluster Managers

 How Spark applications are scheduled on YARN clusters

 Spark deployment modes

Before you begin your journey as a Spark programmer, you should have a solid understanding
of the Spark application architecture and how applications are executed on a Spark cluster. This
chapter closely examines the components of a Spark application, looks at how these components
work together, and looks at how Spark applications run on Standalone and YARN clusters.

Anatomy of a Spark Application

A Spark application contains several components, all of which exist whether you’re running Spark
on a single machine or across a cluster of hundreds or thousands of nodes.

Each component has a specific role in executing a Spark program. Some of these roles, such as the
client components, are passive during execution; other roles are active in the execution of the
program, including components executing computation functions.

Sam
ple

 p
ag

es

46 Chapter 3 Understanding the Spark Cluster Architecture

The components of a Spark application are the Driver, the Master, the Cluster Manager, and
the Executor(s), which run on worker nodes, or Workers. Figure 3.1 shows all the Spark components
in the context of a Spark Standalone application. You will learn more about each component and
its function in more detail later in this chapter.

Figure 3.1 Spark Standalone cluster application components.

All Spark components, including the Driver, Master, and Executor processes, run in Java virtual
machines (JVMs). A JVM is a cross-platform runtime engine that can execute instructions
compiled into Java bytecode. Scala, which Spark is written in, compiles into bytecode and runs
on JVMs.

It is important to distinguish between Spark’s runtime application components and the loca-
tions and node types on which they run. These components run in different places using differ-
ent deployment modes, so don’t think of these components in physical node or instance terms.
For instance, when running Spark on YARN, there would be several variations of Figure 3.1.
However, all the components pictured are still involved in the application and have the same roles.

Spark Driver

The life of a Spark application starts and finishes with the Spark Driver. The Driver is the process
that clients use to submit applications in Spark. The Driver is also responsible for planning and
coordinating the execution of the Spark program and returning status and/or results (data) to the
client. The Driver can physically reside on a client or on a node in the cluster, as you will see later.

SparkSession

The Spark Driver is responsible for creating the SparkSession. The SparkSession object represents a
connection to a Spark cluster. The SparkSession is instantiated at the beginning of a Spark applica-
tion, including the interactive shells, and is used for the entirety of the program.

Sam
ple

 p
ag

es

47Anatomy of a Spark Application

Prior to Spark 2.0, entry points for Spark applications included the SparkContext, used for Spark
core applications; the SQLContext and HiveContext, used with Spark SQL applications; and the
StreamingContext, used for Spark Streaming applications. The SparkSession object introduced
in Spark 2.0 combines all these objects into a single entry point that can be used for all Spark
applications.

Through its SparkContext and SparkConf child objects, the SparkSession object contains all the
runtime configuration properties set by the user, including configuration properties such as the
Master, application name, number of Executors, and more. Figure 3.2 shows the SparkSession
object and some of its configuration properties within a pyspark shell.

Figure 3.2 SparkSession properties.

SparkSession Name

The object name for the SparkSession instance is arbitrary. By default, the SparkSession
instantiation in the Spark interactive shells is named spark. For consistency, you always
instantiate the SparkSession as spark; however, the name is up to the developer’s discretion.

Listing 3.1 demonstrates how to create a SparkSession within a non-interactive Spark application,
such as a program submitted using spark-submit.

Listing 3.1 Creating a SparkSession

from pyspark.sql import SparkSession
spark = SparkSession.builder \
 .master("spark://sparkmaster:7077") \
 .appName("My Spark Application") \

Sam
ple

 p
ag

es

48 Chapter 3 Understanding the Spark Cluster Architecture

 .config("spark.submit.deployMode", "client") \
 .getOrCreate()
numlines = spark.sparkContext.textFile("file:///opt/spark/licenses") \
 .count()
print("The total number of lines is " + str(numlines))

Application Planning

One of the main functions of the Driver is to plan the application. The Driver takes the applica-
tion processing input and plans the execution of the program. The Driver takes all the requested
transformations (data manipulation operations) and actions (requests for output or prompts to
execute programs) and creates a directed acyclic graph (DAG) of nodes, each representing a transfor-
mational or computational step.

Directed Acyclic Graph (DAG)

A DAG is a mathematical construct that is commonly used in computer science to represent
dataflows and their dependencies. DAGs contain vertices, or nodes, and edges. Vertices in a
dataflow context are steps in the process flow. Edges in a DAG connect vertices to one another
in a directed orientation and in such a way that it is impossible to have circular references.

A Spark application DAG consists of tasks and stages. A task is the smallest unit of schedulable
work in a Spark program. A stage is a set of tasks that can be run together. Stages are dependent
upon one another; in other words, there are stage dependencies.

In a process scheduling sense, DAGs are not unique to Spark. For instance, they are used in other
Big Data ecosystem projects, such as Tez, Drill, and Presto for scheduling. DAGs are fundamental
to Spark, so it is worth being familiar with the concept.

Application Orchestration

The Driver also coordinates the running of stages and tasks defined in the DAG. Key driver activi-
ties involved in the scheduling and running of tasks include the following:

 Keeping track of available resources to execute tasks

 Scheduling tasks to run “close” to the data where possible (the concept of data locality)

Other Functions

In addition to planning and orchestrating the execution of a Spark program, the Driver is also
responsible for returning the results from an application. These could be return codes or data
in the case of an action that requests data to be returned to the client (for example, an interactive
query).

The Driver also serves the application UI on port 4040, as shown in Figure 3.3. This UI is created
automatically; it is independent of the code submitted or how it was submitted (that is, interac-
tive using pyspark or non-interactive using spark-submit).

Sam
ple

 p
ag

es

49Anatomy of a Spark Application

Figure 3.3 Spark application UI.

If subsequent applications launch on the same host, successive ports are used for the application
UI (for example, 4041, 4042, and so on).

Spark Workers and Executors

Spark Executors are the processes on which Spark DAG tasks run. Executors reserve CPU and
memory resources on slave nodes, or Workers, in a Spark cluster. An Executor is dedicated to a
specific Spark application and terminated when the application completes. A Spark program
normally consists of many Executors, often working in parallel.

Typically, a Worker node—which hosts the Executor process—has a finite or fixed number
of Executors allocated at any point in time. Therefore, a cluster—being a known number of
nodes—has a finite number of Executors available to run at any given time. If an application
requires Executors in excess of the physical capacity of the cluster, they are scheduled to start
as other Executors complete and release their resources.

As mentioned earlier in this chapter, JVMs host Spark Executors. The JVM for an Executor is
allocated a heap, which is a dedicated memory space in which to store and manage objects.

Sam
ple

 p
ag

es

50 Chapter 3 Understanding the Spark Cluster Architecture

The amount of memory committed to the JVM heap for an Executor is set by the property
spark.executor.memory or as the --executor-memory argument to the pyspark,
spark-shell, or spark-submit commands.

Executors store output data from tasks in memory or on disk. It is important to note that Workers
and Executors are aware only of the tasks allocated to them, whereas the Driver is responsible
for understanding the complete set of tasks and the respective dependencies that comprise an
application.

By using the Spark application UI on port 404x of the Driver host, you can inspect Executors for
the application, as shown in Figure 3.4.

Figure 3.4 Executors tab in the Spark application UI.

For Spark Standalone cluster deployments, a worker node exposes a user interface on port 8081, as
shown in Figure 3.5.

Sam
ple

 p
ag

es

51Anatomy of a Spark Application

Figure 3.5 Spark Worker UI.

The Spark Master and Cluster Manager

The Spark Driver plans and coordinates the set of tasks required to run a Spark application.
The tasks themselves run in Executors, which are hosted on Worker nodes.

The Master and the Cluster Manager are the central processes that monitor, reserve, and allo-
cate the distributed cluster resources (or containers, in the case of YARN or Mesos) on which
the Executors run. The Master and the Cluster Manager can be separate processes, or they can
combine into one process, as is the case when running Spark in Standalone mode.

Spark Master

The Spark Master is the process that requests resources in the cluster and makes them available
to the Spark Driver. In all deployment modes, the Master negotiates resources or containers with
Worker nodes or slave nodes and tracks their status and monitors their progress.

When running Spark in Standalone mode, the Spark Master process serves a web UI on port 8080
on the Master host, as shown in Figure 3.6.

Sam
ple

 p
ag

es

52 Chapter 3 Understanding the Spark Cluster Architecture

Figure 3.6 Spark Master UI.

Spark Master Versus Spark Driver

It is important to distinguish the runtime functions of the Driver and the Master. The name
Master may be inferred to mean that this process is governing the execution of the application—
but this is not the case. The Master simply requests resources and makes those resources avail-
able to the Driver. Although the Master monitors the status and health of these resources, it is
not involved in the execution of the application and the coordination of its tasks and stages. That
is the job of the Driver.

Cluster Manager

The Cluster Manager is the process responsible for monitoring the Worker nodes and reserv-
ing resources on these nodes upon request by the Master. The Master then makes these cluster
resources available to the Driver in the form of Executors.

Sam
ple

 p
ag

es

53Deployment Modes for Spark Applications Running on YARN

As discussed earlier, the Cluster Manager can be separate from the Master process. This is the case
when running Spark on Mesos or YARN. In the case of Spark running in Standalone mode, the
Master process also performs the functions of the Cluster Manager. Effectively, it acts as its own
Cluster Manager.

A good example of the Cluster Manager function is the YARN ResourceManager process for Spark
applications running on Hadoop clusters. The ResourceManager schedules, allocates, and moni-
tors the health of containers running on YARN NodeManagers. Spark applications then use these
containers to host Executor processes, as well as the Master process if the application is running
in cluster mode; we will look at this shortly.

Spark Applications Using the Standalone Scheduler

In Chapter 2, “Deploying Spark,” you learned about the Standalone scheduler as a deployment
option for Spark. You also deployed a fully functional multi-node Spark Standalone cluster in one
of the exercises in Chapter 2. As discussed earlier, in a Spark cluster running in Standalone mode,
the Spark Master process performs the Cluster Manager function as well, governing available
resources on the cluster and granting them to the Master process for use in a Spark application.

Spark Applications Running on YARN

As discussed previously, Hadoop is a very popular and common deployment platform for Spark.
Some industry pundits believe that Spark will soon supplant MapReduce as the primary process-
ing platform for applications in Hadoop. Spark applications on YARN share the same runtime
architecture but have some slight differences in implementation.

ResourceManager as the Cluster Manager

In contrast to the Standalone scheduler, the Cluster Manager in a YARN cluster is the YARN
ResourceManager. The ResourceManager monitors resource usage and availability across all
nodes in a cluster. Clients submit Spark applications to the YARN ResourceManager. The
ResourceManager allocates the first container for the application, a special container called
the ApplicationMaster.

ApplicationMaster as the Spark Master

The ApplicationMaster is the Spark Master process. As the Master process does in other cluster
deployments, the ApplicationMaster negotiates resources between the application Driver and the
Cluster Manager (or ResourceManager in this case); it then makes these resources (containers)
available to the Driver for use as Executors to run tasks and store data for the application.
The ApplicationMaster remains for the lifetime of the application.

Deployment Modes for Spark Applications Running

on YARN

Two deployment modes can be used when submitting Spark applications to a YARN cluster: Client
mode and Cluster mode. Let’s look at them now.

Sam
ple

 p
ag

es

54 Chapter 3 Understanding the Spark Cluster Architecture

Client Mode

In Client mode, the Driver process runs on the client submitting the application. It is essentially
unmanaged; if the Driver host fails, the application fails. Client mode is supported for both
interactive shell sessions (pyspark, spark-shell, and so on) and non-interactive application
submission (spark-submit). Listing 3.2 shows how to start a pyspark session using the Client
deployment mode.

Listing 3.2 YARN Client Deployment Mode

$SPARK_HOME/bin/pyspark \
--master yarn-client \
--num-executors 1 \
--driver-memory 512m \
--executor-memory 512m \
--executor-cores 1
OR
$SPARK_HOME/bin/pyspark \
--master yarn \
--deploy-mode client \
--num-executors 1 \
--driver-memory 512m \
--executor-memory 512m \
--executor-cores 1

Figure 3.7 provides an overview of a Spark application running on YARN in Client mode.

Figure 3.7 Spark application running in YARN Client mode.

Sam
ple

 p
ag

es

55Deployment Modes for Spark Applications Running on YARN

The steps shown in Figure 3.7 are described here:

1. The client submits a Spark application to the Cluster Manager (the YARN ResourceManager).
The Driver process, SparkSession, and SparkContext are created and run on the client.

2. The ResourceManager assigns an ApplicationMaster (the Spark Master) for the application.

3. The ApplicationMaster requests containers to be used for Executors from the
ResourceManager. With the containers assigned, the Executors spawn.

4. The Driver, located on the client, then communicates with the Executors to marshal
processing of tasks and stages of the Spark program. The Driver returns the progress, results,
and status to the client.

The Client deployment mode is the simplest mode to use. However, it lacks the resiliency required
for most production applications.

Cluster Mode

In contrast to the Client deployment mode, with a Spark application running in YARN Cluster
mode, the Driver itself runs on the cluster as a subprocess of the ApplicationMaster. This provides
resiliency: If the ApplicationMaster process hosting the Driver fails, it can be re-instantiated on
another node in the cluster.

Listing 3.3 shows how to submit an application by using spark-submit and the YARN Cluster
deployment mode. Because the Driver is an asynchronous process running in the cluster, Cluster
mode is not supported for the interactive shell applications (pyspark and spark-shell).

Listing 3.3 YARN Cluster Deployment Mode

$SPARK_HOME/bin/spark-submit \
--master yarn-cluster \
--num-executors 1 \
--driver-memory 512m \
--executor-memory 512m \
--executor-cores 1
$SPARK_HOME/examples/src/main/python/pi.py 10000
OR
$SPARK_HOME/bin/spark-submit \
--master yarn \
--deploy-mode cluster \
--num-executors 1 \
--driver-memory 512m \
--executor-memory 512m \
--executor-cores 1
$SPARK_HOME/examples/src/main/python/pi.py 10000

Sam
ple

 p
ag

es

56 Chapter 3 Understanding the Spark Cluster Architecture

Figure 3.8 provides an overview of a Spark application running on YARN in Cluster mode.

Figure 3.8 Spark application running in YARN Cluster mode.

The steps shown in Figure 3.8 are described here:

1. The client, a user process that invokes spark-submit, submits a Spark application to the
Cluster Manager (the YARN ResourceManager).

2. The ResourceManager assigns an ApplicationMaster (the Spark Master) for the application.
The Driver process is created on the same cluster node.

3. The ApplicationMaster requests containers for Executors from the ResourceManager.
Executors are spawned within the containers allocated to the ApplicationMaster by the
ResourceManager. The Driver then communicates with the Executors to marshal processing
of tasks and stages of the Spark program.

4. The Driver, running on a node in the cluster, returns progress, results, and status to the
client.

The Spark application web UI, as shown previously, is available from the ApplicationMaster host
in the cluster; a link to this user interface is available from the YARN ResourceManager UI.

Local Mode Revisited

In Local mode, the Driver, the Master, and the Executor all run in a single JVM. As discussed
earlier in this chapter, this is useful for development, unit testing, and debugging, but it has

Sam
ple

 p
ag

es

57Summary

limited use for running production applications because it is not distributed and does not scale.
Furthermore, failed tasks in a Spark application running in Local mode are not re-executed by
default. You can override this behavior, however.

When running Spark in Local mode, the application UI is available at http://localhost:4040.
The Master and Worker UIs are not available when running in Local mode.

Summary

In this chapter, you have learned about the Spark runtime application and cluster architecture,
the components or a Spark application, and the functions of these components. The components
of a Spark application include the Driver, Master, Cluster Manager, and Executors. The Driver is
the process that the client interacts with when launching a Spark application, either through one
of the interactive shells or through the spark-submit script. The Driver is responsible for creat-
ing the SparkSession object (the entry point for any Spark application) and planning an applica-
tion by creating a DAG consisting of tasks and stages. The Driver communicates with a Master,
which in turn communicates with a Cluster Manager to allocate application runtime resources
(containers) on which Executors will run. Executors are specific to a given application and run all
tasks for the application; they also store output data from completed tasks. Spark’s runtime archi-
tecture is essentially the same regardless of the cluster resource scheduler used (Standalone, YARN,
Mesos, and so on).

Now that we have explored Spark’s cluster architecture, it’s time to put the concepts into action
starting in the next chapter.

Sam
ple

 p
ag

es

http://localhost:4040

	Cover
	Half Title
	Title Page
	Copyright Page
	Contents
	Preface
	Introduction
	3 Understanding the Spark Cluster Architecture
	Anatomy of a Spark Application
	Spark Driver
	Spark Workers and Executors
	The Spark Master and Cluster Manager

	Spark Applications Using the Standalone Scheduler
	Spark Applications Running on YARN

	Deployment Modes for Spark Applications Running on YARN
	Client Mode
	Cluster Mode
	Local Mode Revisited

	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X-Y
	Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 0
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /None
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (LSC Communication Standard for creating press quality PDF files.)
 >>
 /ExportLayers /ExportVisiblePrintableLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames false
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 13.500000
 0
 13.500000
 13.500000
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /WorkingCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 30
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

