
Sam
ple

 pa
ge

s

http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780137081073
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780137081073
https://plusone.google.com/share?url=http://www.informit.com/title/9780137081073
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780137081073
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780137081073/Free-Sample-Chapter

ix

Foreword xiii
Preface xix
Acknowledgments xxiii
About the Author xxix
On the Cover xxxi

Pre-Requisite Introduction 1

Chapter 1 Professionalism 7
Be Careful What You Ask For 8

Taking Responsibility 8

First, Do No Harm 11

Work Ethic 16

Bibliography 22

Chapter 2 Saying No 23
Adversarial Roles 26

High Stakes 29

Being a “Team Player” 30

The Cost of Saying Yes 36

Code Impossible 41

CO NTE NT S

Sam
ple

 pa
ge

s

CONTENTS

x

Chapter 3 Saying Yes 45
A Language of Commitment 47

Learning How to Say “Yes” 52

Conclusion 56

Chapter 4 Coding 57
Preparedness 58

The Flow Zone 62

Writer’s Block 64

Debugging 66

Pacing Yourself 69

Being Late 71

Help 73

Bibliography 76

Chapter 5 Test Driven Development 77
The Jury Is In 79

The Three Laws of TDD 79

What TDD Is Not 83

Bibliography 84

Chapter 6 Practicing 85
Some Background on Practicing 86

The Coding Dojo 89

Broadening Your Experience 93

Conclusion 94

Bibliography 94

Chapter 7 Acceptance Testing 95
Communicating Requirements 95

Acceptance Tests 100

Conclusion 111

Chapter 8 Testing Strategies 113
QA Should Find Nothing 114

Sam
ple

 pa
ge

s

CONTENTS

xi

The Test Automation Pyramid 115

Conclusion 119

Bibliography 119

Chapter 9 Time Management 121
Meetings 122

Focus-Manna 127

Time Boxing and Tomatoes 130

Avoidance 131

Blind Alleys 131

Marshes, Bogs, Swamps, and Other Messes 132

Conclusion 133

Chapter 10 Estimation 135
What Is an Estimate? 138

PERT 141

Estimating Tasks 144

The Law of Large Numbers 147

Conclusion 147

Bibliography 148

Chapter 11 Pressure 149
Avoiding Pressure 151

Handling Pressure 153

Conclusion 155

Chapter 12 Collaboration 157
Programmers versus People 159

Cerebellums 164

Conclusion 166

Chapter 13 Teams and Projects 167
Does It Blend? 168

Conclusion 171

Bibliography 171

Sam
ple

 pa
ge

s

CONTENTS

xii

Chapter 14 Mentoring, Apprenticeship, and Craftsmanship 173
Degrees of Failure 174

Mentoring 174

Apprenticeship 180

Craftsmanship 184

Conclusion 185

Appendix A Tooling 187
Tools 189

Source Code Control 189

IDE/Editor 194

Issue Tracking 196

Continuous Build 197

Unit Testing Tools 198

Component Testing Tools 199

Integration Testing Tools 200

UML/MDA 201

Conclusion 204

Index 205

Sam
ple

 pa
ge

s

57

4CO D I N G

In a previous book1 I wrote a great deal about the structure and nature of Clean Code.
This chapter discusses the act of coding, and the context that surrounds that act.

When I was 18 I could type reasonably well, but I had to look at the keys.
I could not type blind. So one evening I spent a few long hours at an IBM 029
keypunch refusing to look at my fingers as I typed a program that I had written
on several coding forms. I examined each card after I typed it and discarded
those that were typed wrong.

1. [Martin09]

Sam
ple

 pa
ge

s

CHAPTER 4 CODING

58

At first I typed quite a few in error. By the end of the evening I was typing them
all with near perfection. I realized, during that long night, that typing blind is
all about confidence. My fingers knew where the keys were, I just had to gain
the confidence that I wasn’t making a mistake. One of the things that helped
with that confidence is that I could feel when I was making an error. By the end
of the evening, if I made a mistake, I knew it almost instantly and simply
ejected the card without looking at it.

Being able to sense your errors is really important. Not just in typing, but in
everything. Having error-sense means that you very rapidly close the feedback
loop and learn from your errors all the more quickly. I’ve studied, and mastered,
several disciplines since that day on the 029. I’ve found that in each case that the
key to mastery is confidence and error-sense.

This chapter describes my personal set of rules and principles for coding. These rules
and principles are not about my code itself; they are about my behavior, mood, and
attitude while writing code. They describe my own mental, moral, and emotional
context for writing code. These are the roots of my confidence and error-sense.

You will likely not agree with everything I say here. After all, this is deeply personal
stuff. In fact, you may violently disagree with some of my attitudes and principles.
That’s OK—they are not intended to be absolute truths for anyone other than me.
What they are is one man’s approach to being a professional coder.

Perhaps, by studying and contemplating my own personal coding milieu you
can learn to snatch the pebble from my hand.

PR E PA R E D N E S S

Coding is an intellectually challenging and exhausting activity. It requires a level
of concentration and focus that few other disciplines require. The reason for
this is that coding requires you to juggle many competing factors at once.

1. First, your code must work. You must understand what problem you are
solving and understand how to solve that problem. You must ensure that the
code you write is a faithful representation of that solution. You must manage

Sam
ple

 pa
ge

s

PREPAREDNESS

59

every detail of that solution while remaining consistent within the language,
platform, current architecture, and all the warts of the current system.

2. Your code must solve the problem set for you by the customer. Often the
customer’s requirements do not actually solve the customer’s problems. It is
up to you to see this and negotiate with the customer to ensure that the
customer’s true needs are met.

3. Your code must fit well into the existing system. It should not increase the
rigidity, fragility, or opacity of that system. The dependencies must be well-
managed. In short, your code needs to follow solid engineering principles.2

4. Your code must be readable by other programmers. This is not simply a
matter of writing nice comments. Rather, it requires that you craft the code in
such a way that it reveals your intent. This is hard to do. Indeed, this may be
the most difficult thing a programmer can master.

Juggling all these concerns is hard. It is physiologically difficult to maintain the
necessary concentration and focus for long periods of time. Add to this the
problems and distractions of working in a team, in an organization, and the
cares and concerns of everyday life. The bottom line is that the opportunity for
distraction is high.

When you cannot concentrate and focus sufficiently, the code you write will be
wrong. It will have bugs. It will have the wrong structure. It will be opaque and
convoluted. It will not solve the customers’ real problems. In short, it will have
to be reworked or redone. Working while distracted creates waste.

If you are tired or distracted, do not code. You’ll only wind up redoing what you
did. Instead, find a way to eliminate the distractions and settle your mind.

3 A M CO D E

The worst code I ever wrote was at 3 am. The year was 1988, and I was working
at a telecommunications start-up named Clear Communications. We were all
putting in long hours in order to build “sweat equity.” We were, of course, all
dreaming of being rich.

2. [Martin03]

Sam
ple

 pa
ge

s

CHAPTER 4 CODING

60

One very late evening—or rather, one very early morning, in order to solve a
timing problem—I had my code send a message to itself through the event
dispatch system (we called this “sending mail”). This was the wrong solution,
but at 3 am it looked pretty damned good. Indeed, after 18 hours of solid coding
(not to mention the 60–70 hour weeks) it was all I could think of.

I remember feeling so good about myself for the long hours I was working.
I remember feeling dedicated. I remember thinking that working at 3 am is what
serious professionals do. How wrong I was!

That code came back to bite us over and over again. It instituted a faulty design
structure that everyone used but consistently had to work around. It caused all
kinds of strange timing errors and odd feedback loops. We’d get into infinite
mail loops as one message caused another to be sent, and then another,
infinitely. We never had time to rewrite this wad (so we thought) but we always
seemed to have time to add another wart or patch to work around it. The cruft
grew and grew, surrounding that 3 am code with ever more baggage and side
effects. Years later it had become a team joke. Whenever I was tired or frustrated
they’d say, “Look out! Bob’s about to send mail to himself!”

The moral of this story is: Don’t write code when you are tired. Dedication and
professionalism are more about discipline than hours. Make sure that your sleep,
health, and lifestyle are tuned so that you can put in eight good hours per day.

WO R RY CO D E

Have you ever gotten into a big fight with your spouse or friend, and then tried
to code? Did you notice that there was a background process running in your
mind trying to resolve, or at least review the fight? Sometimes you can feel the
stress of that background process in your chest, or in the pit of your stomach.
It can make you feel anxious, like when you’ve had too much coffee or diet
coke. It’s distracting.

When I am worried about an argument with my wife, or a customer crisis, or a
sick child, I can’t maintain focus. My concentration wavers. I find myself with
my eyes on the screen and my fingers on the keyboard, doing nothing. Catatonic.

Sam
ple

 pa
ge

s

PREPAREDNESS

61

Paralyzed. A million miles away working through the problem in the
background rather than actually solving the coding problem in front of me.

Sometimes I will force myself to think about the code. I might drive myself to
write a line or two. I might push myself to get a test or two to pass. But I can’t
keep it up. Inevitably I find myself descending into a stupefied insensibility, seeing
nothing through my open eyes, inwardly churning on the background worry.

I have learned that this is no time to code. Any code I produce will be trash. So
instead of coding, I need to resolve the worry.

Of course, there are many worries that simply cannot be resolved in an hour or
two. Moreover, our employers are not likely to long tolerate our inability to
work as we resolve our personal issues. The trick is to learn how to shut down
the background process, or at least reduce its priority so that it’s not a
continuous distraction.

I do this by partitioning my time. Rather than forcing myself to code while the
background worry is nagging at me, I will spend a dedicated block of time,
perhaps an hour, working on the issue that is creating the worry. If my child is
sick, I will call home and check in. If I’ve had an argument with my wife, I’ll call
her and talk through the issues. If I have money problems, I’ll spend time
thinking about how I can deal with the financial issues. I know I’m not likely to
solve the problems in this hour, but it is very likely that I can reduce the anxiety
and quiet the background process.

Ideally the time spent wrestling with personal issues would be personal time. It
would be a shame to spend an hour at the office this way. Professional developers
allocate their personal time in order to ensure that the time spent at the office is
as productive as possible. That means you should specifically set aside time at
home to settle your anxieties so that you don’t bring them to the office.

On the other hand, if you find yourself at the office and the background
anxieties are sapping your productivity, then it is better to spend an hour
quieting them than to use brute force to write code that you’ll just have to
throw away later (or worse, live with).

Sam
ple

 pa
ge

s

CHAPTER 4 CODING

62

TH E FLOW ZO N E

Much has been written about the hyper-productive state known as “flow.”
Some programmers call it “the Zone.” Whatever it is called, you are probably
familiar with it. It is the highly focused, tunnel-vision state of consciousness
that programmers can get into while they write code. In this state they feel
productive. In this state they feel infallible. And so they desire to attain that
state, and often measure their self-worth by how much time they can
spend there.

Here’s a little hint from someone whose been there and back: Avoid the Zone.
This state of consciousness is not really hyper-productive and is certainly not
infallible. It’s really just a mild meditative state in which certain rational
faculties are diminished in favor of a sense of speed.

Let me be clear about this. You will write more code in the Zone. If you are
practicing TDD, you will go around the red/green/refactor loop more quickly.
And you will feel a mild euphoria or a sense of conquest. The problem is that
you lose some of the big picture while you are in the Zone, so you will likely
make decisions that you will later have to go back and reverse. Code written in
the Zone may come out faster, but you’ll be going back to visit it more.

Nowadays when I feel myself slipping into the Zone, I walk away for a few minutes.
I clear my head by answering a few emails or looking at some tweets. If it’s close
enough to noon, I’ll break for lunch. If I’m working on a team, I’ll find a pair
partner.

One of the big benefits of pair programming is that it is virtually impossible for
a pair to enter the Zone. The Zone is an uncommunicative state, while pairing
requires intense and constant communication. Indeed, one of the complaints I
often hear about pairing is that it blocks entry into the Zone. Good! The Zone
is not where you want to be.

Well, that’s not quite true. There are times when the Zone is exactly where you
want to be. When you are practicing. But we’ll talk about that in another
chapter.

Sam
ple

 pa
ge

s

THE FLOW ZONE

63

MU S I C

At Teradyne, in the late ’70s, I had a private office. I was the system administrator
of our PDP 11/60, and so I was one of the few programmers allowed to have a
private terminal. That terminal was a VT100 running at 9600 baud and connected
to the PDP 11 with 80 feet of RS232 cable that I had strung over the ceiling tiles
from my office to the computer room.

I had a stereo system in my office. It was an old turntable, amp, and floor
speakers. I had a significant collection of vinyl, including Led Zeppelin, Pink
Floyd, and … . Well, you get the picture.

I used to crank that stereo and then write code. I thought it helped my
concentration. But I was wrong.

One day I went back into a module that I had been editing while listening to the
opening sequence of The Wall. The comments in that code contained lyrics
from the piece, and editorial notations about dive bombers and crying babies.

That’s when it hit me. As a reader of the code, I was learning more about the
music collection of the author (me) than I was learning about the problem that
the code was trying to solve.

I realized that I simply don’t code well while listening to music. The music does
not help me focus. Indeed, the act of listening to music seems to consume some
vital resource that my mind needs in order to write clean and well-designed code.

Maybe it doesn’t work that way for you. Maybe music helps you write code. I
know lots of people who code while wearing earphones. I accept that the music
may help them, but I am also suspicious that what’s really happening is that the
music is helping them enter the Zone.

INTE R R U P TI O N S

Visualize yourself as you are coding at your workstation. How do you respond
when someone asks you a question? Do you snap at them? Do you glare? Does your
body-language tell them to go away because you are busy? In short, are you rude?

Sam
ple

 pa
ge

s

CHAPTER 4 CODING

64

Or, do you stop what you are doing and politely help someone who is stuck? Do
you treat them as you would have them treat you if you were stuck?

The rude response often comes from the Zone. You may resent being dragged
out of the Zone, or you may resent someone interfering with your attempt to
enter the Zone. Either way, the rudeness often comes from your relationship to
the Zone.

Sometimes, however, it’s not the Zone that’s at fault, it’s just that you are trying
to understand something complicated that requires concentration. There are
several solutions to this.

Pairing can be very helpful as a way to deal with interruptions. Your pair partner
can hold the context of the problem at hand, while you deal with a phone call,
or a question from a coworker. When you return to your pair partner, he quickly
helps you reconstruct the mental context you had before the interruption.

TDD is another big help. If you have a failing test, that test holds the context of
where you are. You can return to it after an interruption and continue to make
that failing test pass.

In the end, of course, there will be interruptions that distract you and cause you
to lose time. When they happen, remember that next time you may be the one
who needs to interrupt someone else. So the professional attitude is a polite
willingness to be helpful.

WR ITE R’S BLO C K

Sometimes the code just doesn’t come. I’ve had this happen to me and I’ve seen
it happen to others. You sit at your workstation and nothing happens.

Often you will find other work to do. You’ll read email. You’ll read tweets. You’ll
look through books, or schedules, or documents. You’ll call meetings. You’ll
start up conversations with others. You’ll do anything so that you don’t have to
face that workstation and watch as the code refuses to appear.

Sam
ple

 pa
ge

s

WRITER’S BLOCK

65

What causes such blockages? We’ve spoken about many of the factors already.
For me, another major factor is sleep. If I’m not getting enough sleep, I simply
can’t code. Others are worry, fear, and depression.

Oddly enough there is a very simple solution. It works almost every time. It’s easy
to do, and it can provide you with the momentum to get lots of code written.

The solution: Find a pair partner.

It’s uncanny how well this works. As soon as you sit down next to someone else,
the issues that were blocking you melt away. There is a physiological change that
takes place when you work with someone. I don’t know what it is, but I can
definitely feel it. There’s some kind of chemical change in my brain or body that
breaks me through the blockage and gets me going again.

This is not a perfect solution. Sometimes the change lasts an hour or two, only
to be followed by exhaustion so severe that I have to break away from my pair
partner and find some hole to recover in. Sometimes, even when sitting with
someone, I can’t do more than just agree with what that person is doing. But for
me the typical reaction to pairing is a recovery of my momentum.

CR E ATI V E IN PUT

There are other things I do to prevent blockage. I learned a long time ago that
creative output depends on creative input.

I read a lot, and I read all kinds of material. I read material on software, politics,
biology, astronomy, physics, chemistry, mathematics, and much more. However,
I find that the thing that best primes the pump of creative output is science
fiction.

For you, it might be something else. Perhaps a good mystery novel, or poetry, or
even a romance novel. I think the real issue is that creativity breeds creativity.
There’s also an element of escapism. The hours I spend away from my usual
problems, while being actively stimulated by challenging and creative ideas,
results in an almost irresistible pressure to create something myself.

Sam
ple

 pa
ge

s

CHAPTER 4 CODING

66

Not all forms of creative input work for me. Watching TV does not usually help
me create. Going to the movies is better, but only a bit. Listening to music does
not help me create code, but does help me create presentations, talks, and
videos. Of all the forms of creative input, nothing works better for me than
good old space opera.

DE B U G G I N G

One of the worst debugging sessions in my career happened in 1972. The
terminals connected to the Teamsters’ accounting system used to freeze once or
twice a day. There was no way to force this to happen. The error did not prefer
any particular terminals or any particular applications. It didn’t matter what the
user had been doing before the freeze. One minute the terminal was working
fine, and the next minute it was hopelessly frozen.

It took weeks to diagnose this problem. Meanwhile the Teamsters’ were getting
more and more upset. Every time there was a freeze-up the person at that
terminal would have to stop working and wait until they could coordinate all
the other users to finish their tasks. Then they’d call us and we’d reboot. It was a
nightmare.

We spent the first couple of weeks just gathering data by interviewing the
people who experienced the lockups. We’d ask them what they were doing at
the time, and what they had done previously. We asked other users if they
noticed anything on their terminals at the time of the freeze-up. These
interviews were all done over the phone because the terminals were located in
downtown Chicago, while we worked 30 miles north in the cornfields.

We had no logs, no counters, no debuggers. Our only access to the internals of
the system were lights and toggle switches on the front panel. We could stop the
computer, and then peek around in memory one word at a time. But we
couldn’t do this for more than five minutes because the Teamsters’ needed their
system back up.

We spent a few days writing a simple real-time inspector that could be operated
from the ASR-33 teletype that served as our console. With this we could peek

Sam
ple

 pa
ge

s

DEBUGGING

67

and poke around in memory while the system was running. We added log
messages that printed on the teletype at critical moments. We created in-memory
counters that counted events and remembered state history that we could
inspect with the inspector. And, of course, all this had to be written from
scratch in assembler and tested in the evenings when the system was not in use.

The terminals were interrupt driven. The characters being sent to the terminals
were held in circular buffers. Every time a serial port finished sending a character,
an interrupt would fire and the next character in the circular buffer would be
readied for sending.

We eventually found that when a terminal froze it was because the three variables
that managed the circular buffer were out of sync. We had no idea why this was
happening, but at least it was a clue. Somewhere in the 5 KSLOC of supervisory
code there was a bug that mishandled one of those pointers.

This new knowledge also allowed us to un-freeze terminals manually! We could
poke default values into those three variables using the inspector, and the
terminals would magically start running again. Eventually we wrote a little hack
that would look through all the counters to see if they were misaligned and
repair them. At first we invoked that hack by hitting a special user-interrupt
switch on the front panel whenever the Teamsters called to report a freeze-up.
Later we simply ran the repair utility once every second.

A month or so later the freeze-up issue was dead, as far as the Teamsters were
concerned. Occasionally one of their terminals would pause for a half second or
so, but at a base rate of 30 characters per second, nobody seemed to notice.

But why were the counters getting misaligned? I was nineteen and determined
to find out.

The supervisory code had been written by Richard, who had since gone off to
college. None of the rest of us were familiar with that code because Richard had
been quite possessive of it. That code was his, and we weren’t allowed to know
it. But now Richard was gone, so I got out the inches-thick listing and started to
go over it page by page.

Sam
ple

 pa
ge

s

CHAPTER 4 CODING

68

The circular queues in that system were just FIFO data structures, that is,
queues. Application programs pushed characters in one end of the queue until
the queue was full. The interrupt heads popped the characters off the other end
of the queue when the printer is ready for them. When the queue was empty,
the printer would stop. Our bug caused the applications to think that the queue
was full, but caused the interrupt heads to think that the queue was empty.

Interrupt heads run in a different “thread” than all other code. So counters and
variables that are manipulated by both interrupt heads and other code must be
protected from concurrent update. In our case that meant turning the
interrupts off around any code that manipulated those three variables. By the
time I sat down with that code I knew I was looking for someplace in the code
that touched the variables but did not disable the interrupts first.

Nowadays, of course, we’d use the plethora of powerful tools at our disposal to
find all the places where the code touched those variables. Within seconds we’d
know every line of code that touched them. Within minutes we’d know which
did not disable the interrupts. But this was 1972, and I didn’t have any tools like
that. What I had were my eyes.

I pored over every page of that code, looking for the variables. Unfortunately,
the variables were used everywhere. Nearly every page touched them in one way
or another. Many of those references did not disable the interrupts because they
were read-only references and therefore harmless. The problem was, in that
particular assembler there was no good way to know if a reference was read-
only without following the logic of the code. Any time a variable was read, it
might later be updated and stored. And if that happened while the interrupts
were enabled, the variables could get corrupted.

It took me days of intense study, but in the end I found it. There, in the middle
of the code, was one place where one of the three variables was being updated
while the interrupts were enabled.

I did the math. The vulnerability was about two microseconds long. There were
a dozen terminals all running at 30 cps, so an interrupt every 3 ms or so. Given
the size of the supervisor, and the clock rate of the CPU, we’d expect a freeze-up
from this vulnerability one or two times a day. Bingo!

Sam
ple

 pa
ge

s

PACING YOURSELF

69

I fixed the problem, of course, but never had the courage to turn off the
automatic hack that inspected and fixed the counters. To this day I’m not
convinced there wasn’t another hole.

DE B U G G I N G TI M E

For some reason software developers don’t think of debugging time as coding
time. They think of debugging time as a call of nature, something that just has
to be done. But debugging time is just as expensive to the business as coding
time is, and therefore anything we can do to avoid or diminish it is good.

Nowadays I spend much less time debugging than I did ten years ago. I haven’t
measured the difference, but I believe it’s about a factor of ten. I achieved this
truly radical reduction in debugging time by adopting the practice of Test
Driven Development (TDD), which we’ll be discussing in another chapter.

Whether you adopt TDD or some other discipline of equal efficacy,3 it is
incumbent upon you as a professional to reduce your debugging time as close
to zero as you can get. Clearly zero is an asymptotic goal, but it is the goal
nonetheless.

Doctors don’t like to reopen patients to fix something they did wrong. Lawyers
don’t like to retry cases that they flubbed up. A doctor or lawyer who did that
too often would not be considered professional. Likewise, a software developer
who creates many bugs is acting unprofessionally.

PAC I N G YO U R S E L F

Software development is a marathon, not a sprint. You can’t win the race by
trying to run as fast as you can from the outset. You win by conserving your
resources and pacing yourself. A marathon runner takes care of her body both
before and during the race. Professional programmers conserve their energy and
creativity with the same care.

3. I don’t know of any discipline that is as effective as TDD, but perhaps you do.

Sam
ple

 pa
ge

s

CHAPTER 4 CODING

70

KN OW WH E N TO WA L K AWAY

Can’t go home till you solve this problem? Oh yes you can, and you probably
should! Creativity and intelligence are fleeting states of mind. When you are
tired, they go away. If you then pound your nonfunctioning brain for hour after
late-night hour trying to solve a problem, you’ll simply make yourself more
tired and reduce the chance that the shower, or the car, will help you solve the
problem.

When you are stuck, when you are tired, disengage for awhile. Give your
creative subconscious a crack at the problem. You will get more done in less
time and with less effort if you are careful to husband your resources. Pace
yourself, and your team. Learn your patterns of creativity and brilliance, and
take advantage of them rather than work against them.

DR I V I N G HO M E

One place that I have solved a number of problems is my car on the way home
from work. Driving requires a lot of noncreative mental resources. You must
dedicate your eyes, hands, and portions of your mind to the task; therefore, you
must disengage from the problems at work. There is something about
disengagement that allows your mind to hunt for solutions in a different and
more creative way.

TH E SH OW E R

I have solved an inordinate number of problems in the shower. Perhaps that
spray of water early in the morning wakes me up and gets me to review all the
solutions that my brain came up with while I was asleep.

When you are working on a problem, you sometimes get so close to it that you
can’t see all the options. You miss elegant solutions because the creative part of
your mind is suppressed by the intensity of your focus. Sometimes the best way
to solve a problem is to go home, eat dinner, watch TV, go to bed, and then
wake up the next morning and take a shower.

Sam
ple

 pa
ge

s

BEING LATE

71

BE I N G L ATE

You will be late. It happens to the best of us. It happens to the most dedicated of
us. Sometimes we just blow our estimates and wind up late.

The trick to managing lateness is early detection and transparency. The worst
case scenario occurs when you continue to tell everyone, up to the very end,
that you will be on time—and then let them all down. Don’t do this. Instead,
regularly measure your progress against your goal, and come up with three4
fact-based end dates: best case, nominal case, and worst case. Be as honest as
you can about all three dates. Do not incorporate hope into your estimates!
Present all three numbers to your team and stakeholders. Update these
numbers daily.

HO PE

What if these numbers show that you might miss a deadline? For example, let’s
say that there’s a trade show in ten days, and we need to have our product there.
But let’s also say that your three-number estimate for the feature you are
working on is 8/12/20.

Do not hope that you can get it all done in ten days! Hope is the project killer.
Hope destroys schedules and ruins reputations. Hope will get you into deep
trouble. If the trade show is in ten days, and your nominal estimate is 12, you
are not going to make it. Make sure that the team and the stakeholders
understand the situation, and don’t let up until there is a fall-back plan. Don’t
let anyone else have hope.

RU S H I N G

What if your manager sits you down and asks you to try to make the deadline?
What if your manager insists that you “do what it takes”? Hold to your estimates!
Your original estimates are more accurate than any changes you make while

4. There’s much more about this in the Estimation chapter.

Sam
ple

 pa
ge

s

	Contents
	Foreword
	Preface
	Acknowledgments
	About the Author
	On the Cover
	Pre-Requisite Introduction
	Chapter 4 Coding
	Preparedness
	The Flow Zone
	Writer’s Block
	Debugging
	Pacing Yourself
	Being Late
	Help
	Bibliography

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y

