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This chapter explains the use of storage I/O performance monitoring for handling  
network congestion problems.

This chapter covers the following topics:

■■ Why Monitor Storage I/O Performance?

■■ How and Where to Monitor Storage I/O Performance.

■■ Cisco SAN Analytics Architecture

■■ Understanding I/O Flows in a Storage Network

■■ I/O Flow Metrics

■■ I/O Operations and Network Traffic Patterns

■■ Case studies

Why Monitor Storage I/O Performance?
Storage I/O performance monitoring provides advanced insights into network traffic, 
which can then be used to accurately address network congestion. This information is in 
addition to what the network ports already provide by counting the number of packets 
sent and received, the number of bytes sent and received, and link errors. In addition, 
storage I/O performance monitoring brings visibility to the upper layers of the stack and 
can explain why a network has or lacks traffic by providing the following information:

■■ The upper-layer protocol—SCSI or NVMe—that generated the network traffic

■■ Upper-layer protocol errors such as SCSI queue full, reservation conflict, NVMe 
namespace not ready, and so on

Solving Congestion with 
Storage I/O Performance 
Monitoring

Chapter 5
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■■ IOPS, throughput, I/O size, and so on

■■ How long I/O operations take to complete, the delay caused by storage arrays, and 
the delay caused by hosts

This performance can also be monitored for every flow, giving granular insights into the 
traffic on a network port. This flow-level performance monitoring is extremely useful 
because most production environments are virtualized. When a host causes congestion 
due to overutilization of its link, the network can detect this condition, as explained in 
earlier chapters. In addition, storage I/O performance monitoring can detect the cause of 
the high amount of traffic and which virtual machine (VM) is asking for it.

Likewise, when a host causes congestion due to slow drain, investigating the SCSI- and 
NVMe-level performance and error metrics can explain why the host has become slower 
in processing the traffic. It is also possible to determine whether a particular VM has 
caused the entire host to slow down. In addition, storage I/O performance monitoring 
can also predict the likeliness of network congestion. These and many more benefits of 
storage I/O performance monitoring are explained in this chapter, and case studies are 
provided.

Storage I/O performance monitoring is a detailed subject. Its use cases involve application 
and storage performance insights, storage provisioning recommendations, infrastructure 
optimization, change management, audits, reporting, and so on. The scope of this book, 
however, is limited only to congestion use cases. We recommend continuing your educa-
tion on this topic beyond this book. Refer to the References section later in this chapter.

This chapter focuses on the SCSI and NVMe protocols in the block-storage stack for 
performance monitoring. But these protocols initiate I/O operations only when an 
application wants them to read or write data. Therefore, monitoring higher layers in the 
stack, up to the application layer, can provide even more insights into why the network 
has traffic. Application-level monitoring, however—such as that provided by the Cisco 
AppDynamics observability platform—is beyond the scope of this book. This is another 
area that we recommend to continue your education outside this book.

How and Where to Monitor Storage I/O Performance
At a high level, storage I/O performance can be monitored within a host, in storage arrays, 
or in a network. These are three viable options because an I/O operation passes through 
many layers within the initiator (host), the target (storage array), and multiple switches in 
the network. This section explains these approaches briefly, but the primary focus of this 
chapter is on monitoring storage I/O performance in the network.

Storage I/O Performance Monitoring in the Host

Most operating systems, such as Linux, Windows, and ESXi, monitor storage I/O perfor-
mance. Example 5-1 shows an example of monitoring storage I/O performance in Linux 
by using the iotop command.
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Example 5-1 Storage I/O Performance Monitoring in Linux

 

[root@stg-tme-lnx-b200-7 ~]# iotop

 

Total DISK READ :      36.30 M/s | Total DISK WRITE :      36.85 M/s

Actual DISK READ:      36.31 M/s | Actual DISK WRITE:      36.80 M/s

  TID  PRIO  USER     DISK READ  DISK WRITE  SWAPIN     IO>    COMMAND

  941 be/3 root        0.00 B/s    0.00 B/s  0.00 %  3.31 % [jbd2/dm-101-8]

46303 be/4 root        6.42 M/s    6.37 M/s  0.00 %  1.93 % fio config_fio_1

  542 be/3 root        0.00 B/s    0.00 B/s  0.00 %  1.89 % [jbd2/dm-22-8]

26496 rt/4 root        0.00 B/s    0.00 B/s  0.00 %  1.26 % multipathd

46383 be/4 root        7.13 M/s    7.11 M/s  0.00 %  0.42 % fio config_fio_1

46284 be/4 root       11.96 M/s   12.34 M/s  0.00 %  0.00 % fio config_fio_1

46384 be/4 root        5.19 M/s    5.40 M/s  0.00 %  0.00 % fio config_fio_1

46402 be/4 root        5.61 M/s    5.63 M/s  0.00 %  0.00 % fio config_fio_1

For the purpose of dealing with network congestion, monitoring storage I/O performance 
within hosts involves the following considerations:

■■ Per-path storage I/O performance should be monitored because although multiple 
paths that perform at different levels exist between the host and the storage array, 
the host may, by default, report only cumulative performance.

■■ Metrics from thousands of hosts should be collected and presented in a single 
dashboard for early detection of congestion.

■■ Collecting the metrics from hosts may require dedicated agents, and there is 
overhead involved in maintaining them.

■■ Different implementations on different operating systems, such as Linux, Windows, 
and ESXi, may take non-uniform approaches to collecting the same metrics.

■■ Be aware that measuring the performance within hosts makes the measurements 
prone to issues on a particular host. Is the “monitored” end device “monitoring” 
itself? What happens when it gets congested or becomes a slow-drain device?

■■ Because of organizational silos, hosts and storage arrays may be managed by  
different teams.

Storage I/O Performance Monitoring in a Storage Array

Most arrays monitor storage I/O performance. For example, Figure 5-1 shows I/O perfor-
mance on a Dell EMC PowerMax storage array.
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Figure 5-1 Storage I/O Performance Monitoring on a Dell EMC PowerMax Storage 
Array

The metrics collected by the storage arrays can be used for monitoring I/O performance, 
but this approach involves similar challenges to the host-centric approach, as explained in 
the previous section.

Storage I/O Performance Monitoring in a Network

I/O operations are encapsulated within frames for transporting the frames via a storage 
network. The network switches only need to look up the headers to send the frames 
toward their destination. In other words, a network, for its typical function of frame 
forwarding, need not know what’s inside the frame. However, monitoring storage I/O 
performance in the network requires advanced capability on the switches for inspecting 
the transport (such as Fibre Channel) header, and upper-layer protocol (such as SCSI and 
NVMe) headers.

Cisco SAN Analytics monitors storage I/O performance natively within a network 
because it is integrated by design with Cisco MDS switches. As Fibre Channel frames 
are switched between the ports of an MDS switch, the ASICs (application-specific inte-
grated circuits) inspect the FC and NVMe/SCSI headers and analyze them to collect I/O 
performance metrics such as the number of I/O operations per second, how long the 
I/O operations are taking to complete, how long the I/O operations are spending in the 
storage array, how long the I/O operations are spending in the hosts, and so on. Cisco 
SAN Analytics does not inspect the frame payload because there is no need for it, as the 
metrics can be calculated by inspecting only the headers.
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Cisco SAN Analytics, because of its network-centric approach and unique architecture, 
has the following merits for monitoring storage I/O performance:

■■ Vendor neutral: Cisco SAN Analytics is not dependent on server vendor (HPE, 
Cisco, Dell, and so on), host OS vendor (Red Hat, Microsoft, VMware, and so on), 
or storage array vendor (Dell EMC, HPE, IBM, Hitachi, Pure, NetApp, and so on).

■■ Not dependent on end-device type: Cisco SAN Analytics is not dependent on any 
of the following:

■■ Server architecture: Rack-mount, blade, and so on

■■ OS type: Linux, Windows, or ESXi

■■ Storage architecture: All-flash, hybrid, non-flash, and so on

Legacy end devices can also benefit because no changes are needed on them, such 
as installation of an agent or firmware updates.

■■ No dependency on the monitoring architecture of end devices: Different products 
use different logic for collecting similar metrics. For example, some storage arrays 
collect I/O completion time on the front-end ports, whereas other storage arrays 
collect it on the back-end ports. Different host operating systems may collect I/O 
completion time at different layers in the host stack. Cisco SAN Analytics doesn’t 
have this dependency.

■■ Flow-level monitoring: Cisco SAN Analytics monitors performance for every 
flow separately. When a culprit switchport is detected, flow-level metrics help in 
pinpointing the issue to an exact initiator, target, virtual machine, or LUN/ 
namespace ID.

■■ Flexibility of location of monitoring: Cisco SAN Analytics can monitor storage  
I/O performance at any of the following locations:

■■ Host-connected switchports: Close to apps and servers

■■ Storage-connected switchports: Close to storage arrays

■■ ISL ports: Flow-level granularity in the core of the network

■■ Granular: Cisco SAN Analytics monitors storage I/O performance at a low  
granularity—microseconds for on-switch monitoring and seconds for exporting 
metrics from the switch.

This chapter focuses on using Cisco SAN Analytics for addressing congestion in storage 
networks, although the education and case studies can be used with host-centric and 
storage array-centric approaches as well.
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Cisco SAN Analytics Architecture
Cisco SAN Analytics architecture can be divided into three components (see Figure 5-2):

■■ Traffic inspection by ASICs on Cisco MDS switches

■■ Metric calculation by an onboard network processing unit (NPU) or by the ASIC

■■ Streaming of flow metrics to an external analytics and visualization engine for end-
to-end visibility

Cisco MDS 9000
Switches

Storage Network

Streaming telemetry—a mechanism for
exporting millions of metrics in open format—
to external receiver such as SAN Insights

Hosts Storage Arrays

Traffic Inspection

•   Integrated traffic TAPs in ASIC
•   No impact on traffic switching
•   Inspects only headers, not data

•   On-switch metric calculation by
    correlating multiple frames
•   Metrics are accumulated in an on-switch
    hierarchical and relational database

Metric Calculation

Cisco SAN Analytics Architecture

Metric Export

Figure 5-2 Cisco SAN Analytics Architecture

Traffic Inspection

Traffic inspection is integrated by design into Fibre Channel ASICs. In addition to switch-
ing the frames between the switchports, these ASICs can inspect the traffic in ingress 
and egress directions without any performance or feature penalty. In other words, traffic 
access points (TAPs) are built into the ASICs.
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This approach is secure because the ASICs inspect only the Fibre Channel and SCSI/
NVMe headers of the relevant frames. The frame payload (application data) is not 
inspected.

These ASICs are custom designed by Cisco, and they are exclusively used in MDS 
switches. Cisco Nexus switches and UCS fabric interconnects, despite supporting FC 
ports on selective models, use a different ASIC and thus don’t offer SAN Analytics.

Metric Calculation

After inspecting the frame headers, Cisco MDS switches calculate the metrics by corre-
lating multiple frames with common attributes, such as frames belonging to the same I/O 
operation and frames belonging to the same flow.

The metric calculation logic in the 32 Gbps MDS switches resides in an onboard network 
processing unit (NPU), which is a powerful packet processor. In 64 Gbps MDS switches, 
the metric calculation logic resides within the ASIC itself, although the NPU continues to 
exist on the switches. Regardless of this architectural detail, the overall metric calculation 
logic remains the same.

Cisco MDS switches accumulate the metrics in a hierarchical and relational database for 
on-switch visibility or export to a remote receiver.

 

Note At the time of this writing, Cisco SAN Analytics does not collect I/O flow metrics 
in FICON environments.

Metric Export

Cisco SAN Analytics is designed to inspect every flow that passes through a storage net-
work in an always-on fashion. As a result, it collects millions of metrics per second. A tra-
ditional approach (such as SNMP) for exporting a large number of metrics may not work 
at this scale, and thus, Cisco introduced streaming telemetry for this purpose. In addition 
to being efficient, streaming telemetry exports metrics in open format, which simplifies 
third-party integrations.

The receiver of streaming telemetry can use I/O flow metrics from multiple switches to 
provide fabric-wide and end-to-end visibility into a single pane of glass for long-term 
metric retention, trending, correlation, predictions, and so on. SAN Insights is an example 
of such a receiver and is a feature in Cisco Nexus Dashboard Fabric Controller (NDFC), 
formerly known as Cisco Data Center Network Manager (DCNM). Figure 5-3 shows the 
SAN Insights dashboard, which provides many ready-made use cases, such as automatic 
learning, baselining, and deviation calculations for up to 1 million I/O flows per NDFC 
server as of release 12.1.2. This high scale gives visibility into issues anywhere in the  
fabric.
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Figure 5-3 SAN Insights Dashboard in Cisco NDFC
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Understanding I/O Flows in a Storage Network
Without considering I/O flows, a network is only aware of the frames in ingress and 
egress directions. Categorizing network traffic into I/O flows helps in correlating it 
with initiators, targets, and the logical unit number (LUN) for SCSI I/O operations and 
namespace ID (NSID) for NVMe I/O operations. In addition, storage performance can 
be monitored for every I/O flow individually to get detailed insights into the traffic. For 
example, when a switchport is 90% utilized, throughput per I/O flow can tell which initia-
tor, target, and LUN/namespace are the top consumers.

I/O Flows in Fibre Channel Fabrics

The following can be the I/O flow types in a Fibre Channel fabric:

■■ Port flow: Traffic belonging to all the I/O operations that pass through a network 
port makes a port flow. It can an SCSI port flow for SCSI traffic or an NVMe port 
flow for NVMe traffic.

■■ VSAN flow: A port of a Cisco Fibre Channel switch may carry traffic in one or 
more VSANs. Hence, a port flow can be further categorized into one or more VSAN 
flows.

■■ Initiator flow: Traffic belonging to all the I/O operations that are initiated by an  
initiator makes an initiator flow.

■■ Target flow: Traffic belonging to all the I/O operations that are destined for a target 
makes a target flow.

■■ Initiator-target (IT) flow: Traffic belonging to all the I/O operations between a pair 
of initiator and target makes an IT flow.

■■ Initiator-target-LUN (ITL) flow: Traffic belonging to all the I/O operations between 
an initiator, a target, and a logical unit makes an ITL flow. An ITL flow is applicable 
only for SCSI I/O operations.

■■ Initiator-target-namespace (ITN) flow: Traffic belonging to all the I/O operations 
between an initiator, a target, and a namespace makes an ITN flow. An ITN flow is 
applicable only for NVMe I/O operations.

■■ Target-LUN (TL) flow: Traffic belonging to all the I/O operations that are destined 
for a target port and a specific logical unit makes a TL flow. A TL flow is applicable 
only for SCSI I/O operations.

■■ Target-namespace (TN) flow: Traffic belonging to all the I/O operations that are 
destined to a target port and a specific namespace makes a TN flow. A TN flow is 
applicable only for NVMe I/O operations.

The definition of an I/O flow can also be extended to a virtual entity (VE), such as a vir-
tual machine (VM) on the host. When combined with an ITL or ITN flow, the end-to-end 
flow becomes a VM-ITL flow or a VM-ITN flow. There are at least two approaches for 
achieving this visibility into the VMs.
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The first approach needs support from hosts, and in some cases even from storage arrays, 
for tagging the VM identifier in the frame header. Although Cisco SAN Analytics on 
MDS switches supports VM-ITL and VM-ITN flows, because of the dependency on the 
end devices, most production deployments are not ready for it at the time of this writing.

The second approach uses the APIs from VMware vCenter to provide the correlation 
between the VM and the initiator and LUN (or namespace) from the ITL (or ITN) flow. 
The benefit of this approach, unlike the first approach, is that upgrading the end devices 
is not mandatory. Cisco SAN Insights uses this approach in NDFC 12.1.2 onward.

In environments where even the read-only access to VMware vCenter cannot be added to 
NDFC, this approach can still be used for manually correlating ITL or ITN flows with the 
VMs. The use of this approach is demonstrated further in the section “Case Study 3: An 
Energy Company That Eliminated Congestion Issues,” later in this chapter.

This chapter focuses only on ITL flows that are natively available on the Cisco MDS 
switches without any dependency on the end devices and NDFC. The environments with 
VM-ITL flows made available using either of the two approaches mentioned earlier can 
benefit by expanding ITL flows in the same way that port flows are expanded to IT flows 
and ITL flows.

To understand the I/O flows and how they help in gaining granular details about a  
network, consider the example in Figure 5-4. Two initiators, I-1 and I-2, connect to two 
targets, T-1, and T-2, via a fabric of Switch-1 and Switch-2. The ISL port on Switch-1 
(Port-3) reports an ingress throughput of 800 MBps. After enabling SAN Analytics,  
Port-3 can categorize network traffic into multiple types of I/O flows and monitor the 
performance of every flow.

With
SAN Analytics Port Flow

Without
SAN Analytics

Switch-1 Switch-2
T-2

I-1

Port-2 Port-2Port-3 Port-3

I-2

T-1

Port-1 Port-1

Port-3 RX Throughput = 800 MBps

Port-3

Read = 800 MBps

Initiator Flow
I-1

Read = 300 MBps

I-2

Read = 500 MBps
Target Flow

T-1

Read = 250 MBps

T-2

Read = 550 MBps

Initiator-
Target (IT) Flow

I1 T1

Read = 100 MBps

I1 T2

Read = 200 MBps

I2 T1

Read = 150 MBps

I2 T2

Read = 350 MBps

Initiator-
Target –
LUN (ITL) Flow

I1 T1 L1

Read = 60 MBps

I1 T2 L1

Read = 120 MBps

I2 T1 L3

Read = 100 MBps

I2 T2 L3

Read = 200 MBps

I1 T1 L2

Read = 40 MBps

I1 T2 L2

Read = 80 MBps

I2 T1 L4

Read = 50 MBps

I2 T2 L4

Read = 150 MBps

Figure 5-4 I/O Flows and Flow-Level Metrics Using Cisco SAN Analytics
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SAN Analytics can find the following details:

■■ The 800 MBps throughput on Port-3 on Switch-1 is because of SCSI read  
I/O operations.

■■ Port-3 may have two VSANs: VSAN 100 and VSAN 200 (not shown in Figure 5-4). 
The VSAN flows provide a further breakdown of the port flow throughput, such as 
a read throughput of 600 MBps for VSAN 100 and a read throughput of 200 MBps 
for VSAN 200.

■■ I-1’s read throughput via Port-3 is 300 MBps, whereas I-2’s read throughput via Port-
3 is 500 MBps.

■■ T-1’s read throughput via Port-3 is 250 MBps, whereas T-2’s read throughput via  
Port-3 is 550 MBps.

■■ Port-3 has four IT flows: I1-T1, I1-T2, I2-T1, and I2-T2. The read throughput for each 
is as follows:

■■ I1-T1: 100 MBps

■■ I1-T2: 200 MBps

■■ I2-T1: 150 MBps

■■ I2-T2: 350 MBps

■■ Port-3 has eight ITL flows. I-1 uses LUN-1 and LUN-2, whereas I-2 uses LUN-3 and 
LUN-4. The read throughput for each is as follows:

■■ I1-T1-L1: 60 MBps

■■ I1-T1-L2: 40 MBps

■■ I1-T2-L1: 120 MBps

■■ I1-T2-L2: 80 MBps

■■ I2-T1-L3: 100 MBps

■■ I2-T1-L4: 50 MBps

■■ I2-T2-L3: 200 MBps

■■ I2-T2-L4: 150 MBps

As is evident from this example, the hierarchical and relational definitions of I/O flows 
help create a precise breakdown of traffic on a switchport. During congestion, the per-
flow metrics, such as throughput, help in pinpointing the root cause of the exact entity, 
such as initiator, target, LUN, or namespace. Without per-flow storage I/O performance 
monitoring, as provided by Cisco SAN Analytics, such detailed insights are not possible.
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I/O Flows Versus I/O Operations

I/O flows shouldn’t be confused with I/O operations. An I/O flow is identified by end-
to-end tuples such as initiator, target, LUN, or namespace (ITL or ITN flows). In contrast, 
I/O operations transfer data within an I/O flow. For example, when Initiator-1 initiates 
100 read I/O operations per second to LUN-1 on Target-1, the ITL flow is identified as 
Initiator-1–Target-1–LUN-1, whereas there were 100 I/O operations per second.

An I/O flow is created only after an initial exchange of I/O operations between the iden-
tifying tuples. Later, if the initiator doesn’t read or write data, the I/O flows may still 
exist, but no I/O operations flow through it, which results in zero IOPS for these I/O 
flows.

I/O Flow Metrics
The I/O flow metrics collected by Cisco SAN Analytics can be classified into the follow-
ing categories:

■■ Flow identity metrics: These metrics identify a flow, such as switchport, initiator, 
target, LUN, or namespace.

■■ Metadata metrics: The metadata metrics provide additional insights into the traffic. 
For example:

■■ VSAN count: Number of VSANs carrying traffic on a switchport.

■■ Initiator count: Number of initiators exchanging I/O operations behind a  
switchport.

■■ Target count: Number of targets exchanging I/O operations behind a switchport.

■■ IT flow count: Number of pairs of initiators and targets exchanging I/O opera-
tions via a switchport.

■■ TL and TN flow count: Number of pairs of targets and LUNs/namespaces behind 
a switchport exchanging I/O operations.

■■ ITL and ITN flow count: Number of pairs of initiators, targets, and LUNs/
namespaces exchanging I/O operations via a switchport.

■■ Metric collection time: Start time and the end time for I/O flow metrics during a 
specific export. This metric helps in knowing the precise duration when a metric 
was calculated at the link.

■■ Latency metrics: Latency metrics identify the total time taken to complete an I/O 
operation and the time taken to complete various steps of an I/O operation. For 
example:

■■ Exchange Completion Time (ECT): Total time taken to complete an I/O operation.

■■ Data Access Latency (DAL): Time taken by a target to send the first response to 
an I/O operation. DAL is one component of ECT that’s caused by the target.
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■■ Host Response Latency (HRL): Time taken by an initiator to send the response 
after learning that the target is ready to receive data for a write I/O operation. 
HRL is one component of ECT that’s caused by the initiator.

■■ Performance metrics: These metrics measure the performance of I/O operations. 
For example:

■■ IOPS: Number of read and write I/O operations completed per second.

■■ Throughput: Amount of data transferred by read and write operations, in bytes 
per second.

■■ Outstanding I/O: The number of read and write I/O operations that were initiated 
but are yet to be completed.

■■ I/O size: The amount of data requested by a read or write I/O operation.

■■ Error metrics: The error metrics indicate errors in read and write I/O operations (for 
example, Aborts, Failures, Check condition, Busy condition, Reservation Conflict, 
Queue Full, LBA out of range, Not ready, and Capacity exceeded).

An exhaustive explanation of all these metrics is beyond the scope of this chapter. This 
chapter is just a starting point for using end-to-end I/O flow metrics in solving congestion 
and other storage performance issues.

Latency Metrics

Latency is a generic term to convey storage performance. But as Figure 5-5 and Figure 5-6 
show, there are multiple latency metrics, each conveying a specific meaning. Latency  
metrics are measured in time (microseconds, milliseconds, and so on).

Host

Initiate Read I/O

Response

Transfer Data

Transfer Data

Exchange Completion Time (ECT) Data Access Latency (DAL)

TargetSwitch

SCSI or NVMe Read I/O Operation in Fibre Channel

DATA Frame

DATA Frame

RSP Frame

Read CMND Frame

Figure 5-5 Latency Metrics for a Read I/O Operation
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Host

Initiate Write I/O

Response

Transfer Ready

Transfer Data

Transfer Data

Data Access Latency (DAL)Exchange Completion Time (ECT) Host Response Latency (HRL)

TargetSwitch

SCSI or NVMe Write I/O Operation in Fibre Channel

Write CMND Frame

DATA Frame

XFER_RDY Frame

RSP Frame

DATA Frame

Figure 5-6 Latency Metrics for a Write I/O Operation

Exchange Completion Time

Exchange Completion Time (ECT) is the time taken to complete an I/O operation. It is a 
measure of the time difference between the command (CMND) frame and the response 
(RSP) frame. In Fibre Channel, an I/O operation is carried out by an exchange, and hence 
it’s called Exchange Completion Time, but ECT can also be known as I/O completion time.

ECT is an overall measure of storage performance. In general, the lower the ECT, the  
better. This is because lower ECTs result in improved application performance.

At the same time, a direct correlation between ECT and application performance is not 
straightforward because it’s dependent on the application I/O profile. In general, when 
application performance degrades and if ECT increases (degrades) at the same time, the 
reason for the performance degradation is the slower I/O performance.

Data Access Latency

Data Access Latency (DAL) is the time taken by a storage array in sending the first 
response after receiving a command (CMND) frame. For a read I/O operation, DAL is 
calculated as the time difference between the command (CMND) frame and the first-
data (DATA) frame. For a write I/O operation, DAL is calculated as the time difference 
between the command (CMND) frame and the transfer-ready (XFER_RDY) frame.

When a target receives a read I/O operation, if the data requested is not in cache, the 
target must first read the data from the storage media, which takes time. The amount of 
time it takes to retrieve the data from the media depends on several factors, such as  
overall system utilization and the type of storage media being used. Likewise, when a  
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target receives a write I/O operation, it must process all the other operations ahead of 
this operation, which takes time. An increase in these time values leads to a large DAL.

In most cases, it’s best to investigate DAL while troubleshooting higher ECT because 
DAL may tell why ECT increased. An increase in ECT and also in DAL indicates a slow-
down within the storage array.

Host Response Latency

Host Response Latency (HRL), for a write I/O operation, is the time taken by a host in 
sending the data after receiving the transfer ready. It is calculated as the time difference 
between the transfer-ready frame and the first data frame.

Because read I/O operations do not have transfer ready, HRL is not calculated for them.

In most cases, it’s best to investigate HRL while troubleshooting higher-write ECTs 
because HRL may tell why ECT increased. An increase in write ECT and also in HRL 
indicates a slowdown within the host.

Using Latency Metrics

The following are important details to remember about latency metrics, such as ECT, 
DAL, and HRL, when addressing congestion in a storage network:

■■ A good way of using ECT is to monitor it for a long duration and find any devia-
tions from the baseline. For example, consider two applications with an average ECT 
of 200 µs and 400 µs over a week. The I/O flow path of the first application gets 
congested, resulting in an increased ECT of 400 µs. At this moment, although both 
applications have the same ECT, only the first application may be degraded, while 
the second application remains unaffected, even though their ECT values are the 
same.

■■ ECT measures the overall storage performance, but it doesn’t convey the source of 
the delay, which can be the host, network, or storage array. The delay caused by the 
host is measured by HRL, whereas the delay caused by the storage array is measured 
by DAL.

■■ The delay caused by the network may be the direct result of congestion. For exam-
ple, when a host-connected switchport has high TxWait, the frames can’t be deliv-
ered to it in a timely fashion. As a result, the time taken to complete the I/O opera-
tions (ECT) increases.

■■ Although an increase in TxWait (or a similar network congestion metric) increases 
ECT, the reverse may not be correct. ECT may increase even when the network isn’t 
congested. ECT is an end-to-end metric. It may increase due to delays caused by 
hosts, network, or storage. The block I/O stack within a host involves multiple layers. 
Similarly, an I/O operation undergoes many steps within a storage array. The delay 
caused by any of these layers increases ECT.
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■■ Network congestion is one of the reasons for higher ECT. However, it’s not the only 
reason. Other network issues may increase ECT even without congestion (for exam-
ple, network traffic flowing through suboptimal paths, long-distance links, or poorly 
designed networks).

■■ All latency metrics increase under network congestion. This increase is seen in all the 
I/O flows whose paths are affected by congestion.

■■ While considering dual fabrics with active/active multipath, if only one fabric is con-
gested, only the I/Os using the congested fabric report increases in ECT. The average 
increase in the ECT as reported by the host may or may not show this difference, 
depending on how much ECT degrades. For example, consider an application that 
measures I/O completion time (ECT) as 200 µs. The application accesses storage via 
Fabric-A and Fabric-B. ECT over Fabric-A is 180 µs, whereas ECT over Fabric-B is 
220 µs. If Fabric-A becomes congested, resulting in an increase in ECT from 180  
to 270 µs (50% deviation), the average ECT as measured by the application increases 
to 245 µs, which is only a 22% increase.

How can you verify if an increase in ECT for an application is because of congestion or 
not? Here are some suggestions:

■■ Check the metrics for the ports (such as TxWait) in the end-to-end data path.

■■ Check the ECT of the I/O flows that use the same network path as the switchport. 
If ECT increases just for one I/O flow but the rest of the I/O flows don’t show an 
increase, it is not a network congestion issue because the network doesn’t do any 
preferential treatment for I/O flows. A fabric just understands the frames, and all 
frames are equal for it.

■■ Investigate other metrics, like I/O size, IOPS, and so on. A common example is an 
increase in I/O size because larger I/O size operations take longer to complete. Also, 
find any SCSI and NVMe errors and link-level errors.

The Location for Measuring Latency Metrics

Cisco SAN Analytics calculates latency metrics by taking the time difference between 
relevant frames on the analytics-enabled switchports on MDS switches. As a result, the 
absolute value of these metrics may differ by a few microseconds, depending on the 
exact location of the measurement. For example, the ECT reported by a storage- 
connected switchport may be a few microseconds lower than the ECT reported by a 
host-connected switchport. This is because the storage-connected switchport sees the 
command frame a few microseconds after the host-connected switchport does, and it 
sees the response frames a few microseconds earlier than the host-connected switchport. 
When the time difference between the command frame and the response frame on the 
storage port is considered, it comes out to be less than the time difference between the 
command frame and the response frame on the host-connected switchport.
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This difference in the value of latency metrics based on the location of measurement is 
marginal. It may be a matter of discussion in an academic exercise, but for any real-world 
production environment, the difference is very small, increases complexity, makes it hard 
for various teams to understand the low-level details, and doesn’t change the end result.

What is more important is to understand that in lossless networks, congestion spreads 
from end to end quickly. If this congestion increases ECT by 50% on the storage- 
connected switchport, the same percentage increase will be seen on the host-connected 
port also, although the absolute values may differ.

What happens if the congestion is only severe enough that the effect is limited to stor-
age ports or host ports? In production environments, the spread of congestion can’t be 
predicted. More importantly, if the congestion has not spread from end to end, it’s not 
severe enough to act on. In such cases, it is best to monitor and use the metrics for future 
planning, but without an end-to-end spread, the effect of congestion is limited to a small 
subset of the fabric.

Performance Metrics

Performance metrics convey the rate of I/O operations, their pattern, and the amount of 
data transferred.

I/O Operations per Second (IOPS)

IOPS, as its name suggests, is the number of read or write I/O operations per second. 
Typically, IOPS is a function of the application I/O profile and the type of storage. For 
example, transactional applications have higher IOPS requirements than do backup appli-
cations. Also, SSDs provide higher IOPS than do HDDs.

It is not possible to infer the network traffic directly from IOPS. An I/O operation may 
result in a few or many frames, depending on the data transferred by that I/O operation. 
Likewise, the throughput caused by I/O operations depends on the amount of data trans-
ferred by those I/O operations. Hence, it’s difficult to predict the effect of higher IOPS 
on network congestion without accounting for I/O size, explained next.

On the other hand, network congestion typically results in reduced IOPS because the 
network is unable to deliver the frames to their destinations in a timely fashion or can 
transfer fewer frames.

I/O Size

The amount of data transferred by an I/O operation is known as its I/O size. I/O size is 
a function of the application’s I/O profile. For example, a transactional application may 
have an I/O size of 4 KB, whereas a backup job may use an I/O size of 1 MB.

This I/O size metric in the context of storage I/O performance monitoring or SAN 
Analytics is different from the amount of data that an application wants to transfer as 
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part of an application-level transaction or operation. For example, an application may 
want to transfer 1 MB of data, but the host may decide to request this data using four 
I/O operations, each of size 256 KB. This difference is worth understanding, especially 
while investigating various layers within a host.

I/O size is encoded in the command frame of I/O operations. It has no dependency on 
network health. As a result, I/O size doesn’t change with or without congestion.

Large I/O size results in a higher number of frames, which in turn leads to higher network 
throughput. For example, a 2 KB read I/O operation results in just one Fibre Channel 
data frame of size 2 KB, whereas a 64 KB read I/O operation results in 32 Fibre Channel 
frames of size 2 KB. Because of this, I/O size directly affects the network link utilization 
and thus provides insights into why a host port or a host-connected switchport may be 
highly utilized. For example, a host link may not be highly utilized with an I/O size of 16 
KB. But the same link may get highly utilized and thus become the source of congestion 
when the I/O size spikes to 1 MB.

To understand the effect of I/O size on link utilization, consider the example in  
Figure 5-7. Two hosts, Host-1, and Host-2, connect to the switchports at 8 GFC to access 
storage from multiple arrays. Both servers are doing 10,000 read I/O operations per 
second (IOPS). However, the I/O sizes used by the two servers are different. Host-1 uses 
an I/O size of 4 KB, whereas Host-2 uses an I/O size of 128 KB.

Switch-1

Target-2

Host-1

Host-2

Target-1

Read IOPS: 10,000
I/O Size: 4 KB

Read IOPS: 10,000
I/O Size: 128 KB

40 MBps

1,280 MBps

8 GFC

8 GFC

The Result

The Result

No Congestion

Congestion Due to Overutilization

32 GFC

32 GFC

Figure 5-7 Detecting and Predicting the Cause of Congestion Using I/O Size
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