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OVERVIEW  In this chapter we review what functions are and how they are visualized as 
graphs, how they are combined and transformed, and ways they can be classified.

Functions

1 

DEFINITION  A function  f  from a set D to a set Y is a rule that assigns a single 
value f x( ) in Y to each x in D.

1.1	 Functions and Their Graphs

Functions are a tool for describing the real world in mathematical terms. A function can be 
represented by an equation, a graph, a numerical table, or a verbal description; we will use 
all four representations throughout this text. This section reviews these ideas.

Functions; Domain and Range

The temperature at which water boils depends on the elevation above sea level. The inter-
est paid on a cash investment depends on the length of time the investment is held. The 
area of a circle depends on the radius of the circle. The distance an object travels depends 
on the elapsed time.

In each case, the value of one variable quantity, say y, depends on the value of another 
variable quantity, which we often call x. We say that “y is a function of x” and write this 
symbolically as

y f x y f x( ) “ equals of ” .( )=

The symbol  f  represents the function, the letter x is the independent variable represent-
ing the input value to f, and y is the dependent variable or output value of  f  at x.

A rule that assigns more than one value to an input x, such as the rule that assigns to a 
positive number both the positive and negative square roots of the number, does not describe 
a function.

The set D of all possible input values is called the domain of the function. The domain of  f  
will sometimes be denoted by D f( ). The set of all output values f x( ) as x varies throughout D 
is called the range of the function. The range might not include every element in the set Y. The 
domain and range of a function can be any sets of objects, but often in calculus they are sets of 
real numbers interpreted as points of a coordinate line. (In Chapters 12–15, we will encounter 
functions for which the elements of the sets are points in the plane, or in space.)

Often a function is given by a formula that describes how to calculate the output value 
from the input variable. For instance, the equation p=A r 2 is a rule that calculates the 
area A of a circle from its radius r. When we define a function  f  with a formula y f x( )=  
and the domain is not stated explicitly or restricted by context, the domain is assumed to be 
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22	 Chapter 1  Functions

the largest set of real x-values for which the formula gives real y-values. This is called the 
natural domain of  f. If we want to restrict the domain in some way, we must say so. The 
domain of =y x 2 is the entire set of real numbers. To restrict the domain of the function 
to, say, positive values of x, we would write “ = >y x x, 02 .”

Changing the domain to which we apply a formula usually changes the range as well. 
The range of =y x 2 is [ )∞0, . The range of = ≥y x x, 22 , is the set of all numbers 
obtained by squaring numbers greater than or equal to 2. In set notation (see Appendix A.1),  
the range is { }≥x x 22  or { }≥y y 4  or [ )∞4, .

When the range of a function is a set of real numbers, the function is said to be  
real-valued. The domains and ranges of most real-valued functions we consider are inter-
vals or combinations of intervals. Sometimes the range of a function is not easy to find.

A function  f  is like a machine that produces an output value f x( ) in its range when-
ever we feed it an input value x from its domain (Figure 1.1). The function keys on a 
calculator give an example of a function as a machine. For instance, whenever you enter 
a nonnegative number x and press the x  key, the calculator gives an output value (the 
square root of x).

A function can also be pictured as an arrow diagram (Figure 1.2). Each arrow asso-
ciates to an element of the domain D a single element in the set Y. In Figure 1.2, the 
arrows indicate that f a( ) is associated with a, f x( ) is associated with x, and so on. Notice 
that a function can have the same output value for two different input elements in  
the domain (as occurs with f a( ) in Figure 1.2), but each input element x is assigned a 
single output value f x( ).

EXAMPLE 1    Verify the natural domains and associated ranges of some simple  
functions. The domains in each case are the values of x for which the formula makes sense.

Function Domain x( ) Range y( )

y x 2= −( )∞ ∞, [ )∞0,

y x1= −( ) ( )∞ ∪ ∞, 0 0, −( ) ( )∞ ∪ ∞, 0 0,

y x= [ )∞0, [ )∞0,

y x4= − −( ]∞, 4 [ )∞0,

y x1 2= − −[ ]1,1 [ ]0,1

Solution  The formula =y x 2 gives a real y-value for any real number x, so the domain is 
,−( )∞ ∞ . The range of =y x 2 is [ )∞0,  because the square of any real number is non-

negative and every nonnegative number y is the square of its own square root: ( )=y y
2
.

The formula y x1=  gives a real y-value for every x except =x 0. For consistency 
in the rules of arithmetic, we cannot divide any number by zero. The range of y x1= , the 
set of reciprocals of all nonzero real numbers, is the set of all nonzero real numbers, since 

( )=y y1 1 . That is, for ≠y 0 the number x y1=  is the input that is assigned to the 
output value y.

The formula y x=  gives a real y-value only if ≥x 0. The range of =y x  is 
[ )∞0,  because every nonnegative number is some number’s square root (namely, it is the 
square root of its own square).

In = −y x4 , the quantity − x4  cannot be negative. That is, − ≥x4 0,  
or ≤x 4. The formula gives nonnegative real y-values for all ≤x 4. The range of − x4  
is [ )∞0, , the set of all nonnegative numbers.

The formula y x1 2= −  gives a real y-value for every x in the closed interval from 
1−  to 1. Outside this domain, − x1 2 is negative and its square root is not a real number. 

The values of − x1 2 vary from 0 to 1 on the given domain, and the square roots of these 
values do the same. The range of − x1 2  is [ ]0,1 .�

FIGURE 1.1  A diagram showing a func-
tion as a kind of machine.

Input
(domain)

Output
(range)

x f (x)f

FIGURE 1.2  A function from a set D to  
a set Y assigns a unique element of Y to 
each element in D.

x

a f (a) f (x)

D = domain set Y = set containing
the range
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	 1.1  Functions and Their Graphs	 23

Graphs of Functions

If  f  is a function with domain D, its graph consists of the points in the Cartesian plane 
whose coordinates are the input-output pairs for  f. In set notation, the graph is

x f x x D, ( ) .( ){ }∈

The graph of the function f x x( ) 2= +  is the set of points with coordinates ( )x y,  
for which = +y x 2. Its graph is the straight line sketched in Figure 1.3.

The graph of a function  f  is a useful picture of its behavior. If ( )x y,  is a point on the 
graph, then y f x( )=  is the height of the graph above (or below) the point x. The height 
may be positive or negative, depending on the sign of f x( ) (Figure 1.4).

FIGURE 1.3  The graph of f x x( ) 2= +  
is the set of points x y,( ) for which y has the 
value x 2+ .

x

y

- 2 0

2

y  = x + 2

FIGURE 1.4  If x y,( ) lies on the graph 
of f, then the value y f x( )=  is the height 
of the graph above the point x (or below x if 
f x( ) is negative).

y

x
0 1 2
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f (x)

(x, y)

f (1)

f (2)

x =y x 2

−2 4

−1 1

0 0

1 1

3
2

9
4

2 4 EXAMPLE 2    Graph the function =y x 2 over the interval −[ ]2, 2 .

Solution  Make a table of xy-pairs that satisfy the equation =y x 2. Plot the points ( )x y,  
whose coordinates appear in the table, and draw a smooth curve (labeled with its equation) 
through the plotted points (see Figure 1.5).�

How do we know that the graph of =y x 2 doesn’t look like one of these curves?

FIGURE 1.5  Graph of the function 
in Example 2.
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y = x2

a   b

y = x2?
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y = x2?

x

y

To find out, we could plot more points. But how would we then connect them? The basic 
question still remains: How do we know for sure what the graph looks like between the 
points we plot? Calculus answers this question, as we will see in Chapter 4. Meanwhile, 
we will have to settle for plotting points and connecting them as best we can.
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24	 Chapter 1  Functions

Representing a Function Numerically

A function may be represented algebraically by a formula and visually by a graph 
(Example 2). Another way to represent a function is numerically, through a table of val-
ues. From an appropriate table of values, a graph of the function can be obtained using the 
method illustrated in Example 2, possibly with the aid of a computer. The graph consisting 
of only the points in the table is called a scatterplot.

EXAMPLE 3    Musical notes are pressure waves in the air. The data associated with 
Figure 1.6 give recorded pressure displacement versus time in seconds of a musical note 
produced by a tuning fork. The table provides a representation of the pressure function 
(in micropascals) over time. If we first make a scatterplot and then draw a smooth curve 
that approximates the data points ( )t p,  from the table, we obtain the graph shown in  
the figure.

Time Pressure

0.00091 −0.080

0.00108 0.200

0.00125 0.480

0.00144 0.693

0.00162 0.816

0.00180 0.844

0.00198 0.771

0.00216 0.603

0.00234 0.368

0.00253 0.099

0.00271 −0.141

0.00289 −0.309

0.00307 −0.348

0.00325 −0.248

0.00344 −0.041

0.00362 0.217

0.00379 0.480

0.00398 0.681

0.00416 0.810

0.00435 0.827

0.00453 0.749

0.00471 0.581

0.00489 0.346

0.00507 0.077

0.00525 −0.164

0.00543 −0.320

0.00562 −0.354

0.00579 −0.248

0.00598 −0.035

FIGURE 1.6  A smooth curve approximating the  
plotted points gives a graph of the pressure function  
represented by the accompanying tabled data  
(Example 3).

The Vertical Line Test for a Function

Not every curve in the coordinate plane can be the graph of a function. A function  f  can 
have only one value f x( ) for each x in its domain, so no vertical line can intersect the graph 
of a function at more than one point. If a is in the domain of the function f, then the vertical 
line =x a will intersect the graph of  f  at the single point a f a, ( )( ).

A circle cannot be the graph of a function, since some vertical lines intersect the circle 
twice. The circle graphed in Figure 1.7a, however, contains the graphs of two functions of 
x, namely the upper semicircle defined by the function f x x( ) 1 2= −  and the lower 
semicircle defined by the function g x x( ) 1 2−= −  (Figures 1.7b and 1.7c).

FIGURE 1.7  (a) The circle is not the graph of a function; it fails the vertical line test. (b) The 
upper semicircle is the graph of the function f x x( ) 1 2= − . (c) The lower semicircle is the 
graph of the function g x x( ) 1 2−= − .
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	 1.1  Functions and Their Graphs	 25

Piecewise-Defined Functions

Sometimes a function is described in pieces by using different formulas on different parts 
of its domain. One example is the absolute value function

=
≥

− <






x

x x

x x

, 0

, 0

First formula

Second formula

whose graph is given in Figure 1.8. The right-hand side of the equation means that the 
function equals x if ≥x 0, and equals −x if <x 0. Piecewise-defined functions often 
arise when real-world data are modeled. Here are some other examples.

EXAMPLE 4    The function

=

− <

≤ ≤

>










f x

x x

x x

x

( )

, 0

, 0 1

1, 1

First formula

Second formula

Third formula

2

is defined on the entire real line but has values given by different formulas, depending on 
the position of x. The values of  f  are given by −=y x  when < =x y x0, 2 when 
≤ ≤x0 1, and =y 1 when >x 1. The function, however, is just one function whose 

domain is the entire set of real numbers (Figure 1.9).�

EXAMPLE 5    The function whose value at any number x is the greatest integer less 
than or equal to x is called the greatest integer function or the integer floor function. It 
is denoted  x . Figure 1.10 shows the graph. Observe that

− −
− − − −

       
       

= = = =
= = = =

2.4 2, 1.9 1, 0 0, 1.2 2,
2 2, 0.2 0, 0.3 1, 2 2.

EXAMPLE 6    The function whose value at any number x is the smallest integer greater 
than or equal to x is called the least integer function or the integer ceiling function. It 
is denoted  x . Figure 1.11 shows the graph. For positive values of x, this function might 
represent, for example, the cost of parking x hours in a parking lot that charges $1 for each 
hour or part of an hour.�

Increasing and Decreasing Functions

If the graph of a function climbs or rises as you move from left to right, we say that the 
function is increasing. If the graph descends or falls as you move from left to right, the 
function is decreasing.

FIGURE 1.10  The graph of the greatest 
integer function y x =  lies on or below 
the line y x= , so it provides an integer 
floor for x (Example 5).

1

- 2

2

3

- 2 - 1 1 2 3

y = x

y = :x ;

x

y

FIGURE 1.11  The graph of the least 
integer function y x =  lies on or above 
the line y x= , so it provides an integer 
ceiling for x (Example 6).

x

y

1- 1- 2 2 3

- 2

- 1

1

2

3
y = xy = <x=

FIGURE 1.8  The absolute value function 
has domain ,−( )∞ ∞  and range 0,[ )∞ .

x

y = 0 x 0

y = x
y = - x

y

- 3 - 2 - 1 0 1 2 3

1

2

3

FIGURE 1.9  To graph the function 
y f x( )=  shown here, we apply different 
formulas to different parts of its domain 
(Example 4).

- 2 - 1 0 1 2

1

2

x

y

y = - x

y = x2

y = 1

y = f (x)

DEFINITIONS  Let  f  be a function defined on an interval I and let x1 and x 2 be 
two distinct points in I.

1.	 If >f x f x( ) ( )2 1  whenever <x x1 2, then  f  is said to be increasing on I.

2.	 If <f x f x( ) ( )2 1  whenever <x x1 2, then  f  is said to be decreasing on I.

It is important to realize that the definitions of increasing and decreasing functions 
must be satisfied for every pair of points x1 and x 2 in I with <x x1 2. Because we use the 
inequality < to compare the function values, instead of ≤, it is sometimes said that  f  is 
strictly increasing or decreasing on I. The interval I may be finite (also called bounded) 
or infinite (unbounded).
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26	 Chapter 1  Functions

EXAMPLE 7    The function graphed in Figure 1.9 is decreasing on , 0−( )∞  and increas-
ing on ( )0,1 . The function is neither increasing nor decreasing on the interval ( )∞1,  because 
the function is constant on that interval, and hence the strict inequalities in the definition of 
increasing or decreasing are not satisfied on ( )∞1, .�

Even Functions and Odd Functions: Symmetry

The graphs of even and odd functions have special symmetry properties.

FIGURE 1.12  (a) The graph  
of y x 2=  (an even function)  
is symmetric about the y-axis.  
(b) The graph of y x 3=  (an odd 
function) is symmetric about the 
origin.

(a)

(b)

0
x

y

y = x2

(x, y)(- x, y)

0
x

y

y = x3

(x, y)

(- x, - y)

DEFINITIONS  A function y f x( )=  is an

−

− =

− =

x

x

f x f x

f x f x

even function of

odd function of

if ( ) ( ),

if ( ) ( ),

for every x in the function’s domain.

The names even and odd come from powers of x. If y is an even power of x, as in 
=y x 2 or =y x 4, it is an even function of x because − =x x( )2 2 and − =x x( )4 4. If  

y is an odd power of x, as in =y x  or =y x 3, it is an odd function of x because 
−− =x x( )1  and −− =x x( )3 3.

The graph of an even function is symmetric about the y-axis. Since − =f x f x( ) ( ),  
a point ( )x y,  lies on the graph if and only if the point −( )x y,  lies on the graph (Figure 1.12a). 
A reflection across the y-axis leaves the graph unchanged.

The graph of an odd function is symmetric about the origin. Since −− =f x f x( ) ( ),  
a point ( )x y,  lies on the graph if and only if the point − −( )x y,  lies on the graph (Fig-
ure 1.12b). Equivalently, a graph is symmetric about the origin if a rotation of 180° 
about the origin leaves the graph unchanged.

Notice that each of these definitions requires that both x and −x be in the domain of  f.

EXAMPLE 8    Here are several functions illustrating the definitions.

f x x( ) 2= Even function: − =x x( )2 2 for all x; symmetry about y-axis. So 
− = =f f( 3) 9 (3). Changing the sign of x does not change the 

value of an even function. 

f x x( ) 12= +  Even function: − + = +x x( ) 1 12 2  for all x; symmetry about 
y-axis (Figure 1.13a).

(a) (b)

x

y

0

1

y = x2 + 1

y = x2

x

y

0- 1

1

y = x + 1

y = x

FIGURE 1.13  (a) When we add the constant term 1 to the function y x 2= , 
the resulting function y x 12= +  is still even and its graph is still symmetric 
about the y-axis. (b) When we add the constant term 1 to the function y x= ,  
the resulting function y x 1= +  is no longer odd, since the symmetry about 
the origin is lost. The function y x 1= +  is also not even (Example 8).
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	 1.1  Functions and Their Graphs	 27

f x x( ) = Odd function: −− =x x( )  for all x; symmetry about the origin. So 
−− =f ( 3) 3 while f (3) 3= . Changing the sign of x changes the 

sign of the value of an odd function.

f x x( ) 1= + Not odd: −− = +f x x( ) 1, but f x x( ) 1−− = − . The two are not 
equal.

Not even: − + ≠ +x x( ) 1 1 for all ≠x 0 (Figure 1.13b).

Common Functions

A variety of important types of functions are frequently encountered in calculus.

Linear Functions  A function of the form f x mx b( ) = + , where m and b are fixed 
constants, is called a linear function. Figure 1.14a shows an array of lines f x mx( ) = . 
Each of these has =b 0, so these lines pass through the origin. The function f x x( ) = , 
where =m 1 and =b 0, is called the identity function. Constant functions result when 
the slope is =m 0 (Figure 1.14b).

DEFINITION  Two variables y and x are proportional (to one another) if one 
is always a constant multiple of the other—that is, if =y kx for some nonzero 
constant k.

FIGURE 1.14  (a) Lines through the origin with slope m. (b) A constant function 
with slope =m 0.

0 x

y
m = - 3 m = 2

m = 1m = - 1

y = - 3x

y = - x

y = 2x

y = x

y = x1
2

m = 1
2

(a)

x

y

0 1 2

1

2 y = 3
2

(b)

If the variable y is proportional to the reciprocal x1 , then sometimes it is said that y is 
inversely proportional to x (because x1  is the multiplicative inverse of x).

Power Functions  A function f x x( ) a= , where a is a constant, is called a power 
function. There are several important cases to consider.

(a)  f x x( ) a=  with =a n, a positive integer.

The graphs of f x x( ) n= , for =n 1, 2, 3, 4, 5, are displayed in Figure 1.15. These func-
tions are defined for all real values of x. Notice that as the power n gets larger, the curves 
tend to flatten toward the x-axis on the interval −( )1,1  and to rise more steeply for >x 1.  
Each curve passes through the point ( )1,1  and through the origin. The graphs of functions 
with even powers are symmetric about the y-axis; those with odd powers are symmetric about 
the origin. The even-powered functions are decreasing on the interval , 0−( ]∞  and increasing 
on [ )∞0, ; the odd-powered functions are increasing over the entire real line ,−( )∞ ∞ .
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28	 Chapter 1  Functions

FIGURE 1.15  Graphs of = =f x x n( ) , 1, 2, 3, 4, 5n , defined for x−∞ < < ∞.
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1
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FIGURE 1.16  Graphs of the power functions f x x( ) a= . 
(a) a 1−= . (b) a 2−= .
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(a) (b)

FIGURE 1.17  Graphs of the power functions f x x( ) a=  for =a 1
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Range:
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0

1

1
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y =  !x
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- q 6 x 6 q
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1

1

0
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y =  !x

(b)  f x x( ) a=  with a 1−=  or a 2−= .

The graphs of the functions f x x x( ) 11= =−  and f x x x( ) 12 2= =−  are shown in 
Figure 1.16. Both functions are defined for all x 0≠  (you can never divide by zero). The 
graph of =y x1  is the hyperbola =xy 1, which approaches the coordinate axes far from 
the origin. The graph of =y x1 2 also approaches the coordinate axes. The graph of the 
function f x x( ) 1=  is symmetric about the origin; this function is decreasing on the 
intervals , 0−( )∞  and ( )∞0, . The graph of the function f x x( ) 1 2=  is symmetric about 
the y-axis; this function is increasing on , 0−( )∞  and decreasing on ( )∞0, .

(c)  f x x( ) a=  with =a 1
2

, 1
3

, 3
2

,  or 2
3

.

The functions f x x x( ) 1 2= =  and f x x x( ) 1 3 3= =  are the square root and 
cube root functions, respectively. The domain of the square root function is [ )∞0, , but 
the cube root function is defined for all real x. Their graphs are displayed in Figure 1.17, 
along with the graphs of =y x 3 2 and =y x .2 3  (Recall that =x x( )3 2 1 2 3 and 

=x x( ) .2 3 1 3 2 )
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	 1.1  Functions and Their Graphs	 29

Polynomials  A function p is a polynomial if

= + + + +−
−p x a x a x a x a( ) ,n

n
n

n
1

1
1 0�

where n is a nonnegative integer and the numbers …a a a a, , , , n0 1 2  are real constants 
(called the coefficients of the polynomial). All polynomials have domain ,−( )∞ ∞ . If the 
leading coefficient ≠a 0n , then n is called the degree of the polynomial. Linear functions 
with ≠m 0 are polynomials of degree 1. Polynomials of degree 2, usually written as 

= + +p x ax bx c( ) 2 , are called quadratic functions. Likewise, cubic functions are 
polynomials = + + +p x ax bx cx d( ) 3 2  of degree 3. Figure 1.18 shows the graphs of 
three polynomials. Techniques to graph polynomials are studied in Chapter 4.

FIGURE 1.18  Graphs of three polynomial functions.
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- 2- 4 2 4

- 4
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FIGURE 1.19  Graphs of three rational functions. The straight red lines approached by the graphs are called 
asymptotes and are not part of the graphs. We discuss asymptotes in Section 2.5.
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Rational Functions  A rational function is a quotient or ratio =f x p x q x( ) ( ) ( ), 
where p and q are polynomials. The domain of a rational function is the set of all real x for 
which ≠q x( ) 0. The graphs of three rational functions are shown in Figure 1.19.

Algebraic Functions  Any function constructed from polynomials using algebraic oper-
ations (addition, subtraction, multiplication, division, and taking roots) lies within the class 
of algebraic functions. All rational functions are algebraic, but also included are more 
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30	 Chapter 1  Functions

FIGURE 1.22  Graphs of exponential functions.

(a) (b)

y = 2-x

y = 3-x

y = 10-x

- 0.5- 1 0 0.5 1

2

4

6

8

10

12

y

x
y = 2x

y = 3x

y = 10x

- 0.5- 1 0 0.5 1

2

4

6

8

10

12

y

x

FIGURE 1.20  Graphs of three algebraic functions.
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FIGURE 1.21  Graphs of the sine and cosine functions.
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complicated functions (such as those satisfying an equation like − + =y xy x9 03 3 , 
studied in Section 3.7). Figure 1.20 displays the graphs of three algebraic functions.

Trigonometric Functions  The six basic trigonometric functions are reviewed in  
Section 1.3. The graphs of the sine and cosine functions are shown in Figure 1.21.

Exponential Functions  A function of the form f x a( ) x= , where >a 0 and ≠a 1,  
is called an exponential function (with base a). All exponential functions have domain 

,−( )∞ ∞  and range ( )∞0, , so an exponential function never assumes the value 0. We 
discuss exponential functions in Section 1.4. The graphs of some exponential functions are 
shown in Figure 1.22.
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	 1.1  Functions and Their Graphs	 31

Logarithmic Functions  These are the functions f x x( ) loga= , where the base a 1≠  
is a positive constant. They are the inverse functions of the exponential functions, and we 
discuss these functions in Section 1.5. Figure 1.23 shows the graphs of four logarithmic 
functions with various bases. In each case the domain is ( )∞0,  and the range is ,−( )∞ ∞ .

FIGURE 1.23  Graphs of four loga-
rithmic functions.

1

- 1

1

0
x

y

y = log3x

y = log10 x

y = log2 x

y = log5x

FIGURE 1.24  Graph of a catenary or 
hanging cable. (The Latin word catena 
means “chain.”)

- 1 10

1

x

y

Transcendental Functions  These are functions that are not algebraic. They include the 
trigonometric, inverse trigonometric, exponential, and logarithmic functions, and many other 
functions as well. The catenary is one example of a transcendental function. Its graph has 
the shape of a cable, like a telephone line or electric cable, strung from one support to another 
and hanging freely under its own weight (Figure 1.24). The function defining the graph is 
discussed in Section 7.3.

Functions
In Exercises 1–6, find the domain and range of each function.

	 1.	 f x x( ) 1 2= + 	 2.	 f x x( ) 1= −

	 3.	 = +F x x( ) 5 10 	 4.	 g x x x( ) 32= −

	 5.	 f t
t

( ) 4
3

=
−

	 6.	 =
−

G t
t

( ) 2
162

In Exercises 7 and 8, which of the graphs are graphs of functions of x, 
and which are not? Give reasons for your answers.

	 7.	

EXERCISES  1.1

x

y

0
x

y

0

	 a.	 	 b.	

	 8.	

x

y

0
x

y

0

	 a.	 	 b.	

Finding Formulas for Functions

	 9.	 Express the area and perimeter of an equilateral triangle as a func-
tion of the triangle’s side length x.

	10.	 Express the side length of a square as a function of the length d of 
the square’s diagonal. Then express the area as a function of the 
diagonal length.

	11.	 Express the edge length of a cube as a function of the cube’s diag-
onal length d. Then express the surface area and volume of the 
cube as a function of the diagonal length.
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32	 Chapter 1  Functions

	31.	 a.	 	 b.	

x

y

1

2

(- 2, - 1) (3, - 1)(1, - 1)

x

y

3

1
(- 1, 1) (1, 1)

- 1
x

y

3

21

2

1

- 2
- 3

- 1
(2, - 1)

	12.	 A point P in the first quadrant lies on the graph of the function 
f x x( ) = . Express the coordinates of P as functions of the 
slope of the line joining P to the origin.

	13.	 Consider the point x y,( ) lying on the graph of the line 
x y2 4 5+ = . Let L be the distance from the point x y,( ) to the 

origin 0, 0( ). Write L as a function of x.

	14.	 Consider the point x y,( ) lying on the graph of y x 3= − . Let 
L be the distance between the points x y,( ) and 4, 0( ). Write L as 
a function of y.

Functions and Graphs
Find the natural domain and graph the functions in Exercises 15–20.

	15.	 f x x( ) 5 2= − 	16.	 f x x x( ) 1 2 2= − −

	17.	 g x x( ) = 	18.	 g x x( ) = −

	19.	 =F t t t( ) 	20.	 =G t t( ) 1

	21.	 Find the domain of y x
x

3
4 92

= +
− −

.

	22.	 Find the range of y x2 9 2= + + .

	23.	 Graph the following equations and explain why they are not 
graphs of functions of x.

	 a.	 y x= 	 b.	 y x2 2=

	24.	 Graph the following equations and explain why they are not 
graphs of functions of x.

	 a.	 x y 1+ = 	 b.	 + =x y 1

Piecewise-Defined Functions
Graph the functions in Exercises 25–28.

	25.	 f x
x x

x x
( )

, 0 1

2 , 1 2
=

≤ ≤

− < ≤





	26.	 g x
x x

x x
( )

1 , 0 1

2 , 1 2
=

− ≤ ≤

− < ≤





	27.	 =
− ≤

+ >






F x
x x

x x x
( )

4 , 1

2 , 1

2

2

	28.	 =
<

≤





G x
x x

x x
( )

1 , 0

, 0

Find a formula for each function graphed in Exercises 29–32.

	29.	 a.	 	 b.	

t

y

0

2

41 2 3
x

y

0

1

2

(1, 1)

x

y

52

2
(2, 1)

	30.	 a.	 	 b.	

x

y

0

1

TT
2

(T, 1)

t

y

0

A

T

- A

T
2

3T
2

2T

	32.	 a.	 	 b.	

The Greatest and Least Integer Functions

	33.	 For what values of x is

	 a.	 x 0?  = 	 b.	 x 0?  =

	34.	 What real numbers x satisfy the equation x x   = ?

	35.	 Does x x− −   =  for all real x? Give reasons for your answer.

	36.	 Graph the function

f x
x x

x x
( )

, 0

, 0.
 

 
=

≥

<





		  Why is f x( ) called the integer part of x?

Increasing and Decreasing Functions
Graph the functions in Exercises 37–46. What symmetries, if any, 
do the graphs have? Specify the intervals over which the function is 
increasing and the intervals where it is decreasing.

	37.	 y x 3−= 	 38.	 y
x
1

2
−=

	39.	 y
x
1−= 	 40.	 y

x
1=

	41.	 y x= 	 42.	 y x= −

	43.	 y x 83= 	 44.	 y x4−=

	45.	 y x 3 2−= 	 46.	 = −y x( )2 3

Even and Odd Functions
In Exercises 47–62, say whether the function is even, odd, or neither. 
Give reasons for your answer.

	47.	 f x( ) 3= 	 48.	 f x x( ) 5= −

	49.	 f x x( ) 12= + 	 50.	 f x x x( ) 2= +

	51.	 g x x x( ) 3= + 	 52.	 g x x x( ) 3 14 2= + −

	53.	 g x
x

( ) 1
12

=
−

	 54.	 g x x
x

( )
12

=
−

	55.	 =
−

h t
t

( ) 1
1

	 56.	 =h t t( ) 3

	57.	 = +h t t( ) 2 1	 58.	 = +h t t( ) 2 1

	59.	 sin 2x	 60.	 xsin 2

	61.	 cos 3x	 62.	 + x1 cos
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	 1.1  Functions and Their Graphs	 33

Theory and Examples

	63.	 The variable s is proportional to t, and s 25=  when t 75= . 
Determine t when s 60= .

	64.	 Kinetic energy  The kinetic energy K of a mass is propor-
tional to the square of its velocity u. If K 12,960=  joules when 
u = /18 m s, what is K when 10 m su = ?

	65.	 The variables r and s are inversely proportional, and r 6=  when 
s 4= . Determine s when r 10= .

	66.	 Boyle’s law  Boyle’s law says that the volume V of a gas at con-
stant temperature increases whenever the pressure P decreases, so 
that V and P are inversely proportional. If = /P 14.7 N cm 2 when  

=V 1000 cm 3, then what is V when = /P 23.4 N cm 2?

	67.	 A box with an open top is to be constructed from a rectangular 
piece of cardboard with dimensions 14 cm by 22 cm by cutting out 
equal squares of side x at each corner and then folding up the sides 
as in the figure. Express the volume V of the box as a function of x.

	70.	 a.	 y x5= 	 b.	 y 5 x= 	 c.	 y x 5=

x

y

f

g

h

0

x

y

- 1 0 1x
A

B

P(x, ?)

x

y

f

h

g

0

In Exercises 69 and 70, match each equation with its graph. Do not use 
a graphing device, and give reasons for your answer.

	69.	 a.	 y x 4= 	 b.	 y x 7= 	 c.	 y x 10=

	68.	 The accompanying figure shows a rectangle inscribed in an isos-
celes right triangle whose hypotenuse is 2 units long.

	 a.	 Express the y-coordinate of P in terms of x. (You might start 
by writing an equation for the line AB.)

	 b.	 Express the area of the rectangle in terms of x.

	71.	 a.	 �Graph the functions f x x( ) 2=  and g x x( ) 1 4( )= +  
together to identify the values of x for which

x
x2

1 4 .> +

	 b.	 Confirm your findings in part (a) algebraically.

	72.	 a.	 �Graph the functions f x x( ) 3 1( )= −  and g x x( ) 2 1( )= +  
together to identify the values of x for which

x x
3

1
2

1
.

−
<

+
	 b.	 Confirm your findings in part (a) algebraically.

	73.	 For a curve to be symmetric about the x-axis, the point ( )x y,  must 
lie on the curve if and only if the point ( )−x y,  lies on the curve. 
Explain why a curve that is symmetric about the x-axis is not the 
graph of a function, unless the function is y 0= .

	74.	 Three hundred books sell for $40 each, resulting in a revenue of 
300 $40 $12,000( )( ) = . For each $5 increase in the price, 25 

fewer books are sold. Write the revenue R as a function of the 
number x of $5 increases.

	75.	 A pen in the shape of an isosceles right triangle with legs of length 
x m and hypotenuse of length h m is to be built. If fencing costs 
$5/m for the legs and $10/m for the hypotenuse, write the total 
cost C of construction as a function of h.

	76.	 Industrial costs  A power plant sits next to a river where the river 
is 250 m wide. To lay a new cable from the plant to a location in 
the city 2 km downstream on the opposite side costs $180 per meter 
across the river and $100 per meter along the land.

T

T

	 a.	 Suppose that the cable goes from the plant to a point Q on the 
opposite side that is x m from the point P directly opposite  
the plant. Write a function C(x) that gives the cost of laying 
the cable in terms of the distance x.

	 b.	 Generate a table of values to determine if the least expensive 
location for point Q is less than 300 m or greater than 300 m 
from point P.

x QP

Power plant

City

250 m

2 km

NOT TO SCALE

x

x

x

x

x

x

x

x

22

14
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34	 Chapter 1  Functions

1.2	 Combining Functions; Shifting and Scaling Graphs

In this section we look at the main ways functions are combined or transformed to form 
new functions.

Sums, Differences, Products, and Quotients

Like numbers, functions can be added, subtracted, multiplied, and divided (except where 
the denominator is zero) to produce new functions. If  f  and g are functions, then for every 
x that belongs to the domains of both  f  and g (that is, for x D f D g( ) ( )∈ ∩ ), we define 
functions + −f g f g, , and  fg by the formulas

( )

( )

+ = +

− = −

=

f g x f x g x

f g x f x g x

fg x f x g x

( ) ( ) ( )

( ) ( ) ( )

( )( ) ( ) ( ).

Notice that the + sign on the left-hand side of the first equation represents the operation of 
addition of functions, whereas the + on the right-hand side of the equation means addition 
of the real numbers f x( ) and g x( ).

At any point of ∩D f D g( ) ( ) at which g x( ) 0,≠  we can also define the function f g 
by the formula

( )





 = ≠f

g
x

f x
g x

g x( )
( )
( )

where ( ) 0 .

Functions can also be multiplied by constants: If c is a real number, then the function 
cf is defined for all x in the domain of  f  by

=cf x cf x( )( ) ( ).

EXAMPLE 1    The functions defined by the formulas

f x x g x x( ) and ( ) 1= = −

have domains [ )= ∞D f( ) 0,  and ( ]= −∞D g( ) , 1 . The points common to these domains 
are the points in

[ ) ( ] [ ]∞ ∩ −∞ =0, ,1 0,1 .

The following table summarizes the formulas and domains for the various algebraic com-
binations of the two functions. We also write f g⋅  for the product function fg.

Function Formula Domain

+f g ( )+ = + −f g x x x( ) 1 [ ] = ∩D f D g0,1 ( ) ( )

f g− ( )− = − −f g x x x( ) 1 [ ]0,1

g f− ( )− = − −g f x x x( ) 1 [ ]0,1

f g⋅ f g x f x g x x x( ) ( ) ( ) 1( ) ( )⋅ = = − [ ]0,1

f g = =
−

f
g

x
f x
g x

x
x

( )
( )
( ) 1

[ )( )=x0,1 1 excluded

g f = = −g
f

x
g x
f x

x
x

( )
( )
( )

1 ( ]( )=x0,1 0 excluded

�

The graph of the function f g+  is obtained from the graphs of  f  and g by adding the 
corresponding y-coordinates f x( ) and g x( ) at each point ∈ ∩x D f D g( ) ( ), as in 
Figure 1.25. The graphs of f g+  and f g⋅  from Example 1 are shown in Figure 1.26.
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	 1.2  Combining Functions; Shifting and Scaling Graphs	 35

Composing Functions

Composition is another method for combining functions. In this operation the output from 
one function becomes the input to a second function.

FIGURE 1.25  Graphical addition of two 
functions.

y = ( f + g)(x)

y = g(x)

y = f (x) f (a)
g(a)

f (a) + g(a)

a

2

0

4

6

8

y

x

FIGURE 1.26  The domain of the function f g+  
is the intersection of the domains of  f  and g, the 
interval 0,1[ ] on the x-axis where these domains 
overlap. This interval is also the domain of the  
function f g⋅  (Example 1).

5
1

5
2

5
3

5
4 10

1

x

y

2
1

g(x) = "1 - x f (x) = "x
y = f + g

y = f   g

FIGURE 1.27  The composition f g�  uses the 
output g x( ) of the first function g as the input for 
the second function ƒ. 

x g fg(x) f (g(x))

FIGURE 1.28  Arrow diagram for f g.�  If x lies in the 
domain of g and g x( ) lies in the domain of f, then the  
functions  f  and g can be composed to form f g x( ).�( )

x

f (g(x))

g(x)

g
f

f ∘ g

To find f g x( ),�( )  first find g x( ) and second find f g x( ( )). Figure 1.27 pictures f g�  
as a machine diagram, and Figure 1.28 shows the composition as an arrow diagram.

To evaluate the composition g f�  (when defined), we find f x( ) first and then find 
g( f x( )). The domain of g f�  is the set of numbers x in the domain of  f  such that f x( ) lies 
in the domain of g.

The functions f g�  and g f�  are usually quite different.

DEFINITION  If  f  and g are functions, the function f g�  (“f composed with g”) 
is defined by

f g x f g x( ) ( ( ))�( ) =

and called the composition of  f  and g. The domain of f g�  consists of the num-
bers x in the domain of g for which g x( ) lies in the domain of  f.
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36	 Chapter 1  Functions

EXAMPLE 2    If f x x( ) =  and g x x( ) 1,= +  find

	(a)	 f g x( )�( ) 	 (b)	 g f x( )�( ) 	 (c)	 f f x( )�( ) 	 (d)	 g g x( ).�( )

Solution 

Composition Domain

(a)	 f g x f g x g x x( ) ( ( )) ( ) 1�( ) = = = + [ )− ∞1,

(b)	 g f x g f x f x x( ) ( ( )) ( ) 1 1�( ) = = + = + [ )∞0,

(c)	 f f x f f x f x x x( ) ( ( )) ( ) 1 4�( ) = = = = [ )∞0,

(d)	 g g x g g x g x x x( ) ( ( )) ( ) 1 1 1 2�( ) ( )= = + = + + = + ( )−∞ ∞,

To see why the domain of f g�  is [ )− ∞1, , notice that g x x( ) 1= +  is defined for all real 
x but g x( ) belongs to the domain of  f  only if x 1 0,+ ≥  that is to say, when ≥ −x 1.�

Notice that if f x x( ) 2=  and g x x( ) ,=  then f g x x x( ) .
2

� ( )( ) = =  How-
ever, the domain of f g�  is [ )∞0, , not ( )−∞ ∞, , since x  requires x 0.≥

Shifting a Graph of a Function

A common way to obtain a new function from an existing one is by adding a constant to 
each output of the existing function, or to its input variable. The graph of the new function 
is the graph of the original function shifted vertically or horizontally, as follows.

Shift Formulas

Vertical Shifts

y f x k( )= + Shifts the graph of  f  up k units if k 0>
Shifts it down k  units if k 0<

Horizontal Shifts

( )= +y f x h Shifts the graph of  f  left h units if h 0>
Shifts it right h  units if h 0<

EXAMPLE 3

	(a)	 Adding 1 to the right-hand side of the formula y x 2=  to get y x 12= +  shifts the 
graph up 1 unit (Figure 1.29).

	(b)	 Adding 2−  to the right-hand side of the formula y x 2=  to get y x 22= −  shifts the 
graph down 2 units (Figure 1.29).

	(c)	 Adding 3 to x in y x 2=  to get ( )= +y x 3 2 shifts the graph 3 units to the left, while 
adding 2−  shifts the graph 2 units to the right (Figure 1.30).

	(d)	 Adding 2−  to x in y x ,=  and then adding 1−  to the result, gives = − −y x 2 1 
and shifts the graph 2 units to the right and 1 unit down (Figure 1.31).�

Scaling and Reflecting a Graph of a Function

To scale the graph of a function y f x( )=  is to stretch or compress it, vertically or hori-
zontally. This is accomplished by multiplying the function f , or the independent variable x, 
by an appropriate constant c. Reflections across the coordinate axes are special cases 
where c 1.= −

FIGURE 1.29  To shift the graph of 
f x x( ) 2=  up (or down), we add positive 
(or negative) constants to the formula for  f  
(Examples 3a and b).

x

y

1

2

2 units

1 unit

- 2

- 1
0

y = x2 - 2

y = x2

y = x2 + 1

y = x2 + 2

"2"2-
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	 1.2  Combining Functions; Shifting and Scaling Graphs	 37

EXAMPLE 4    Here we scale and reflect the graph of y x 1.= +

	(a)	 Vertical: Multiplying the right-hand side of y x 1= +  by 3 to get ( )= +y x3 1  
stretches the graph vertically by a factor of 3, whereas multiplying by 1 3 compresses 
the graph vertically by a factor of 3 (Figure 1.32).

	(b)	 Horizontal: The graph of = +y x3 1 is a horizontal compression of the graph of 
= +y x 1 by a factor of 3, and = +y x 3 1 is a horizontal stretching by a factor 

of 3 (Figure 1.33).

	(c)	 Reflection: The graph of ( )= − +y x 1  is a reflection of = +y x 1 across the 
x-axis, and = − +y x 1 is a reflection across the y-axis (Figure 1.34).�

FIGURE 1.30  To shift the graph of y x 2=  to the 
left, we add a positive constant to x (Example 3c). 
To shift the graph to the right, we add a negative 
constant to x.

x

y

0- 3 2

1

1

y = (x - 2)2y = x2y = (x + 3)2

Add a positive
constant to x.

Add a negative
constant to x.

FIGURE 1.31  The graph of y x=  
shifted 2 units to the right and 1 unit 
down (Example 3d).

- 4 - 2 2 4 6- 1

1

4

x

y

y = 0 x - 2 0  - 1 

Vertical and Horizontal Scaling and Reflecting Formulas

For >c 1, the graph is scaled:

=y cf x( ) Stretches the graph of  f  vertically by a factor of c.

y
c

f x1 ( )= Compresses the graph of  f  vertically by a factor of c.

=y f cx( ) Compresses the graph of  f  horizontally by a factor of c.

( )=y f x c Stretches the graph of  f  horizontally by a factor of c.

For = −c 1, the graph is reflected:

y f x( )= − Reflects the graph of  f  across the x-axis.

= −y f x( ) Reflects the graph of  f  across the y-axis.

FIGURE 1.33  Horizontally stretching and 
compressing the graph of y x 1= +  by a 
factor of 3 (Example 4b).

y = "x + 1 

compress stretch

x

y

1 2 3 4 5

1

2

y = "3x + 1 y = "x/3 + 1

FIGURE 1.34  Reflections of the graph 
of y x 1= +  across the coordinate 
axes (Example 4c).

-2 -1 1 2

-1

-2

1

2

y = - ("x + 1)

x

y

y = "-x + 1 y = "x + 1 

FIGURE 1.32  Vertically stretching and 
compressing the graph of y x 1= +  
by a factor of 3 (Example 4a).

y = - ("x + 1)
3
1

y = 3("x + 1)

y = "x + 1 
stretch

compress

1 2
x

y

1
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3
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7
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38	 Chapter 1  Functions

EXAMPLE 5    Given the function f x x x( ) 4 104 3= − +  (Figure 1.35a), find for-
mulas for the graphs resulting from

	(a)	 horizontal compression by a factor of 2 followed by reflection across the y-axis  
(Figure 1.35b).

	(b)	 vertical compression by a factor of 2 followed by reflection across the x-axis  
(Figure 1.35c).

FIGURE 1.35  (a) The original graph of  f. (b) The horizontal compression of y f x( )=  in part (a) by a factor of 2, followed 
by a reflection across the y-axis. (c) The vertical compression of y f x( )=  in part (a) by a factor of 2, followed by a reflection 
across the x-axis (Example 5).

- 1- 2 0 1 2 3 4

- 20

- 10

10

20

x

y

f (x) = x4 - 4x3 + 10

(a) (b)

y =  -   x4 + 2x3 - 51
2

(c)

- 1- 2 0 1 2 3 4

- 20

- 10

10

20

x

y

y = 16x4 + 32x3 + 10

- 1- 2 0 1 2 3 4

- 20

- 10

10

20

x

y

Solution 

	(a)	 We multiply x by 2 to get the horizontal compression, and by −1 to give reflection 
across the y-axis. The formula is obtained by substituting − x2  for x in the right-hand 
side of the equation for  f :

= − = − − − +

= + +

y f x x x

x x

( 2 ) ( 2 ) 4( 2 ) 10

16 32 10.

4 3

4 3

	(b)	 The formula is

y f x x x1
2

( ) 1
2

2 5.4 3= − = − + −

Algebraic Combinations
In Exercises 1 and 2, find the domains of f g f g, , ,+  and f g.⋅

	 1.	 f x x g x x( ) , ( ) 1= = −

	 2.	 f x x g x x( ) 1, ( ) 1= + = −

In Exercises 3 and 4, find the domains of f g f g, , , and g f .

	 3.	 f x g x x( ) 2, ( ) 12= = +

	 4.	 f x g x x( ) 1, ( ) 1= = +

Compositions of Functions

	 5.	 If f x x( ) 5= +  and g x x( ) 3,2= −  find the following.

	 	 a.	 f g( (0))	 b.	 g f( (0))

	 	 c.	 f g x( ( ))	 d.	 g f x( ( ))

	 	 e.	 −f f( ( 5))	 f.	 g g( (2))

	 	 g.	 f f x( ( ))	 h.	 g g x( ( ))

	 6.	 If f x x( ) 1= −  and g x x( ) 1 1 ,( )= +  find the following.

	 	 a.	 f g 1 2( )( )	 b.	 g f 1 2( )( )

	 	 c.	 f g x( ( ))	 d.	 g f x( ( ))

	 	 e.	 f f( (2))	 f.	 g g( (2))

	 	 g.	 f f x( ( ))	 h.	 g g x( ( ))

EXERCISES  1.2
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	 1.2  Combining Functions; Shifting and Scaling Graphs	 39

x

y

- 7 0 4

Position (a) Position (b)y = - x2

In Exercises 7–10, write a formula for f g h.� �

	 7.	 = + = = −f x x g x x h x x( ) 1, ( ) 3 , ( ) 4

	 8.	 = + = − =f x x g x x h x x( ) 3 4, ( ) 2 1, ( ) 2

	 9.	 = + =
+

=f x x g x
x

h x
x

( ) 1, ( ) 1
4

, ( ) 1

	10.	 = +
−

=
+

= −f x x
x

g x x
x

h x x( ) 2
3

, ( )
1

, ( ) 2
2

2

Let = − = =f x x g x x h x x( ) 3, ( ) , ( ) ,3  and =j x x( ) 2 . 
Express each of the functions in Exercises 11 and 12 as a composition 
involving one or more of f, g, h, and j.

	11.	 a.	 y x 3= − 	 b.	 y x2=

	 c.	 y x 1 4= 	 d.	 y x4=

	 e.	 y x 3 3( )= − 	 f.	 y x2 6 3( )= −

	12.	 a.	 y x2 3= − 	 b.	 y x 3 2=

	 c.	 y x 9= 	 d.	 y x 6= −

	 e.	 y x2 3= − 	 f.	 y x 33= −

	13.	 Copy and complete the following table.

g x( ) f x( ) f g x( )�( )

a.	 x 7− x ?

b.	 x 2+ x3 ?

c.	 ? x 5− x 52 −

d.	 x
x 1−

x
x 1−

?

e.	 ?
x

1 1+ x

f.	
x
1 ? x

	14.	 Copy and complete the following table.

g x( ) f x( ) f g x( )�( )

a.	
x

1
1−

x ?

b.	 ? x
x

1− x
x 1+

c.	 ? x x

d.	 x ? x

	15.	 Evaluate each expression using the given table of values:

x 2− 1− 0 1 2

f x( ) 1 0 2− 1 2

g x( ) 2 1 0 1− 0

	 a.	 −f g( ( 1))	 b.	 g f( (0))

	 c.	 −f f( ( 1))	 d.	 g g( (2))

	 e.	 −g f( ( 2))	 f.	 f g( (1))

	16.	 Evaluate each expression using the functions

f x x g x
x x

x x
( ) 2 , ( )

, 2 0

1, 0 2.
= − =

− − ≤ <

− ≤ ≤





	 a.	 f g( (0))	 b.	 g f( (3))	 c.	 −g g( ( 1))

	 d.	 f f( (2))	 e.	 g f( (0))	 f.	 f g 1 2( )( )

In Exercises 17 and 18, (a) write formulas for f g�  and g f�  and  
(b) find the domain of each.

	17.	 f x x g x
x

( ) 1,   ( ) 1= + =

	18.	 f x x g x x( ) ,   ( ) 12= = −

	19.	 Let f x x
x

( )
2

.=
−

 Find a function y g x( )=  so that 

f g x x( ) .�( ) =

	20.	 Let f x x( ) 2 4.3= −  Find a function y g x( )=  so that 
f g x x( ) 2.�( ) = +

	21.	 A balloon’s volume V is given by V s s2 3 cm ,2 3= + +  where 
s is the ambient temperature in C.°  The ambient temperature s 
at time t minutes is given by s t2 3 C.= − °  Write the balloon’s  
volume V as a function of time t.

	22.	 Use the graphs of  f  and g to sketch the graph of y f g x( ( )).=

	 a.	 	 b.	

x

y

−2

−4

0 2 4−2−4

2

4

f

g

24

2

2

2
x

y

−2

−4

0 2 4−2−4

2

4

f g

x

y
Position (a)

Position (b)

y = x2

- 5

0

3

Shifting Graphs

	23.	 The accompanying figure shows the graph of y x 2= −  shifted to 
two new positions. Write equations for the new graphs.

	24.	 The accompanying figure shows the graph of y x 2=  shifted to 
two new positions. Write equations for the new graphs.
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40	 Chapter 1  Functions

	25.	 Match the equations listed in parts (a)–(d) to the graphs in the 
accompanying figure.

	 a.	 y x 1 42( )= − − 	 b.	 y x 2 22( )= − +

	 c.	 y x 2 22( )= + + 	 d.	 y x 3 22( )= + −

	39.	 y x 2= − 	 40.	 y x1 1= − −

	41.	 y x1 1= + − 	 42.	 y x1= −

	43.	 y x 1 2 3( )= + 	 44.	 y x 8 2 3( )= −

	45.	 y x1 2 3= − 	 46.	 y x4 2 3+ =

	47.	 y x 1 13= − − 	 48.	 y x 2 13 2( )= + +

	49.	 y
x

1
2

=
−

	 50.	 y
x
1 2= −

	51.	 y
x
1 2= + 	 52.	 y

x
1

2
=

+

	53.	 y
x

1
1 2( )

=
−

	 54.	 y
x
1 1

2
= −

	55.	 y
x
1 1

2
= + 	 56.	 y

x
1

1 2( )
=

+

	57.	 The accompanying figure shows the graph of a function f x( ) with 
domain 0, 2[ ] and range 0,1 .[ ]  Find the domains and ranges of the 
following functions, and sketch their graphs.

x

y

Position 2 Position 1

Position 4

Position 3

- 4 - 3 - 2 - 1 0 1 2 3

(- 2, 2) (2, 2)

(- 3, - 2)

(1, - 4)

1

2

3

x

y

(- 2, 3)

(- 4, - 1)

(1, 4)

(2, 0)

(b)

(c) (d)

(a)

t

y

- 3

- 2 0- 4

y = g(t)

x

y

0 2

1 y  = f (x)	26.	 The accompanying figure shows the graph of y x 2= −  shifted to 
four new positions. Write an equation for each new graph.

Exercises 27–36 tell how many units and in what directions the graphs 
of the given equations are to be shifted. Give an equation for the 
shifted graph. Then sketch the original and shifted graphs together, 
labeling each graph with its equation.

	27.	 x y 49 Down 3, left 22 2+ =

	28.	 x y 25 Up 3, left 42 2+ =
	29.	 y x Left 1, down 13=

	30.	 y x Right 1, down 12 3=

	31.	 y x Left 0.81=

	32.	 y x Right 3= −

	33.	 y x2 7 Up 7= −

	34.	 y x1
2

1 5 Down 5, right 1( )= + +

	35.	 y x1 Up 1, right 1=

	36.	 y x1 Left 2, down 12=

Graph the functions in Exercises 37–56.

	37.	 y x 4= + 	 38.	 y x9= −

	 a.	 f x( ) 2+ 	 b.	 f x( ) 1−

	 c.	 f x2 ( )	 d.	 f x( )−

	 e.	 f x 2( )+ 	 f.	 f x 1( )−

	 g.	 −f x( )	 h.	 f x 1 1( )− + +

	58.	 The accompanying figure shows the graph of a function g t( ) with 
domain 4, 0[ ]−  and range 3, 0 .[ ]−  Find the domains and ranges 
of the following functions, and sketch their graphs.

	 a.	 −g t( )	 b.	 g t( )−

	 c.	 g t( ) 3+ 	 d.	 g t1 ( )−

	 e.	 g t 2( )− + 	 f.	 g t 2( )−

	 g.	 g t1( )− 	 h.	 g t 4( )− −

Vertical and Horizontal Scaling
Exercises 59–68 tell in what direction and by what factor the graphs of 
the given functions are to be stretched or compressed. Give an equation 
for the stretched or compressed graph.

	59.	 y x 1, stretched vertically by a factor of 32= −

	60.	 y x 1, compressed horizontally by a factor of 22= −

	61.	 y
x

1 1 , compressed vertically by a factor of 2
2

= +
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	 1.3  Trigonometric Functions	 41

	62.	 y
x

1 1 , stretched horizontally by a factor of 3
2

= +

	63.	 y x 1, compressed horizontally by a factor of 4= +

	64.	 y x 1, stretched vertically by a factor of 3= +

	65.	 y x4 , stretched horizontally by a factor of 22= −

	66.	 y x4 , compressed vertically by a factor of 32= −

	67.	 = −y x1 , compressed horizontally by a factor of 33

	68.	 = −y x1 , stretched horizontally by a factor of 23

Graphing
In Exercises 69–76, graph each function not by plotting points, but by 
starting with the graph of one of the standard functions presented in 
Figures 1.14–1.17 and applying an appropriate transformation.

	69.	 y x2 1= − + 	 70.	 y x1
2

= −

	71.	 y x 1 23( )= − + 	 72.	 y x1 23( )= − +

	73.	 y
x

1
2

1= − 	 74.	 y
x
2 1

2
= +

	75.	 y x3= − 	 76.	 = −y x( 2 )2 3

	77.	 Graph the function y x 1 .2= −

	78.	 Graph the function y x .=

Combining Functions

	79.	 Assume that  f  is an even function, g is an odd function, and both  f  
and g are defined on the entire real line , .( )−∞ ∞  Which of the 
following (where defined) are even? odd?

	 a.	   f g	 b.	 f g	 c.	 g f

	 d.	 f f f2 = 	 e.	 g gg2 = 	 f.	 f g�

	 g.	 g f� 	 h.	 f f� 	  i.	 g g�

	80.	 Can a function be both even and odd? Give reasons for your 
answer.

	81.	 (Continuation of Example 1.) Graph the functions f x x( ) =  
and g x x( ) 1= −  together with their (a) sum, (b) product,  
(c) two differences, (d) two quotients.

	82.	 Let f x x( ) 7= −  and g x x( ) .2=  Graph  f  and g together with 
f g�  and g f .�

T

T

1.3	 Trigonometric Functions

This section reviews radian measure and the basic trigonometric functions.

Angles

Angles are measured in degrees or radians. The number of radians in the central angle 
′ ′A CB  within a circle of radius r is defined as the number of “radius units” contained in the 

arc s subtended by that central angle. If we denote this central angle by θ when measured 
in radians, this means that θ = s r (Figure 1.36), or

If the circle is a unit circle having radius =r 1, then from Figure 1.36 and Equation (1), 
we see that the central angle θ measured in radians is just the length of the arc that the 
angle cuts from the unit circle. Since one complete revolution of the unit circle is °360  or 
2π radians, we have

	 radians 180π = °� (2)

and

1 radian 180 57.3 degrees or 1 degree
180

0.017 radians.
π

π( ) ( )= ≈ = ≈

Table 1.1 shows the equivalence between degree and radian measures for some basic angles.

FIGURE 1.36  The radian mea-
sure of the central angle ′ ′A CB  is 
the number θ = s r . For a unit 
circle of radius θ=r 1,  is the 
length of arc AB that central angle 
ACB cuts from the unit circle.

B¿

B
s

A¿
C A

r

1

Circle of radius r
 

U nit circle
 

u

TABLE 1.1    Angles measured in degrees and radians

Degrees −180 −135 90− −45 0 30 45 60 90 120 135 150 180 270 360

θ ( )radians π− 3
4
π−

2
π−

4
π− 0

6
π

4
π

3
π

2
π 2

3
π 3

4
π 5

6
π π 3

2
π 2π

	 s r in radians .θ θ( )= � (1)

M01_HASS5901_15_GE_C01.indd   41M01_HASS5901_15_GE_C01.indd   41 03/03/23   3:47 PM03/03/23   3:47 PM

Sam
ple

 p
ag

es




