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	 697

WHAT YOU WILL LEARN

•	 The basic relationships for fluid flow—mass, energy, and force balances
•	 The primary types of fluid flow equipment—pipes, pumps, compressors, valves
•	 How to design a system for incompressible and compressible frictional flow of fluid in pipes
•	 How to design a system for frictional flow of fluid with submerged objects
•	 Methods for flow measurement
•	 How to analyze existing fluid flow equipment
•	 How to use the concept of net positive suction head (NPSH) to ensure safe and appro-

priate pump operation
•	 The analysis of pump and system curves
•	 How to use compressor curves and when to use compressor staging

C hapter    

19
Process  

Fluid Mechanics

The purpose of this chapter is to introduce the concepts needed to design piping systems, includ-
ing pumps, compressors, turbines, valves, and other components, and to evaluate the performance 
of these systems once designed and implemented. The scope is limited to steady-state situations. 
Derivations are minimized, and the emphasis is on providing a set of useful, working equations 
that can be used to design and evaluate the performance of piping systems.

19.1	 BASIC RELATIONSHIPS IN FLUID MECHANICS

In expressing the basic relationships for fluid flow, a general control volume is used, as illustrated 
in Figure 19.1. This control volume can be the fluid inside the pipes and equipment connected by 
the pipes, with the possibility of multiple inputs and multiple outputs. For the simple case of one 
input and one output, the subscript 1 refers to the upstream side and the subscript 2 refers to the 
downstream side.
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19.1.1  Mass Balance

At steady state, mass is conserved, so the total mass flowrate ( �m, mass/time) in must equal the total 
mass flowrate out. For a device with m inputs and n outputs, the appropriate relationship is given 
by Equation (19.1). For a single input and single output, Equation (19.2) is used.

	 ∑ ∑=
= =

,
1

,
1

m mi in
i

m

i out
i

m

� � 	 (19.1)

	 =1 2m m� � 	 (19.2)

In describing fluid flow, it is necessary to write the mass flowrate in terms of both volumetric 
flowrate (v�, volume/time) and velocity (u, length/time). These relationships are

	 ρ ρ= =m v Au� � 	 (19.3)

where ρ  is the density (mass/volume) and A is the cross-sectional area for flow (length2). From 
Equation (19.3), for an incompressible fluid (constant density) at steady state, the volumetric flow-
rate is constant, and the velocity is constant for a constant cross-sectional area for flow. However, 
for a compressible fluid flowing with constant cross-sectional area, if the density changes, the 
volumetric flowrate and velocity both change in the opposite direction, since the mass flowrate is 
constant. Accordingly, if the density decreases, the volumetric flowrate and velocity both increase. 
For problems involving compressible flow, it is useful to define the superficial mass velocity, G 
(mass/area/time), as

	 ρ= =G
m
A

u
�

	 (19.4)

The advantage of defining a superficial mass velocity is that it is constant for steady-state 
flow in a constant cross-sectional area, unlike density and velocity, and it shows that the product 
of density and velocity remains constant.

For a system with multiple inputs and/or multiple outputs at steady state, as is illustrated 
in Figure 19.2, the total mass flowrate into the system must equal the total mass flowrate out, 

Control volume
of mass m

Figure 19.1  General Control Volume

Output 2

Output 1

Input 1

Input 2

Input 3

Pipe
Section

Figure 19.2  System with Multiple 
Inputs and Outputs
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Equation (19.1). However, the output mass flowrate in each section differs depending on the size, 
length, and elevation of the piping involved. These problems are discussed later.

Example 19.1

Two streams of crude oil (specific gravity of 0.887) mix as shown in Figure E19.1. The volumetric 
flowrate of Stream 1 is 0.006 m3/s, and its pipe diameter is 0.078 m. The volumetric flowrate of 
Stream 2 is 0.009 m3/s, and its pipe diameter is 0.10 m.

a.	 Determine the volumetric and mass flowrates of Stream 3.
b.	 Determine the velocities in Streams 1 and 2.
c.	 If the velocity is not to exceed 1 m/s in Stream 3, determine the minimum possible pipe 

diameter.
d.	 Determine the superficial mass velocity Stream 3 using the pipe diameter calculated in Part (c).

Solution

a.	 Since the density is constant, the volumetric flowrate of Stream 3 is the sum of the volu-
metric flowrates of Streams 1 and 2, 0.015 m3/s. To obtain the mass flowrate, ρ= 3m v� � , so 

( ) ( )= =887 kg / m 0.015 m / s 13.3 kg / s3
3 3m� . Alternatively, the mass flowrate of Streams 1 

and 2 could be calculated and added to get the same result.
b.	 From Equation (19.3), at constant density = /u v A� . Therefore,

	
π π

( )
( )

= = = =u
v
A

v
D

� �4 4 0.006 m / s

0.078 m
1.26 m/s1

1

1

1

1
2

3

2
	 (E19.1a)

	
π π

( )
( )

= = = =u
v
A

v
D

� �4 4 0.009 m / s

0.01 m
1.15 m/s2

2

2

2

2
2

3

2
	 (E19.lb)

c.	 The diameter at which u3 = 1 m/s can be calculated from Equation (19.3) at constant density.

	 0.015 m /s (1 m/s)
4

0.138 m3 3 3
3

2

v u A
D

D
π= ⇒ =









 ∴ =� 	 (E19.1c)

�If the diameter were smaller, the cross-sectional area would be smaller, and from Equation 
(19.3), the velocity would be larger. Hence, the result in Equation (E19.1c) is the minimum 
possible diameter. As shown later, actual pipes are available only in discrete sizes, so it is nec-
essary to use the next higher pipe diameter.

d.	 From Equation (19.4), using the rounded values,

	
4 4(13.3 kg/s)

(0.138 m)
889.2 kg/m /s1

3

3

3

1
2 2

2

π π
= = = =G

m
A

m
D

� �
� (E19.1d)

Stream 2

Stream 3
Stream 1

Figure E19.1  Physical Situation in Example 19.1
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19.1.2  Mechanical Energy Balance

The mechanical energy balance represents the conversion between different forms of energy in 
piping systems. With the exception of temperature changes for a gas undergoing compression or 
expansion with no phase change, temperature is assumed to be constant. The mechanical energy 
balance is

	 ∫ ρ
+ ∆

< >
< >







+ ∆ + − =
1
2

0
1

2 3dP u
u

g z e Wf s 	 (19.5)

In Equation (19.5) and throughout this chapter, the difference, Δ, represents the value at 
Point 2 minus the value at Point 1, that is, out − in. The units in Equation (19.5) are energy/mass 
or length2/time2. In SI units, since 1 J =1 kg m2/s2, it is clear that 1 J/kg = 1 m2/s2. In American Engi-
neering units, since 1 lbf = 32.2 ft lbm/sec2, this conversion factor (often called gc) must be used to 
reconcile the units. The notation < > represents the appropriate average quantity.

The first term in Equation (19.5) is the enthalpy of the system. On the basis of the constant 
temperature assumption, only pressure is involved. For incompressible fluids, such as liquids, den-
sity is constant, and the term reduces to

	 ∫ ρ ρ
=

∆

1

2 dP P
	 (19.6)

For compressible fluids, the integral must be evaluated using an equation of state.
The second term in Equation (19.5) is the kinetic energy term. For turbulent flow, a reason-

able assumption is that

	
< >
< >

≈< >
3

2u
u

u 	 (19.7)

For laminar flow,

	
< >
< >

≈ < >2
3

2u
u

u 	 (19.8)

For simplicity, < u2 > is hereafter represented as < u>2, which is shortened to u2.
The third term in Equation (19.5) is the potential energy term. Based on the general control 

volume, Δz is positive if Point 2 is at a higher elevation than Point 1.
The fourth term in Equation (19.5) is often called the energy “loss” due to friction. Of course, 

energy is not lost—it is just expended to overcome friction, and it manifests as a change in tem-
perature. The procedures for calculating frictional losses are discussed later.

The last term in Equation (19.5) represents the shaft work, that is, the work done on the sys-
tem (fluid) by a pump or compressor or the work done by the system on a turbine. These devices 
are not 100% efficient. For example, more work must be applied to the pump than is transferred to 
the fluid, and less work is generated by the turbine than is expended by the fluid. In this book, work 
is defined as positive if done on the system (pump, compressor) and negative if done by the fluid 
(turbine). This convention is consistent with the flow of energy in or out of the system; however, 
many textbooks use the reverse sign convention. Equipment such as pumps, compressors, and tur-
bines are described in terms of their power, where power is the rate of doing work. Therefore, a 
device power (Ws

� , energy/time) is defined as the product of the mass flowrate (mass/time) and the 
shaft work (energy/mass):

	 � �=W mWs s	 (19.9)
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When efficiencies are included, the last term in Equation (19.5) becomes

	 pump/compressorW
W

mp s
p sη

η
=

�

�
	 (19.10)

	
η η

=W W
m

s

t

s

t

�

�
turbine 	 (19.11)

Example 19.2

Water in an open (source or supply) tank is pumped to a second (destination) tank at a rate of 5 lb/
sec with the water level in the destination tank 25 ft above the water level in the source tank, and it is 
assumed that the water level does not change with the flow of water. The destination tank is under a 
constant 30 psig pressure. The pump efficiency is 75%. Neglect friction.

a.	 Determine the required horsepower of the pump.
b.	 Determine the pressure increase provided by the pump assuming the suction and discharge 

lines have the same diameter.

Solution

a.	 Turbulent flow in the pipes is assumed. The mechanical energy balance is

	
ρ

η∆
+ ∆ + ∆ + − =

1
2

02P
u g z e

W

mf
p s

�

�
	 (E19.2a)

Figure E19.2 is an illustration of the system.

The control volume is the water in the tanks, the pipes, and the pump, and the locations of 
Points 1 and 2 are illustrated. The integral in the first term of Equation (19.2) is simplified to 
the first term in Equation (E19.2a), since the density of water is a constant. In general, the fluid 
velocity in tanks is assumed to be zero because tank diameters are much larger than pipe 
diameters, so the kinetic energy term for the liquid surface in the tank is essentially zero. Any 
fluid in contact with the atmosphere is at atmospheric pressure, so P1 = 1 atm = 0 psig. The 
friction term is assumed to be zero in this problem, as stated. So, Equation (E19.2a) reduces to

	
ρ

η( )−
+ − − = 02 1

2 1
P P

g z z
W

m
p s

�

�
	 (E19.2b)

1

25 ft

3

ηp = 0.75

4

2 30 psig

Figure E19.2  Physical Situation for Example 19.2
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and

	
−

+ − − =
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f
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�

	 (E19.2c)

 =so, 628.2 ft lb /secfWs
� .

Converting to horsepower yields

	 = =
628.2 ft lb /sec

550 ft lb /hp/sec
1.14 hpf

f

Ws
� 	 (E19.2d)

b.	 To determine the pressure rise in the pump, the control volume is now taken as the fluid in 
the pump. So, the mechanical energy balance is written between Points 3 and 4. The mechan-
ical energy balance reduces to

	
ρ

η∆
− = 0

P W

m
p s

�

�
	 (E19.2e)

The kinetic energy term is zero because the suction and discharge pipes have the same diam-
eter. Frictional losses are assumed to be zero in this example. The potential energy term is 
also assumed to be zero across the pump; however, since the discharge line of a pump may 
be higher than the suction line, in a more detailed analysis, that potential energy difference 
might be included. Solving

	
( )( )

− =
lb /in 12in/ft

62.4 lb/ft
0.75(628.2 ft lb /sec)

5 lb/sec
0

f
2 2

3
f

P
	 (E19.2f )

∆ =gives 40.8 lb /in .f
2P

Example 19.3

A nozzle is a device that converts pressure into kinetic energy by forcing a fluid through a small-
diameter opening. Turbines work in this way because the fluid (usually a gas) with a high kinetic 
energy impinges on turbine blades, causing spinning, and allowing the energy to be converted to 
electric power.

Consider a nozzle that forces 2 gal/min of water at 50 psia in a tube of 1-in inside diameter through 
a 0.1-in nozzle from which it discharges to atmosphere. Calculate the discharge velocity.

Solution

The system is illustrated in Figure E19.3. It is assumed that the velocity at a small distance from the 
end of the nozzle is identical to the velocity in the nozzle, but the contact with the atmosphere 
makes the pressure atmospheric.

For the case when frictional losses may be neglected, the mechanical energy balance reduces to

	
ρ
−

+
−

=
2

02 1 2
2

1
2P P u u

	 (E19.3a)

1 2

Figure E19.3  Illustration of Nozzle for Example 19.3
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which yields

	
π−

+
−











=
(14.7 50) lb /in (12 in/ft)

62.4 lb/ft

4(2 gal/min)( ft /7.48 gal)(min/60 sec)
(1/12 ft)

2(32.2 ft lb/lb /sec )
0f

2 2

3

2
2

3

2

2

f
2

u

	 (E19.3b)

so u2 = 72.4 ft/sec. For a real system, there would be some frictional losses and the actual discharge 
velocity would be lower than calculated here.

This problem was solved under the assumption of turbulent flow. The criterion for turbulent flow is 
introduced later; however, for this system, the Reynolds number is about 2 × 105, which is well into 
the turbulent flow region.

19.1.3  Force Balance

The force balance is essentially a statement of Newton’s law. A common form for flow in pipes is

	 ∑( )∆ =mu F� 	 (19.12)

where F are the forces on the system. The underlined parameters indicate vectors, since there are 
three spatial components of a force balance. For steady-state flow and the typical forces involved 
in fluid flow, Equation (19.12) reduces to

	 ( )∆ = + + +m u F F F Rp d g� 	 (19.13)

where Fp is the pressure force on the system, Fd is the drag force on the system, Fg is the gravita-
tional force on the system, and R is the restoring force on the system, that is, the force necessary to 
keep the system stationary. The term on the left side of Equation (19.12) is acceleration, confirming 
that Equation (19.12) is a statement of Newton’s law. The most common application of Equation 
(19.13) is to determine the restoring forces on an elbow. These problems are not discussed here.

19.2	 FLUID FLOW EQUIPMENT

The basic characteristics of fluid flow equipment are introduced in this section. The performance 
of pumps and compressors is dictated by their characteristic curves and, for pumps, the net posi-
tive suction head curve. The performance of these pieces of equipment is discussed in Section 19.5.

19.2.1  Pipes

Pipes and their associated fittings that are used to transport fluid through a chemical plant are 
usually made of metal. For noncorrosive fluids under conditions that are not of special concern, 
carbon steel is typical. For more extreme conditions, such as higher pressure, higher temper-
ature, or corrosive fluids, stainless steel or other alloy steels may be needed. It may even be 
necessary, for very-high-temperature service such as for the flow of molten metals, to use refrac-
tory-lined pipes.

Pipes are sized using a nominal diameter and a schedule number. The higher the schedule 
number, the thicker the pipe walls, making pipes with a higher schedule number more suitable 
for higher-pressure operations. The nominal diameter is a number such as 2 in; however, there 
is no dimension of the pipe that is actually 2 in until the diameter reaches 14 in. For pipes with 
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a diameter of 14 in or larger, the nominal diameter is the outside diameter. Pipes typically have 
integer nominal diameters; however, for smaller diameters, they can be in increments of 0.25 in. 
At larger diameters, the nominal diameters may only be even integer values. Table 19.1 shows the 
dimensions of some schedules of standard pipe.

Table 19.1  Dimensions of Standard Steel Pipe

Nominal 
Size (in)

Outside 
Diameter

Schedule 
Number

Wall Thickness Inside Diameter
Inside Cross-

Sectional Area

in mm in mm in mm 102ft2 104m2

1/8 0.405 10.29 40 0.068 1.73 0.269 6.83 0.040 0.3664

80 0.095 2.41 0.215 5.46 0.025 0.2341

1/4 0.540 13.72 40 0.088 2.24 0.364 9.25 0.072 0.6720

80 0.119 3.02 0.302 7.67 0.050 0.4620

3/8 0.675 17.15 40 0.091 2.31 0.493 12.52 0.133 1.231

80 0.126 3.20 0.423 10.74 0.098 0.9059

1/2 0.840 21.34 40 0.109 2.77 0.622 15.80 0.211 1.961

80 0.147 3.73 0.546 13.87 0.163 1.511

3/4 1.050 26.67 40 0.113 2.87 0.824 20.93 0.371 3.441

80 0.154 3.91 0.742 18.85 0.300 2.791

1 1.315 33.40 40 0.133 3.38 1.049 26.64 0.600 5.574

80 0.179 4.45 0.957 24.31 0.499 4.641

1 1/4 1.660 42.16 40 0.140 3.56 1.380 35.05 1.040 9.648

80 0.191 4.85 1.278 32.46 0.891 8.275

1 1/2 1.900 48.26 40 0.145 3.68 1.610 40.89 1.414 13.13

80 0.200 5.08 1.500 38.10 1.225 11.40

2 2.375 60.33 40 0.154 3.91 2.067 52.50 2.330 21.65

80 0.218 5.54 1.939 49.25 2.050 19.05

2 1/2 2.875 73.03 40 0.203 5.16 2.469 62.71 3.322 30.89

80 0.276 7.01 2.323 59.00 2.942 27.30

3 3.500 88.90 40 0.216 5.59 3.068 77.92 5.130 47.69

80 0.300 7.62 2.900 73.66 4.587 42.61

3 1/2 4.000 101.6 40 0.226 5.74 3.548 90.12 6.870 63.79

80 0.318 8.08 3.364 85.45 6.170 57.35

4 4.500 114.3 40 0.237 6.02 4.026 102.3 8.840 82.19

80 0.337 8.56 3.826 97.18 7.986 74.17

5 5.563 141.3 40 0.258 6.55 5.047 128.2 13.90 129.1

80 0.375 9.53 4.813 122.3 12.63 117.5

6 6.625 168.3 40 0.280 7.11 6.065 154.1 20.06 186.5

80 0.432 10.97 5.761 146.3 18.10 168.1
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Tubing is commonly used in heat exchangers. The dimensions and use of tubing are dis-
cussed in Chapter 20.

Pipes are typically connected by screw threads, flanges, or welds. Welds and flanges are more 
suitable for larger diameters and higher-pressure operation. Proper welds are stronger and do not 
leak, whereas screwed or flanged connections can leak, especially at higher pressures. Changes in 
direction are usually accomplished by elbows or tees, and those changes in direction are usually 90°.

19.2.2  Valves

Valves are found in piping systems. Valves are about the only way to regulate anything in a chemi-
cal process. Valves serve several functions. They are used to regulate flowrate, reduce pressure by 
adding resistance, or isolate (turn flow on/off) equipment.

Two common types of valves are gate valves and globe valves. Figure 19.3 shows illustra-
tions of several common types of valves.

Gate valves are used for on/off control of fluid flow. The flow path through a gate valve is 
roughly straight, so when the valve is fully open, the pressure drop is very small. However, gate 
valves are not suitable for flowrate regulation because the flowrate does not change much until the 
“gate” is almost closed. There are also ball valves, in which a quarter turn opens a flow channel, and 
they can also be used for on/off regulation.

Globe valves are more suitable than gate valves for flowrate and pressure regulation. Because 
the flow path is not straight, globe valves have a higher pressure drop even when wide open. Globe 
valves are well suited for flowrate regulation because the flowrate is responsive to valve position. 
In a control system, the valve stem is raised or lowered pneumatically (by instrument air) or via 

Nominal 
Size (in)

Outside 
Diameter

Schedule 
Number

Wall Thickness Inside Diameter
Inside Cross-

Sectional Area

in mm in mm in mm 102ft2 104m2

8 8.625 219.1 40 0.322 8.18 7.981 202.7 34.74 322.7

80 0.500 12.70 7.625 193.7 31.71 294.7

10 10.75 273.1 40 0.365 9.27 10.02 254.5 54.75 508.6

80 0.594 15.09 9.562 242.8 49.87 463.3

12 12.75 304.8 40 0.406 10.31 11.94 303.3 77.73 722.1

80 0.688 17.48 11.37 288.8 70.56 655.5

14 14 355.6 40 0.438 11.13 13.12 333.2 93.97 873.0

80 0.750 19.05 12.50 317.5 85.22 791.7

16 16 406.4 40 0.500 12.70 15.00 381.0 122.7 1140

80 0.844 21.44 14.31 363.5 111.7 1038

18 18 457.2 40 0.562 14.27 16.88 428.8 155.3 1443

80 0.938 23.83 16.12 409.4 141.8 1317

20 20 508.0 40 0.597 15.16 18.81 477.8 193.0 1793

80 1.031 26.19 17.94 455.7 175.5 1630

24 24 635.0 40 0.688 17.48 22.62 574.5 279.2 2594

80 1.219 30.96 21.56 547.6 253.6 2356

Source: Adapted from Geankoplis, C., Transport Processes and Separation Process Principles, 4th ed., Prentice Hall, Upper Saddle River, 2003 
[1]; Perry, R. H., and D. Green, Perry’s Chemical Engineers’ Handbook, 6th ed., McGraw-Hill, New York, 1984, Section 5 [2].
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an electric motor in response to a measured parameter, such as a flowrate. Pneumatic systems 
can be designed for the valve to fail open or closed, the choice depending on the service. Failure 
is defined as loss of instrument air pressure. For example, for a valve controlling the flowrate of a 
fluid removing heat from a reactor with a highly exothermic reaction, the valve would be designed 
to fail open so that the reactor cooling is not lost.

Check valves, such as the swing check valve, are used to ensure unidirectional flow. In 
Figure 19.3(c), if the flow is left to right, the swing is opened and flow proceeds. If the flow is right 
to left, the swing closes, and there is no flow in that direction. Such valves are often placed on the 
discharge side of pumps to ensure that there is no flow reversal through the pump.

19.2.3  Pumps

Pumps are used to transport liquids, and pumps can be damaged by the presence of vapor, a phe-
nomenon discussed in Section 19.5.2. The two major classifications for pumps are positive displace-
ment and centrifugal. For a more detailed summary of all types of pumps, see Couper et al. [3] or 
Green and Perry [4].

Positive-displacement pumps are often called constant-volume pumps because a fixed 
amount of liquid is taken into a chamber at a low pressure and pushed out of the chamber at 
a high pressure. The chamber has a fixed volume, hence the name. An example of a positive-
displacement pump is a reciprocating pump, illustrated in Figure 19.4(a). Specifically, this 
is an example of a piston pump in which the piston moves in one direction to pull liquid into 
the chamber and then moves in the opposite direction to discharge liquid out of the chamber 
at a higher pressure. There are other variations of positive-displacement pumps, such as rotary 
pumps in which the chamber moves between the inlet and discharge points. In general, positive-
displacement pumps can increase pressure more than centrifugal pumps and run at higher pres-
sures overall. These characteristics define their applicability. Efficiencies tend to be between 50% 
and 80%. Positive-displacement pumps are preferred for higher pressures, higher viscosities, and 
anticipated viscosity variations.

In centrifugal pumps, which are a common workhorse in the chemical industry, the pressure 
is increased by the centrifugal action of an impeller. An impeller is a rotating shaft with blades, and 
it might be tempting to call it a propeller because an impeller resembles a propeller. (While there 
might be a resemblance, the term propeller is reserved for rotating shafts with blades that move 
an object, such as a boat or airplane.) The blades of an impeller have small openings, known as 
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Follower
or gland

Packing Packing

Bonnet Bonnet

Neck Neck

Seat

(a) (b) (c)

Seat
Gate

Body Body

Bonnet ring nut
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ring nut

Packing nut Packing
nut
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Handwheel Handwheel

Disk
Disk nut
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Figure 19.3  Common Types of Valves: (a) Gate, (b) Globe, (c) Swing Check (Reproduced by Permis-
sion from Couper, J. R. et al. Chemical Process Equipment: Selection and Design, 3rd ed. [New York, Elsevier, 
2012] [3])
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vanes, that increase the kinetic energy of the liquid. The liquid is then discharged through a volute 
in which the kinetic energy is converted into pressure. Figure 19.4(b) shows a centrifugal pump. 
Centrifugal pumps often come with impellers of different diameters, which enable pumps to be 
used for different services (different pressure increases). Of course, shutdown is required to change 
the impeller. Although standard centrifugal pump impellers only spin at a constant rate, variable-
speed centrifugal pumps also are available.

Centrifugal pumps can handle a wide range of capacities and pressures, and depending on 
the exact type of pump, the efficiencies can range from 20% to 90%.

19.2.4  Compressors

Devices that increase the pressure of gases fall into three categories: fans, blowers, and compres-
sors. Figure 19.5 illustrates some of this equipment. For a more detailed summary of all types of 
pumps, see Couper et al. [3] or Green and Perry [4].

Fans provide very low-pressure increases (<1 psi [7 kPa]) for low volumes and are typically 
used to move air. Blowers are essentially mini-compressors, providing a maximum pressure of 
about 30 psi (200 kPa). Blowers can be either positive displacement or centrifugal, and while 
their general construction is similar to pumps, there are many internal differences. Compres-
sors, which can also be either positive displacement or centrifugal, can provide outlet pressures 
of 1500 psi (10 MPa) and sometimes even 10 times that much.

(a)

(b)

Motor
Outlet ball
check valves

Discharge

Discharge

Discharge
Impeller

Impeller

Volute
channel

Suction

Suction

Inlet ball
check valves

Inlet

Plunger
Adjustable eccentric

Figure 19.4  (a) Inner Workings of Positive-Displacement Pump, (b) Inner Workings of Centrifu-
gal Pump ([a] Reproduced by Permission from McCabe, W. L. et al., Unit Operations of Chemical Engi-
neering, 5th ed. [New York, McGraw-Hill, 1993] [5]; [b] Reproduced by Permission from Couper, J. R. 
et al., Chemical Process Equipment: Selection and Design, 3rd ed. [New York, Elsevier, 2012] [3])
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In a centrifugal compressor, the impeller may spin at tens of thousands of revolutions per min-
ute. If liquid droplets or solid particles are present in the gas, they hit the impeller blades at such high 
relative velocity that the impeller blades will erode rapidly and may cause bearings to become dam-
aged, leading to mechanical failure. The compressor casing also may crack. Therefore, it is important 
to ensure that the gas in a centrifugal compressor does not contain solids and liquids. A filter can be 
used to keep particles out of a compressor, and a packed-bed adsorbent can also be used, for example, 
to remove water vapor from inlet air. Knockout drums are often provided between compressor stages 
with intercooling to allow the disengagement of any condensed drops of liquid and are covered in more 
detail in Chapter 23, Section 23.2. The seals on compressors are temperature sensitive, so a maximum 
temperature in one stage of a compressor is generally not exceeded, which is another reason for staged, 
intercooled compressor systems. It should also be noted that compressors are often large and expensive 
pieces of equipment that often have a large number of auxiliary systems associated with them. The cov-
erage given in this text is very simplified but allows the estimate of the power required.
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Figure 19.5  Inner Working of Compressors: (a) Centrifugal, (b) Axial, (c) Positive Displacement ([a] 
and [b] Reproduced by Permission from Couper, J. R. et al., Chemical Process Equipment: Selection and Design, 
3rd ed. [New York: Elsevier, 2012]; [c] Reproduced by Permission from McCabe, W. L. et al., Unit Operations 
of Chemical Engineering, 5th ed. [New York: McGraw-Hill, 1993])Sam
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Positive-displacement compressors typically handle lower flowrates but can produce higher 
pressures compared to centrifugal compressors. Efficiencies for both types of compressor tend to 
be high, above 75%.

19.3	 FRICTIONAL PIPE FLOW

19.3.1  Calculating Frictional Losses

The fourth term in Equation (19.5) must be evaluated to include friction in the mechanical energy 
balance. There are different expressions for this term depending on the type of flow and the system 
involved. In general, the friction term is

	
π

= =
2 322 2

2 5e
f Lu
D

fLv
Df
�

	 (19.14)

where L is the pipe length, D is the pipe diameter, and f is the Fanning friction factor. (The Fanning 
friction factor is typically used by chemical engineers. There is also the Moody friction factor, which 
is four times the Fanning friction factor. Care must be used when obtaining friction factor values from 
different sources. It is even more confusing, since the plot of friction factor versus Reynolds number is 
called a Moody plot for both friction factors.) The friction factor is a function of the Reynolds number 
(Re = Duρ /μ, where μ is the fluid viscosity), and its form depends on the flow regime (laminar or turbu-
lent), and for turbulent flow, f is also a function of the pipe roughness factor (e, a length that represents 
small asperities on the pipe wall; values are given at the top of Figure 19.6), which is a tabulated value. 
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Figure 19.6  Moody Plot for the Fanning Friction Factor in Pipes
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Historically, the friction factor was measured and the data were plotted in graphical form. Figure 19.6 
is such a plot. A key observation from Figure 19.6 is that, with the exception of smooth pipes, the fric-
tion factor asymptotically approaches a constant value above a Reynolds number of approximately 
105. This is called fully developed turbulent flow, and the friction factor becomes constant and can be 
used to simplify certain calculations, examples of which are presented later. Typical values for the pipe 
roughness for some common materials are shown at the top of Figure 19.6.

The friction factor for laminar flow is a theoretical result derivable from the Hagen-Poiseuille 
equation [6] and is valid for Re < 2100.

	
µ
ρ

= =
16
Re

16
f

Du
	 (19.15)

For turbulent flow, the data have been fit to equations. One such equation is the Pavlov equa-
tion ([7] [cited in Levenspiel [8]]):
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The Pavlov equation provides results within a few percent of the measured data. There are 
more accurate equations; however, they are not explicit in the friction factor. Any of these curve 
fits provides significantly more accuracy than reading a graph.

For flow in pipes containing valves, elbows, and other pipe fittings, there are two common 
methods for including the additional frictional losses created by this equipment. One is the equiva-
lent length method, whereby additional pipe length is added to the value of L in Equation (19.14). 
The other method is the velocity head method, in which a value (Ki) is assigned to each valve, fit-
ting, and so on, and an additional frictional loss term is added to the frictional loss term in Equa-
tion (19.14). These terms are of the form

	 Σ
2

2K u
i

i i 	 (19.17)

where the index i indicates a sum over all valves, elbows, and similar components in the system. If 
there are different pipe diameters within the system, the velocity in Equation (19.17) is specific to 
each section of pipe, and a term for each section of pipe must be included. It should be noted that 
the equivalent Ki value for straight pipe (Kpipe) is given by

	 K
fL

Dpipe
4

= 	 (19.18)

Tables 19.2 and 19.3 show equivalent lengths and Ki values for some common items found 
in pipe networks, for turbulent flow and for laminar flow, respectively. The values are different for 
laminar and turbulent flow. Darby [9] presents analytical expressions for the K values that can be 
used for more exact calculations.

Another common situation involves frictional loss in a packed bed, that is, a vessel packed 
with solids. One application is if the solids are catalysts, making the packed bed a reactor. The fric-
tional loss term for packed beds is obtained from the Ergun equation, which yields a friction term 
for a packed bed as
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	 (19.19)

where us is the superficial velocity (based on pipe diameter, not particle diameter), Dp is the par-
ticle diameter (assumed spherical here; corrections are available for nonspherical shape), and ε is 
the packing void fraction, which is the volume fraction in the packed bed not occupied by solids. 
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When Equation (19.19) is used in the mechanical energy balance, one unknown parameter, such as 
velocity, pressure drop, or particle diameter, can be obtained.

For incompressible flow in packed beds, the Ergun equation, Equation (19.19), is used for the 
friction term in the mechanical energy balance.

For the expansion and contraction losses, Ai is the cross-sectional area of the pipe, subscript 1 
is the upstream area, and subscript 2 is the downstream area.

Table 19.2  Frictional Losses for Turbulent Flow

Type of Fitting or Valve
Frictional Loss, Number of 

Velocity Heads, Kf

Frictional Loss, Equivalent Length 
of Straight Pipe, in Pipe Diameters, 

L eq /D

45° elbow 0.35   17

90° elbow 0.75   35

Tee 1   50

Return bend 1.5   75

Coupling 0.04   2

Union 0.04   2

Gate valve, wide open 0.17   9

Gate valve, half open 4.5 225

Globe valve, wide open 6.0 300

Globe valve, half open 9.5 475

Angle valve, wide open 2.0 100

Check valve, ball 70.0 3500

Check valve, swing 2.0 100

Contraction 0.55(1 – A2/A1) 27.5(1 – A2/A1)

Contraction A2 << A1 0.55 27.5

Expansion (1 – A1/A2)2 50(1 – A1/A2)2

Expansion A1 << A2 1 50

Source: From Geankoplis, C., Transport Processes and Separation Process Principles, 4th ed., (Upper Saddle River, NJ: Prentice Hall, 2003); 
Perry, R. H., and D. Green, Perry’s Chemical Engineers’ Handbook, 6th ed. (New York: McGraw-Hill, 1984), Section 5.

Table 19.3  Frictional Loss for Laminar Flow

Frictional Loss, Number of Velocity Heads, Kf

Reynolds number 50 100 200 400 1000 Turbulent

90° elbow 17   7     2.5     1.2       0.85   0.75

Tee   9 4.8     3.0     2.0       1.4 1.0

Globe valve 28   22   17   14     10 6.0

Check valve, swing 55   17     9     5.8       3.2 2.0

Source: From Geankoplis, C., Transport Processes and Separation Process Principles, 4th ed. (Upper Saddle River, NJ: Prentice Hall, 2003), 
99–100, citing Kittredge, C. P., and D. S. Rowley, “Resistance Coefficients for Laminar and Turbulent Flow Through One-Half-Inch 
Valves and Fittings,” Trans. ASME, 79 (1957): 1759–1766.
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19.3.2  Incompressible Flow
19.3.2.1	 Single-Pipe Systems
Incompressible flow problems fall into three categories:

1.	 Any parameter unknown in the mechanical energy balance other than velocity (flowrate) or 
diameter

2.	 Unknown velocity (flowrate)
3.	 Unknown diameter

For turbulent flow problems with any unknown other than velocity (or flowrate) or diam-
eter, in the mechanical energy balance, Equation (19.5), there is a second unknown: the friction 
factor. The friction factor can be calculated from Equation (19.15). The solution method can use 
a sequential calculation, solving Equation (19.5) for the unknown once the friction factor is cal-
culated. If there are valves, elbows, and so on, the length term in Equation (19.15) can be adjusted 
appropriately or Equation (19.17) can be used. Alternatively, Equations (19.14) and (19.16) can be 
solved simultaneously to yield all the unknowns. Example 19.5 shows both of these calculation 
methods. For laminar flow problems, Equation (19.15) can be combined with Equation (19.14) in 
the mechanical energy balance to solve any problem analytically.

For turbulent flow, if the velocity is unknown, Equations (19.5) and (19.15) must be solved 
simultaneously for the velocity or flowrate and the friction factor. When solving for a velocity 
directly, if the pump work term must be included, it is necessary to express the mass flowrate in 
terms of velocity. If solving for the volumetric flowrate, the second equality in Equation (19.13) 
must be used, and if a kinetic energy term is required in the mechanical energy balance, the veloci-
ties must be expressed in terms of volumetric flowrate. In the friction factor equation, the Reyn-
olds number also needs to be expressed in terms of the volumetric flowrate as follows:

	
� � �ρ

µ
ρ

µ
ρ

µ π
ρ

π µ
= = = =Re

4 4
2

Du D v
A

D v
D

v
D

	 (19.20)

For laminar flow, an analytical solution is possible simply by using Equation (19.14) for the 
friction factor in the mechanical energy balance.

For turbulent flow, if the diameter is unknown, Equations (19.5) and (19.13) (second equal-
ity involving flowrate and diameter to the fifth power) must be solved simultaneously, using 
Equation (19.20) for the Reynolds number. For laminar flow, an analytical solution may once 
again be possible by using Equation (19.12) for the friction factor in the mechanical energy bal-
ance. If kinetic energy terms are involved, an unknown diameter will appear when expressing 
velocity in terms of flowrate. If minor losses are involved, the equivalent length will include a 
diameter term, and the K-value method will include a diameter in the conversion between flow-
rate and velocity.

Examples 19.4 and 19.5 illustrate the methods for solving these types of problems.

Example 19.4

Consider a physical situation similar to that in Example 19.2. The flowrate between tanks is 10 lb/sec. 
The source-tank level is 10 ft off of the ground, and the discharge-tank level is 50 ft off of the ground. 
For this example, both tanks are open to the atmosphere. The suction-side pipe is 2-in, schedule-40, 
commercial steel, and the discharge-side pipe is 1.5-in, schedule-40, commercial steel. The length of 
the suction line is 25 ft, and the length of the discharge line is 60 ft. The pump efficiency is 75%. Losses 
due to fittings, expansions, and contractions may be assumed negligible for this problem.
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a.	 Determine the required horsepower of the pump.
b.	 Determine the pressures before and after the pump.

Solution

a.	 The physical situation is depicted in Figure E19.4.
For the control volume of the fluid in both tanks, the pipes, and the pump, the mechanical 
energy balance reduces to

	
�

�

η
∆ + + − = 0, ,g z e e

W

mf suct f disch
p s

	 (E19.4a)

The pressure term is zero, because both tanks are open to the atmosphere (P1 = P2 = 1 atm). 
The kinetic energy term is zero, because the velocities of the fluid at the surfaces of both 
tanks are assumed to be zero. There are two friction terms, one for the suction side of the 
pump and one for the discharge side of the pump, because the friction factors are different 
due to the different pipe diameters.

To calculate the friction terms, the Reynolds numbers must be calculated first for each section 
to determine whether the flow is laminar or turbulent. Since a temperature is not provided, the 
density is assumed to be 62.4 lb/ft3, and the viscosity is assumed to be 1 cP = 6.72 ×10–4 lb/ft/sec. 
Using Table 19.1 for the schedule pipe diameter and cross-sectional area, the Reynolds num-
ber for the suction side is
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	 (E19.4b)

Similarly, the Reynolds number for the discharge side is 141,200. Therefore, the flow is tur-
bulent in both sections of pipe. The friction factor is now calculated for each section of pipe. 
For the suction side, with commercial-steel pipe (e = 0.0018 in from the top of Figure 19.6),

	 = − + 

















1
4 log

0.0018 in
3.7(2.067 in)

6.81
110,0100.5 10

0.9

f
	 (E19.4c)

so fsuct = 0.0054. Similarly, fiisch = 0.0055. Now, the mechanical energy balance on the entire 
system is used to solve for the pump power:

1

3
4

2

50 ft

10 ft

ηP = 0.75

Figure E19.4 
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