Chapter The Nature and Tools of Research

In virtually every subject area, our collective knowledge about the world is incomplete: Certain questions remain unanswered, and certain problems remain unsolved. Systematic research provides many powerful tools—not only physical tools but also mental and social tools—that can help us discover possible answers and identify possible solutions.

Learning Outcomes

- 1.1 Distinguish between (a) common uses of the term *research* that reflect misconceptions about what research involves and (b) the true nature of research in academic settings.
- 1.2 Describe the iterative, cyclical nature of research, including the steps that a genuine research project involves.
- 1.3 Distinguish among positivism, postpositivism, constructivism, and
- pragmatism/realism as philosophical underpinnings of a research project.
 I.4 Identify examples of how six general research tools can play significant roles in a research project: (a) the library and its resources, (b) computer technology, (c) measurement, (d) statistics, (e) language, and (f) the human mind.
- 1.5 Describe steps you might take to explore research in your field.

In everyday speech, the word *research* is often used loosely to refer to a variety of activities. In some situations the word connotes simply finding a piece of information or taking notes and then writing a so-called "research paper." In other situations it refers to the act of informing oneself about what one does not know, perhaps by rummaging through available sources to locate a few tidbits of information. Such uses of the term can create considerable confusion for university students, who must learn to use it in a narrower, more precise sense.

Yet when used in its true sense—as a systematic process that leads to new knowledge and understandings—the word *research* can suggest a mystical activity that is somehow removed from everyday life. Many people imagine researchers to be aloof individuals who seclude themselves in laboratories, scholarly libraries, or the ivory towers of large universities. In fact, research is often a practical enterprise that—given appropriate tools—*any* rational, conscientious individual can conduct. In this chapter we lay out the nature of true research and describe general tools that make it possible.

WHAT RESEARCH IS NOT

Following are three statements that describe what research is not. Accompanying each statement is an example that illustrates a common misconception about research.

1. *Research is not merely gathering information.* A sixth-grader comes home from school and tells her parents, "The teacher sent us to the library today to do research,

and I learned a lot about black holes." For this student, research means going to the library to find a few facts. This might be *information discovery*, or it might be learning *reference skills*. But it certainly is not, as the teacher labeled it, research.

2. Research is not merely rummaging around for hard-to-locate information. The house across the street is for sale. You consider buying it and call your realtor to find out how much someone else might pay you for your current home. "I'll have to do some research to determine the fair market value of your property," the realtor tells you. What the realtor calls doing "some research" means, of course, reviewing information about recent sales of properties comparable to yours; this information will help the realtor zero in on a reasonable asking price for your own home. Such an activity involves little more than searching through various files or websites to discover what the realtor previously did not know. Rummaging—whether through records in one's own office, at a library, or on the Internet—is not research. It is more accurately called an *exercise in self-enlightenment*.

3. Research is not merely transporting facts from one location to another. A college student reads several articles about the mysterious Dark Lady in William Shakespeare's sonnets and then writes a "research paper" describing various scholars' suggestions of who the lady might have been. Although the student does, indeed, go through certain activities associated with formal research—such as collecting information, organizing it in a certain way for presentation to others, supporting statements with documentation, and referencing statements properly—these activities do not add up to true research. The student has missed the essence of research: the *interpretation* of data. Nowhere in the paper does the student say, in effect, "These facts I have gathered seem to indicate such-and-such about the Dark Lady." Nowhere does the student interpret and draw conclusions from the facts. This student is approaching genuine research; however, the mere compilation of facts, presented with reference citations and arranged in a logical sequence—no matter how polished and appealing the format—misses genuine research by a hair. Such activity might more realistically be called *fact transcription, fact documentation, fact organization,* or *fact summarization*.

Going a little further, this student would have traveled from one world to another: from the world of mere transportation of facts to the world of interpretation of facts. The difterence between the two worlds is the distinction between transference of information and genuine research—a distinction that is critical for novice researchers to understand.

MyLab Education Self-Check 1.1

WHAT RESEARCH IS

Research is a systematic process of collecting, analyzing, and interpreting information *data*—in order to increase our understanding of a phenomenon about which we are interested or concerned.¹ People often use a systematic approach when they collect and interpret information to solve the small problems of daily living. Here, however, we focus on *formal*

¹Some people in academia use the term *research* more broadly to include deriving new equations or abstract principles from existing equations or principles through a sequence of mathematically logical and valid steps. Such an activity can be quite intellectually challenging, of course, and is often at the heart of doctoral dissertations and scholarly journal articles in mathematics, physics, and related disciplines. In this book, however, we use the term *research* more narrowly to refer to *empirical* research—research that involves the collection and analysis of new data.

research, research in which we intentionally set out to enhance our understanding of a phenomenon and expect to communicate what we discover to the larger scientific community.

Although research projects vary in complexity and duration, research generally involves seven distinct steps, shown in Figure 1.1. We now look at each of these steps more closely.

1. The researcher begins with a problem—an unanswered question—related to a topic of interest and concern. The impetus for all good research is a desire to acquire new information that advances our collective understandings of physical, biological, social, or psychological phenomena. At a minimum, good researchers are curious researchers: They genuinely want to learn more about a particular topic. Many of them are also motivated to identify possible solutions to local, regional, or global problems—solutions that might either directly or indirectly enhance the well-being of humankind or of the physical, biological, and social environments in which we live.

As you think about your topic of interest, consider these questions: What is such-andsuch a situation like? Why does such-and-such a phenomenon occur? Might such-and-such an intervention alter the current state of affairs? What does it all mean? With questions like these, research begins. 2. The researcher clearly and specifically articulates the goal of the research endeavor. A critical next step is to pin down the issue or question—which we will refer to as the research problem—that the researcher will address. The ultimate goal of the research must be set forth in a grammatically complete sentence that specifically and precisely identifies the question the researcher will try to answer. When you describe your objective in clear, concrete terms, you have a good idea of what you need to accomplish and can direct your efforts accordingly.

3. *The researcher often divides the principal problem into more manageable subproblems.* From a design standpoint, it is often helpful to break a main research problem into several subproblems that, when solved, can possibly resolve the main problem.

Breaking down principal problems into small, easily solvable subproblems is a strategy we use in everyday living. For example, suppose you want to drive from your hometown to a town many miles or kilometers away. Your principal goal is to get from one location to the other as expeditiously as possible. You soon realize, however, that the problem involves several subproblems:

Main problem:How do I get from Town A to Town B?Subproblems:1. What route appears to be the most direct one?2. Is the most direct one also the quickest one? If not,
what route might take the least amount of time?3. Which is more important to me: minimizing my
travel time or minimizing my energy consumption?

4. At what critical junctions in my chosen route must I turn right or left?

Thus, what initially appears to be a single question can be divided into several smaller questions that must be addressed before the principal question can be resolved.

So it is with most research problems. By closely inspecting the principal problem, the researcher often uncovers important subproblems. By addressing each of the subproblems, the researcher can more easily address the main problem. If a researcher doesn't take the time or trouble to isolate the lesser problems within the major problem, the overall research project can become cumbersome and difficult to manage.

Identifying and clearly articulating the problem and its subproblems are the essential starting points for formal research. Accordingly, we discuss these processes in depth in Chapter 2.

4. The researcher identifies general assumptions—and possibly also specific bypotheses that underlie the research effort. An assumption is a condition that is taken for granted, without which the research project would be pointless. For example, imagine that your problem is to investigate whether students learn the unique grammatical structures of a language more quickly by studying only one foreign language at a time or by studying two foreign languages concurrently. What assumptions would underlie such a problem? At a minimum, you must assume that

- The teachers used in the study are competent to teach the language or languages in question and have mastered the grammatical structures of the language(s) they are teaching.
- The students taking part in the research are capable of mastering the unique grammatical structures of any language(s) they are studying.
- The languages selected for the study have sufficiently different grammatical structures that students might reasonably learn to distinguish between them.

Aside from such basic ideas as these, however, careful researchers state their assumptions, so that other people inspecting the research project can evaluate it in accordance with *their own* assumptions. For instance, a researcher might assume that

- Participants' responses in a paper-and-pencil questionnaire, face-to-face interview, or online survey are reasonably accurate indicators of their actual behaviors or opinions.
- Behaviors observed in an artificial laboratory environment can effectively reveal how people or other animal species are likely to behave in more natural, real-world settings.
- Certain assessment instruments (e.g., widely used intelligence tests, personality tests, and interest inventories) reflect relatively stable personal characteristics that are unlikely to change very much in the near future. (We examine this issue in detail in the discussion of *validity* of assessment instruments in Chapter 4.)

As you will discover in upcoming chapters, researchers can sometimes support such assumptions by citing past research findings or collecting certain kinds of data within their own research projects.

In addition to stating basic assumptions, many researchers form one or more hypotheses about what they might discover. A *hypothesis* is a logical supposition, a reasonable guess, an educated conjecture. In formal research, it might be more specifically called a research hypothesis, in that it provides a tentative explanation for a phenomenon under investigation. It may direct your thinking to possible sources of information that will aid in resolving one or more subproblems and, as a result, may also help you resolve the principal research problem. When one or more research hypotheses are proposed prior to any data collection, they are known as *a priori* hypotheses—a term whose Latin roots mean "from something before."

Hypotheses are certainly not unique to research. In your everyday life, if something happens, you immediately try to account for its cause by making some reasonable conjectures. For example, imagine that you come home after dark, open your front door, and reach inside for the switch that turns on a nearby table lamp. Your fingers find the switch. You flip it. No light. At this point, you identify several hypotheses regarding the lamp's failure:

Hypothesis 1: A recent storm has disrupted your access to electrical power.

Hypothesis 2: The bulb has burned out.

Hypothesis 3: The lamp isn't securely plugged into the wall outlet.

Hypothesis 4: The wire from the lamp to the wall outlet is defective.

Hypothesis 5: You forgot to pay your electric bill.

Each of these hypotheses hints at a strategy for acquiring information that may resolve the nonfunctioning-lamp problem. For instance, to test Hypothesis 1, you might look outside to see whether your neighbors have lights, and to test Hypothesis 2, you might replace the current light bulb with a new one.

Hypotheses in a research project are as tentative as those for a nonfunctioning table lamp. For example, a biologist might speculate that certain human-made chemical compounds increase the frequency of birth defects in frogs. A psychologist might speculate that certain personality traits lead people to show predominantly liberal or conservative voting patterns. A marketing researcher might speculate that humor in a television commercial will capture viewers' attention and thereby will increase the odds that viewers buy the advertised product. Notice the word *speculate* in all of these examples. Good researchers always begin a project with open minds about what they may—or may *not*—discover in their data.

Hypotheses—predictions—are an essential ingredient in certain kinds of research, especially experimental research (see Chapter 7). To a lesser degree, they might guide other forms of research as well, but they are intentionally *not* identified in the early stages of some kinds of qualitative research (e.g., see the discussion of grounded theory studies in Chapter 8).

5. The researcher develops a specific plan for addressing the problem and its subproblems. Research is not a blind excursion into the unknown, with the hope that

the data necessary to address the research problem will magically emerge. It is, instead, a carefully planned itinerary of the route you intend to take in order to reach your final destination—your research goal. Consider the title of this text: *Practical Research: Planning and Design*. The last three words—*Planning and Design*—are especially important ones. Researchers plan their overall research design and specific research methods in a purposeful way so that they can acquire data relevant to their research problem and sub-problems. Depending on the research question, different designs and methods are more or less appropriate.

In the formative stages of a research project, much can be decided: Are any existing data directly relevant to the research problem? If so, where are they, and are you likely to have access to them? If the needed data *don't* currently exist, how might you generate them? And later, after you have acquired the data you need, what will you do with them? Such questions merely hint at the fact that planning and design cannot be postponed. Each of the questions just listed—and many more—must have an answer early in the research process. In Chapter 4, we discuss several general issues related to research planning. Then, beginning in Chapter 6, we describe strategies related to various research methodologies.

You should note here that we are using the word *data* as a plural noun; for instance, we ask "Where *are* the data?" rather than "Where *is* the data?" Contrary to popular usage of the term as a singular noun, *data* (which has its origins in Latin) refers to two or more pieces of information. A single piece of information is known as a *datum*, or sometimes as a *data point*.

6. The researcher collects, organizes, and analyzes data related to the problem and *its subproblems*. After a researcher has isolated the problem, divided it into appropriate subproblems, identified assumptions (and possibly also *a priori* hypotheses), and chosen a suitable design and methodology, the next step is to collect whatever data might be relevant to the problem and organize and analyze those data in meaningful ways.

The data collected in research studies take one or both of two general forms. Quantitative research involves looking at amounts, or *quantities*, of one or more variables of interest. A quantitative researcher tries to measure variables in some numerical way, perhaps by using commonly accepted measures of the physical world (e.g., rulers, thermometers, oscillo-scopes) or carefully designed measures of psychological characteristics or behaviors (e.g., tests, questionnaires, rating scales).

In contrast, qualitative research involves looking at characteristics, or *qualities*, that cannot be entirely reduced to numerical values. A qualitative researcher typically aims to examine the many nuances and complexities of a particular phenomenon. You are most likely to see qualitative research in studies of complex human situations (e.g., people's indepth perspectives about a particular issue, the behaviors and values of a particular cultural group) or complex human creations (e.g., television commercials, works of art). Qualitative research isn't limited to research problems involving human beings, however. For instance, some biologists study, in a distinctly qualitative manner, the complex social behaviors of other animal species; Dian Fossey's work with gorillas and Jane Goodall's studies of chimpanzees are two well-known examples (e.g., see Fossey, 1983; Goodall, 1986).

The two kinds of data—quantitative and qualitative—often require distinctly different research methods and data analysis strategies. Accordingly, three of the book's subsequent chapters focus predominantly on quantitative techniques (see Chapters 6, 7, and 11), and two others focus almost exclusively on qualitative techniques (see Chapters 8 and 12). Nevertheless, we urge you *not* to think of the quantitative–qualitative distinction as a mutually exclusive, *it-has-to-be-one-thing-or-the-other* dichotomy. Many researchers collect both quantitative and qualitative data in a single research project—an approach sometimes known as **mixed-methods research** (see Chapter 9). And in action research, one or more researchers—who are often practitioners in a particular helping profession (e.g., education, counseling, social work, medicine)—might use both quantitative and qualitative methods in an effort to improve current practices and desired outcomes (see Chapter 10). Good researchers tend to

be *eclectic* researchers who draw from diverse methodologies and data sources in order to best address their research problems and questions (e.g., see Gorard, 2010; Lather, 2006; Onwuegbuzie & Leech, 2005).

7. The researcher interprets the meaning of the data as they relate to the problem and *its subproblems.* Quantitative and qualitative data are, in and of themselves, *only* data—nothing more. The significance of the data depends on how the researcher extracts *meaning* from them. In research, uninterpreted data are worthless: They can never help us answer the questions we have posed.

Yet researchers must recognize and come to terms with the subjective and dynamic nature of interpretation. Consider, for example, the many books written on the assassination of U.S. President John F. Kennedy. Different historians have studied the same events: One may interpret them one way, and another may arrive at a very different conclusion. Which one is right? Perhaps they both are; perhaps neither is. Both may have merely posed new problems for other historians to try to resolve. Different minds often find different meanings in the same set of facts.

Once we believed that clocks measured time and that yardsticks measured space. In one sense, they still do. We further assumed that time and space were two different entities. Then along came Einstein's theory of relativity, and time and space became locked into one concept: the time-space continuum. What's the difference between the old perspective and the new one? It's the way we think about, or interpret, the same information. The realities of time and space have not changed; the way we interpret them has.

Data demand interpretation. But no rule, formula, or algorithm can lead the researcher unerringly to a correct interpretation. Interpretation is inevitably a somewhat subjective process that depends on the researcher's assumptions, hypotheses, and logical reasoning processes.

Now think about how we began this chapter. We suggested that certain activities cannot accurately be called research. At this point you can understand why. None of those activities demands that the researcher draw any conclusions or make any interpretations of the data.

We must emphasize two important points related to the seven-step process just described. First, *the process is iterative:* A researcher sometimes needs to move back and forth between two or more steps along the way. For example, while developing a specific plan for a project (Step 5), a researcher might realize that a genuine resolution of the research problem requires addressing a subproblem not previously identified (Step 3). And while interpreting the collected data (Step 7), a researcher may decide that additional data are needed to fully resolve the problem (Step 6).

Second, *the process is cyclical*. The final step in the process depicted in Figure 1.1 interpretation of the data—is not *really* the final step at all. Only rarely is a research project a one-shot effort that completely resolves a problem; more often, it is likely to unearth new questions related to the issue at hand. And if specific hypotheses have been put forth, either *a priori* or after data have been collected and analyzed, those hypotheses are rarely proved or disproved beyond a shadow of a doubt. Instead, they are either *supported* or *not supported* by the data. If the data are consistent with a particular hypothesis, the researcher can make a case that the hypothesis probably has some merit and should be taken seriously. In contrast, if the data run contrary to a hypothesis, the researcher *rejects* the hypothesis and might turn to other hypotheses as being more likely explanations of the phenomenon in question. In any of these situations, one or more additional, follow-up studies are called for.

Ultimately, then, most research studies don't bring total closure to a research problem. There is no obvious end point—no point at which a researcher can say "Voila! I've completely answered the question about which I'm concerned." Instead, research typically involves a cycle—or more accurately, a *helix* (spiral)—in which one study spawns additional, follow-up studies. In exploring a topic, one comes across additional problems that need resolving, and so the process must begin anew. Research begets more research.

To view research in this way is to invest it with a dynamic quality that is its true nature—a far cry from the conventional view, which sees research as a one-time undertaking that is static, self-contained, an end in itself. Here we see another difference between true research and the nonexamples of research presented earlier in the chapter. Every researcher soon learns that genuine research is likely to yield as many problems as it resolves. Such is the nature of the acquisition of knowledge.

MyLab Education Self-Check 1.2

MyLab Education Application Exercise 1.1: Identifying Hypotheses and Assumptions

PHILOSOPHICAL ASSUMPTIONS UNDERLYING RESEARCH METHODOLOGIES

Let's return to Step 4 in the research process: *The researcher identifies assumptions—and possibly also hypotheses—that underlie the research effort.* The assumptions underlying a research project are sometimes so seemingly self-evident that a researcher may think it unnecessary to mention them. In fact, the researcher may not even be consciously aware of them. For example, two general assumptions underlie many research studies:

- The phenomenon under investigation is somewhat lawful and predictable; it is *not* comprised of completely random events.
- Cause-and-effect relationships can account for certain patterns observed in the phenomenon.

But are such assumptions justified? Is the world a lawful place, with some things definitely causing or influencing others? Or are definitive laws and cause-and-effect relationships nothing more than figments of our fertile human imaginations?

As we consider such questions, it is helpful to distinguish among different philosophical orientations that point researchers in somewhat different directions in their quests to make sense of our physical, biological, social, and psychological worlds.² Historically, a good deal of research in the natural sciences has been driven by a perspective known as positivism. Positivists believe that, with appropriate measurement tools, scientists can objectively uncover absolute, undeniable *truths* about cause-and-effect relationships within the physical world and human experience.

In the social sciences, many researchers are—and most others *should* be—less self-assured and more tentative about their assumptions. Some social scientists take a perspective known as **postpositivism**, believing that true objectivity in seeking absolute truths can be an elusive goal. Although researchers might strive for objectivity in their collection and interpretation of data, they inevitably bring certain *biases* to their investigations—perhaps biases regarding the best ways to measure certain variables or the most logical inferences to draw from patterns within the data. From a postpositivist perspective, progress toward genuine understandings of physical, social, and psychological phenomena tends to be gradual and probabilistic. For example, recall the earlier discussion of hypotheses being either *supported* or *not supported* by data. Postpositivists don't say, "I've just proven such-and-such." Rather, they're more likely to say, "This increases the probability that such-and-such is true."

²Some writers use terms such as *worldviews*, *epistemologies*, or *paradigms* instead of the term *philosophical orientations*.

Other researchers have abandoned any idea that absolute truths are somewhere "out there" in the world, waiting to be discovered. In this perspective, known as **constructivism**, the "realities" researchers identify are nothing more than human *creations* that can be helpful in finding subjective meanings within the data collected.³ Constructivists not only acknowledge that they bring certain biases to their research endeavors but also try to be as up-front as possible about these biases. The emphasis on subjectivity and bias—rather than objectivity—applies to the phenomena that constructivist researchers study as well. By and large, constructivists focus their inquiries on people's *perceptions* and *interpretations* of various phenomena, including individuals' behaviors, group processes, and cultural practices.

In yet another perspective, known as **phenomenology**, the focus is entirely on how human beings *experience* themselves and their world as they go through life. Researchers with this orientation typically ask the question, "What is it like to experience such-andsuch?" For example, they might ask, "What is it like . . . to have attention-deficit disorder?" ". . . to run for political office?" ". . . to undergo chemotherapy?" ". . . to immigrate to an English-speaking country without any knowledge of English?" In our view, a phenomenological orientation is also a constructivist orientation, in that people's constructed realities are essential components of their lived experiences. However, some scholars argue that the two perspectives are distinctly different entities.

Many of the quantitative methodologies described in this book have postpositivist, probabilistic underpinnings—a fact that becomes especially evident in the discussion of statistics in Chapter 11. In contrast, some qualitative methodologies have a distinctly constructivist or phenomenological bent, with a focus on ascertaining people's beliefs, perceptions, and experiences, rather than trying to pin down absolute, objective truths that might not exist at all.

But once again we urge you *not* to think of quantitative research and qualitative research as reflecting a mutually exclusive, *either-this-or-that* dichotomy. For instance, some quantitative researchers approach a research problem from a constructivist framework, and some qualitative researchers tend to think in a postpositivist manner. Many researchers acknowledge *both* that (a) absolute truths regarding various phenomena may actually exist—even if they are exceedingly difficult to discover—and (b) human beings' self-constructed beliefs and experiences are legitimate objects of study in their own right. You might see such labels as **pragmatism** and **realism** used in reference to this orientation (e.g., see R. B. Johnson & Onwuegbuzie, 2004; Maxwell & Mittapalli, 2010).

Presumably, most researchers hope that their findings will either directly or indirectly be useful to humankind as a whole. But some researchers focus almost exclusively on how human actions can lead to beneficial outcomes. In an orientation that goes by various names, including *action research, praxis,* and *social action,* a researcher places a particular human action or intervention front and center in an investigation—perhaps studying a particular approach to physical therapy, reading instruction, protection of an endangered species, or rainforest preservation—with the ultimate goal being to enhance the well-being of our planet or some of its inhabitants (e.g., see Gergen, Josselson, & Freeman, 2015). The researcher determines whether the intervention has a desired effect and then, after some analysis and reflection, may modify the intervention to further enhance its effectiveness. Clearly, these practically oriented researchers assume that some cause-and-effect relationships do exist in our world and that, more specifically, we human beings can have a beneficial impact on our physical, biological, social, or psychological environments.

MyLab Education Self-Check 1.3

MyLab Education Application Exercise 1.2: Examining Philosophical Assumptions

³In some fields (e.g., in business), this perspective is often called *interpretivism*.

TOOLS OF RESEARCH

Every professional needs specialized tools in order to work effectively. Without hammer and saw, the carpenter is out of business; without scalpel or forceps, the surgeon cannot practice. Researchers, likewise, have their own set of tools to carry out their plans. The tools that researchers use to achieve their research goals can vary considerably depending on the discipline. A microbiologist needs a microscope and culture media; an attorney needs a library of legal decisions and statute law. By and large, we don't discuss such discipline-specific tools in this book. Rather, our concern here is with general tools of research that the great majority of researchers of all disciplines need in order to collect data and derive meaningful conclusions.

We should be careful not to equate the *tools* of research with the *methodology* of research. A **research tool** is a specific mechanism or strategy the researcher uses to collect, manipulate, or interpret data. The **research methodology** is the general approach the researcher takes in carrying out the research project; to some extent, this approach dictates the particular tools the researcher selects.

Confusion between the tool and the research method is immediately recognizable. Such phrases as "library research" and "statistical research" are telltale signs and largely meaningless terms. They suggest a failure to understand the nature of formal research, as well as a failure to differentiate between tool and method. The library is merely a place for locating certain information that will be analyzed and interpreted at some point in the research process. Likewise, statistics merely provide ways to analyze and summarize data, thereby allowing us to see patterns within the data more clearly.

In the following sections, we look more closely at six general tools of research:

- 1. The library and its resources
- 2. Computer technology
- 3. Measurement
- 4. Statistics
- 5. Language
- 6. The human mind

The Library and Its Resources

Historically, many literate human societies used libraries to assemble and store their collective knowledge. For example, in the seventh century B.C., the ancient Assyrians' Library of Nineveh contained 20,000 to 30,000 tablets, and in the second century A.D., the Romans' Library of Celsus at Ephesus housed more than 12,000 papyrus scrolls and, in later years, many parchment books as well.⁴

Until the past few decades, libraries were primarily repositories of concrete, physical representations of knowledge—clay tablets, scrolls, manuscripts, books, journals, films, and the like. For the most part, any society's collective knowledge expanded rather slowly and could seemingly be contained within masonry walls. But by the latter half of the 20th century, people's knowledge about their physical and social worlds began to increase many times over, and at the present time, it continues to increase at an astounding rate. In response, libraries have evolved in important ways. First, they have made use of many emerging technologies (e.g., microforms, CDs, DVDs, online databases) to store information in more compact forms. Second, they have provided increasingly fast and efficient means of locating and

⁴ Many academic scholars would instead say "seventh century BCE" and "second century CE" in this sentence, referring to the more religion-neutral terms *Before Common Era* and *Common Era*. However, we suspect that some of our readers are unfamiliar with these terms, hence our use of the more traditional ones.

accessing information on virtually any topic. And third, many of them have made catalogs of their holdings available on the Internet. The libraries of today—especially university libraries—extend far beyond their local, physical boundaries.

We explore efficient use of a library and its resources in depth in Chapter 3. For now, we simply want to stress that the library is—and must be—one of the most valuable tools in any researcher's toolbox.

Computer Technology

As research tools, personal computers—whether they take the form of desktops, laptops, tablets, or smartphones—are now commonplace. In addition, computer software packages and applications have become increasingly user-friendly, such that novice researchers can easily take advantage of them. But like any tool—no matter how powerful—computer technology has its limitations. Yes, computers can certainly calculate, compare, search, retrieve, sort, and organize data more efficiently and accurately than you can. But in their present stage of development, they depend largely on people to give them directions about what to do.

A computer is not a miracle worker—it can't do your thinking for you. It can, however, be a fast and faithful assistant. When told exactly what to do, it is one of the researcher's best friends. Table 1.1 offers suggestions for how you might use computer technology as a research tool.

Measurement

Especially when conducting quantitative research, a researcher needs a systematic way of *measuring* the phenomena under investigation. Some common, everyday measurement instruments—rulers, scales, stopwatches—can occasionally be helpful for measuring easily observable variables, such as length, weight, or time. But in most cases, a researcher needs one or more specialized instruments. For example, an astronomer might need a highpowered telescope to detect patterns of light in the night sky, and a neurophysiologist might need a magnetic resonance imaging (MRI) machine to detect and measure neural activity in the brain.

In quantitative research, social and psychological phenomena require measurement as well, even though they have no concrete, easily observable basis in the physical world. For example, an economist might use the Dow-Jones Industrial Average or NASDAQ index to track economic growth over time, a sociologist might use a questionnaire to assess people's attitudes about marriage and divorce, and an educational researcher might use an achievement test to measure the extent to which schoolchildren have acquired knowledge and skills related to a particular topic. Finding or developing appropriate measurement instruments for social and psychological phenomena can sometimes be quite a challenge. Thus, we explore measurement strategies in some depth when we discuss the research planning process in Chapter 4.

Statistics

As you might guess, statistics are most helpful in quantitative research, although they occasionally come in handy in qualitative research as well. Statistics also tend to be more useful in some academic disciplines than in others. For instance, researchers use them quite often in such fields as psychology, medicine, and business; they use statistics less frequently in such fields as history, musicology, and literature.

Statistics have two principal functions: to help a researcher (a) describe quantitative data and (b) draw inferences from these data. **Descriptive statistics** help the researcher capture the general nature of the data obtained—for instance, how certain measured characteristics appear to be "on average," how much variability exists within a data set, and how closely two

TABLE 1.1	The Compute	er As a Research Tool
-----------	-------------	-----------------------

Part of the Study	Relevant Technological Support Tools
Planning the study	• Brainstorming assistance—software used to help generate and organize ideas related to the research problem, research strategies, or both.
	 Outlining assistance—software used to help structure various aspects of the study and focus work efforts.
	 Project management assistance—software used to schedule and coordinate varied tasks that must occur in a timely manner.
	 Budget assistance—spreadsheet software used to help in outlining, estimating, and monitoring the potential costs involved in the research effort.
Literature review	 Literature identification assistance—online databases used to help identify relevant research studies to be considered during the formative stages of the research endeavor.
	 Communication assistance—computer technology used to communicate with other researchers who are pursuing similar topics (e.g., e-mail, Skype, electronic bulletin boards, list servers).
	 Writing assistance—software used to facilitate the writing, editing, formatting, and citation management of the literature review.
Study implementation and data gathering	 Materials production assistance—software used to develop instructional materials, visual displays, simulations, or other stimuli to be used in experimental interventions.
	 Experimental control assistance—software used to physically control the effects of specific variables and to minimize the influence of potentially confounding variables.
	• Survey distribution assistance—databases and word-processing software used in combination to send specific communications to a targeted population.
	 Online data collection assistance—websites used to conduct surveys and certain other types of studies on the Internet.
	 Field based data collection assistance—software used to take field notes or to monitor spe- cific types of responses given by participants in a study.
Analysis and interpretation	 Organization and transcription assistance—software used to assemble, categorize, code, integrate, and search potentially huge data sets (such as qualitative interview data or open-ended responses to survey questions).
	 Conceptual assistance—software used to write and store ongoing reflections about data or to construct theories that integrate research findings.
	 Statistical assistance—statistical and spreadsheet software packages used to categorize and analyze various types of data sets.
	 Graphic production assistance—software used to depict data in graphic form to facilitate interpretation.
Reporting	 Communication assistance—telecommunication software used to distribute and discuss research findings and initial interpretations with colleagues and to receive their comments and feedback.
C	• Writing and editing assistance—word-processing software used to write and edit successive drafts of the final report.
	Dissemination assistance—desktop publishing software and poster-creation software used to produce professional-looking documents and posters that can be displayed or distributed at conferences and elsewhere.
	 Presentation graphics assistance—presentation software used to create static and animated slides for conference presentations.
	 Networking assistance—blogs, social networking sites, and other Internet-based mechanisms used to communicate one's findings to a wider audience and to generate discussion for follow-up studies by others in the field.

or more characteristics are associated with one another. In contrast, inferential statistics help the researcher make decisions about the data. For example, they might help a researcher decide whether the differences observed between two experimental groups are large enough to be attributed to the differing experimental interventions rather than to a once-in-a-blue-moon fluke. Both of these functions of statistics ultimately involve summarizing the data in some way.

In the process of summarizing data, statistical analyses often create entities that have no counterpart in reality. Let's take a simple example: Four students have part-time jobs on campus. One student works 24 hours a week in the library, a second works 22 hours a week in the campus bookstore, a third works 12 hours a week in the parking lot, and the fourth works 16 hours a week in the cafeteria. One way of summarizing the students' work hours is to calculate the arithmetic mean.⁵ By doing so, we find that, "on average," the students work 18.5 hours a week. Although we have learned something about these four students and their working hours, to some extent we have learned a myth: None of these students has worked exactly 18.5 hours a week. That figure represents absolutely no fact in the real world.

If statistics offer only an unreality, then why use them? Why create myth out of hard, demonstrable data? The answer lies in the nature of the human mind. Human beings can cognitively think about only a very limited amount of information at any single point in time.⁶ Statistics help condense an overwhelming body of data into an amount of information that the mind can more readily comprehend and deal with. In the process, they can help a researcher detect patterns and relationships in the data that might otherwise go unnoticed. More generally, statistics *help the human mind comprehend disparate data as an organized whole.*

Any researcher who uses statistics must remember that calculating statistical values is not—and must not be—the final step in a research endeavor. The ultimate question in research is, *What do the data indicate?* Statistics yield *information* about data, but conscientious researchers are not satisfied until they determine the *meaning* of this information.

Although a book such as this one can't provide all of the nitty-gritty details of statistical analysis, we give you an overview of potentially useful statistical techniques in Chapter 11.

Language

One of humankind's greatest achievements is language. Not only does it allow us to communicate with one another, but it also enables us to think more effectively. People can often think more clearly and efficiently about a topic when they can represent their thoughts in their heads with specific words and phrases.

For example, imagine that you're driving along a country road. In a field to your left, you see an object with the following characteristics:

Black and white in color, in a splotchy pattern

Covered with a short, bristly substance

Appended at one end by something similar in appearance to a paintbrush

Appended at the other end by a lumpy thing with four smaller things coming out of its top (two soft and floppy; two hard, curved, and pointed)

Held up from the ground by four spindly sticks, two at each end

Unless you have spent most of your life living under a rock, you would almost certainly identify this object as a *cow*.

Words—even those as simple as *cow*—and the concepts that the words represent enhance our thinking in several ways (J. E. Ormrod, 2016; also see Jaccard & Jacoby, 2010):

1. Words reduce the world's complexity. Classifying similar objects and events into categories and assigning specific words to those categories can make our experiences easier to make sense of. For instance, it's much easier to think to yourself, "I see a herd of cows," than to think, "There is a brown object, covered with bristly stuff, appended by a paintbrush and a lumpy thing, and held up by four sticks. Ah, yes, and I also see a black-and-white spotted

⁵When the word *arithmetic* is used as an adjective, as it is here, it is pronounced with emphasis on the third syllable ("ar-ith-MET-ic").

⁶If you have some background in human memory and cognition, you may realize that we are talking about the limited capacity of *working memory* here (e.g., see Cowan, 2010; J. E. Ormrod, 2016).

object, covered with bristly stuff, appended by a paintbrush and a lumpy thing, and held up by four sticks. And over there is a brown-and-white object. . . ."

2. Words allow abstraction of the environment. An object that has bristly stuff, a paintbrush at one end, a lumpy thing at the other, and four spindly sticks on its underside is a concrete entity. The concept *cow*, however, is more abstract: It connotes such characteristics as *female*, *supplier of milk*, and, to the farmer, *economic asset*. Concepts and the labels associated with them allow us to think about our experiences without necessarily having to consider all of their discrete, concrete characteristics.

3. *Words enhance the power of thought.* When you are thinking about an object covered with bristly stuff, appended by a paintbrush and a lumpy thing, held up by four sticks, and so on, you can think of little else (as mentioned earlier, human beings can think about only a very limited amount of information at any one time). In contrast, when you simply think *cou*, you can easily think about other ideas at the same time (e.g., *farmer, milk, pasteurization*) and perhaps form connections and interrelationships among them in ways you hadn't previously considered.

4. Words facilitate generalization and inference drawing in new situations. When we learn a new concept, we associate certain characteristics with it. Then, when we encounter a new instance of the concept, we can draw on our knowledge of associated characteristics to make assumptions and inferences about the new instance. For instance, if you see a herd of cattle as you drive through the countryside, you can infer that you are passing through either dairy or beef country, depending on whether you see large udders hanging down between two of the spindly sticks.

Just as *cow* helps us categorize certain experiences into a single idea, so, too, does the terminology of your discipline help you interpret and understand your observations. The words *tempo, timbre,* and *perfect pitch* are useful to the musicologist. Such terms as *central business district, folded mountain,* and *distance to k* have special meaning for the geographer. The terms *learning outcome, classroom climate,* and *student at risk* communicate a great deal to the educator. Learning the specialized terminology of your field is indispensable to conducting a research study, grounding it in prior theories and research, and communicating your results to others.

Two outward manifestations of language usage are also helpful to the researcher: (a) knowing two or more languages and (b) writing one's thoughts either on paper or in electronic form.

The Benefits of Knowing Two or More Languages It should go without saying that not all important research is reported in a researcher's native tongue. Accordingly, some doctoral programs require that students demonstrate reading competency in one or two foreign languages in addition to their own language. The choice of these languages is usually linked to the area of proposed research.

The language requirement is a reasonable one. Research is and always has been a worldwide endeavor. For example, researchers in Japan have made gigantic strides in electronics and robotics. And two of the most influential theorists in child development today—Jean Piaget and Lev Vygotsky—wrote in French and Russian, respectively. Many new discoveries are first reported in a researcher's native language.

Knowing two or more languages has a second benefit as well: Words in a second language may capture the *meaning* of certain phenomenon in ways that one's native tongue may not. For example, the German word *Gestalt*—which roughly means "organized whole" has no direct equivalent in English. Thus, many English-speaking psychologists use this word when describing the nature of human perception, enabling them to communicate the idea that people often perceive organized patterns and structures in visual data that, in the objective physical world, are *not* organized. Likewise, the Zulu word *ubuntu* defies an easy translation into English. This word—which reflects the belief that people become fully human largely through regularly caring for others and contributing to the common good can help anthropologists and other social scientists capture a cultural worldview quite different from the more self-centered perspective so prevalent in mainstream Western culture.

The importance of writing To be generally accessible to the larger scientific community and ultimately to society as a whole, all research must eventually be presented as a written document—a *research report*—either on paper or in electronic form. A basic requirement for writing such a report is the ability to use language in a clear, coherent manner.

Although a good deal of conventional wisdom tells us that clear thinking *precedes* clear writing, writing can in fact be a productive form of thinking in and of itself. When you write your ideas down on paper, you do several things:

- Vou must identify the specific things you do and don't know about your topic.
- You must clarify and organize your thoughts sufficiently to communicate them to your readers.
- You may detect gaps and logical flaws in your thinking.

Perhaps it isn't surprising, then, that writing about a topic actually enhances the writer's understanding of the topic (e.g., Kellogg, 1994; Mueller & Oppenheimer, 2014; Shanahan, 2004).

If you wait until all your thoughts are clear before you start writing, you may never begin. Thus we recommend that you start writing parts of your research proposal or report as soon as possible. Begin with a title and a purpose statement—one or more sentences that clearly describe the primary goal(s) you hope to achieve by conducting your study. Commit your title to paper; keep it in plain sight as you focus your ideas. Although you may very well change the title later as your research proceeds, creating a working title in the early stages can provide both focus and direction. And when you can draft a clear and concise statement that begins, "The purpose of this study is to . . . ," you are well on your way to planning a focused research study.

PRACTICAL APPLICATION Communicating Effectively Through Writing

In our own experiences, we authors have found that most students have a great deal to learn about what good writing entails. Yet we also know that with effort, practice, mentoring, and regular feedback, students *can* learn to write more effectively. Subsequent chapters present specific strategies for writing literature reviews (Chapter 3), research proposals (Chapter 5), and research reports (Chapter 13). Here we offer general strategies for writing in ways that can help you clearly communicate your ideas and reasoning to others. We also offer suggestions for making the best use of word-processing software.

GUIDELINES Writing to Communicate

The following guidelines are based on techniques often seen in effective writing. Furthermore, such techniques have consistently been shown to facilitate readers' comprehension of what people have written (e.g., see J. E. Ormrod, 2016).

1. *Be specific and precise.* Precision is of utmost importance in all aspects of a research endeavor, including writing. Choose your words and phrases carefully so that you communicate your *exact* meaning, not some vague approximation. Many books and online resources offer suggestions for writing clear, concise sentences and combining them into unified and coherent paragraphs (e.g., see the sources in the "For Further Reading" list at the end of the chapter).

2. Continually keep in mind your primary objective in writing your paper, and focus your discussion accordingly. All too often, novice researchers try to include everything they have learned—both from their literature review and from their data analysis—in their research reports. But ultimately, everything you say should relate either directly or indirectly to your research problem. If you can't think of how something relates, leave it out! You will undoubtedly have enough things to write about as it is.

3. *Provide an overview of what you will be talking about in upcoming pages.* Your readers can more effectively read your work when they know what to expect as they read. Providing an overview of what topics you will discuss and in what order—and possibly also showing how the various topics interrelate—is known as an advance organizer. As an example, Dinah Jackson, a doctoral student in educational psychology, was interested in the possible effects of *self-questioning*—asking oneself questions about the material one is studying—on college students' note taking. Jackson began her dissertation's "Review of the Literature" with the following advance organizer:

The first part of this review will examine the theories, frameworks, and experimental research behind the research on adjunct questioning. Part two will investigate the transition of adjunct questioning to self-generated questioning. Specific models of self-generated questioning will be explored, starting with the historical research on question position (and progressing) to the more contemporary research on individual differences in self-questioning. Part three will explore some basic research on note taking and tie note taking theory with the research on self-generated questioning. (Jackson, 1996, p. 17)

4. Organize your ideas into general and more specific categories, and use headings and subheadings to guide your readers through your discussion of these categories. We authors have read many student research reports that seem to wander aimlessly and unpredictably from one thought to another, without any obvious organizational structure directing the flow of ideas. Using headings and subheadings is one simple way to provide an organizational structure for your writing and make that structure crystal clear to others.

5. Use concrete examples to make abstract ideas more understandable. There's a fine line between being abstract and being vague. Even as scholars who have worked in our respective academic disciplines for many years, we authors still find that we can more easily understand something when the writer gives us a concrete example to illustrate an abstract idea. As an example, we return to Jackson's dissertation on self-questioning and class note taking. Jackson made the point that how a researcher evaluates, or *codes*, the content of students' class notes will affect what the researcher discovers about those notes. More specifically, she argued that only a superficial coding scheme (e.g., counting the number of main ideas included in notes) would fail to capture the true quality of the notes. She clarified her point with a concrete example:

For example, while listening to the same lecture, Student A may record only an outline of the lecture, whereas Student B may record an outline, examples, definitions, and mnemonics. If a researcher only considered the number of main ideas that students included in their notes, then both sets of notes might be considered equivalent, despite the fact that the two sets differ considerably in the *type* of material recorded. (Jackson, 1996, p. 9)

6. Use figures and tables to belp you more effectively present or organize your ideas and findings. Although the bulk of your research proposal or report will almost certainly be prose, in many cases it might be helpful to present some information in figure or table form. For example, as you read this book, look at the variety of mechanisms we use to accompany our prose, including art, diagrams, graphs, and summarizing tables. We hope you will agree that these mechanisms help you understand and organize some of the ideas we present.

7. At the conclusion of a chapter or major section, summarize what you have said. You will probably be presenting a great deal of information in any research proposal

or report that you write. Summarizing what you have said in preceding paragraphs or pages helps your readers identify the things that are, in your mind, the most important things for them to remember. For example, in a dissertation that examined children's beliefs about the mental processes involved in reading, Debby Zambo summarized a lengthy discussion about the children's understanding of what it means to pay attention:

In sum, the students understand attention to be a mental process. They know their attention is inconsistent and affected by emotions and interest. They also realize that the right level of material, amount of information, and length of time helps their attention. The stillness of reading is difficult for some of the students but calming for others, and they appear to know this, and to know when reading will be difficult and when it will be calming. This idea is contrary to what has been written in the literature about struggling readers. (Zambo, 2003, p. 68)

8. Anticipate that you will almost certainly have to write multiple drafts. All too often, we authors have had students submit research proposals, theses, or dissertations with the assumption that they have finished their task. Such students have invariably been disappointed—sometimes even outraged—when we have asked them to revise their work, usually several times. The need to write multiple drafts applies not only to novice researchers but to experienced scholars as well. For instance, we would hate to count the number of times this book has undergone revision—certainly far more often than the label "12th edition" indicates! Multiple revisions enable you to reflect on and critically evaluate your own writing, revise and refocus awkward passages, get feedback from peers and advisors who can point out where a manuscript has gaps or lacks clarity, and in other ways ensure that the final version is as clear and precise as possible.

9. Fastidiously check to be sure that your final draft uses appropriate grammar and punctuation, and check your spelling. Appropriate grammar, punctuation, and spelling are not just bothersome formalities. On the contrary, they help you better communicate your meanings. For example, a colon announces that what follows it explains the immediately preceding statement; a semicolon communicates that a sentence includes two independent clauses (as the semicolon in this sentence does!).

Correct grammar, punctuation, and spelling are important for another reason as well: They communicate to others that you are a careful and disciplined scholar whose thoughts and work are worth reading about. If, instead, you mispel menny of yur werds—as we our doing in this sentance—your reeders may quikly discredit you as a sloppy resercher who shuldn't be taken seriusly!

Many style manuals, such as those in the "For Further Reading" list at the end of this chapter, have sections dealing with correct punctuation and grammar. In addition, dictionaries and word-processing spell-check functions can obviously assist you in your spelling.

GUIDELINES Using the Tools in Word-Processing Software

Most of our readers know the basics of using word-processing software—for instance, how to "copy," "paste," and "save"; how to choose a particular font and font size; and how to format text as *italicized*, <u>underlined</u>, or **boldface**. Following are specific features and tools that you may not have routinely used in previous writing projects but that can be quite useful in writing research reports:

- *Outlining.* An "outlining" feature lets you create bullets and subbullets to organize your thoughts.
- **Setting headers and footers.** A "header" is a line or two at the top of the page that appears on every page; a "footer" appears at the bottom of each page. For example,

using the "insert date" function, you might create a header that includes the specific date on which you are writing a particular draft. And using an "insert page number" function will add appropriate numbers to the tops or bottoms of successive pages.

- **Creating tables.** Using a "table" feature, you can create a table with the number of rows and columns you need. You can easily adjust the widths of various columns, format the text within each table cell, add new rows or tables, and merge two or more cells into a single, larger cell. Usually, an "autoformat" option will give you many possible table formats from which to choose.
- **Inserting graphics.** You are likely to find a variety of options under an "Insert" pulldown menu. Some of these options enable you to insert diagrams, photographs, charts, and other visuals you have created elsewhere.
- **Creating footnotes.** Footnotes are easy to create using an "insert footnote" feature. Typically, you can choose the symbols to be used in designating footnotes—perhaps 1, 2, 3, ..., a, b, c, ..., or special symbols such as * and †.
- **Using international alphabets and characters.** Computers and computer software sold in English-speaking countries have the English alphabet as the default alphabet, but often either your word-processing software or your "system preferences" on your computer's operating system will let you choose a different alphabet (e.g., Turkish, as in the surname Kağitçibaşi) or certain characters (e.g., in Chinese or Japanese) for particular words or sections of text.
- **Tracking changes.** A "track changes" feature enables you to keep a running record of specific edits you have made to a document; you can later go back and either "accept" or "reject" each change. This feature is especially useful when two or more researchers are coauthoring a report: It keeps track of who made which changes and the date on which each change was made.

We offer three general recommendations for using a word processor effectively.

1. Save and back up your document frequently. We authors can recall a number of personal horror stories we have heard (and in some cases experienced ourselves) about losing data, research materials, and other valuable information. Every computer user eventually encounters some type of glitch that causes problems in information retrieval. Whether the electricity goes out before you can save a file, a misguided keystroke leads to a system error, or your personal computer inexplicably crashes, things you have written sometimes get lost. It's imperative that you get in the habit of regularly saving your work. Save multiple copies so that if something goes awry in one place, you will always have a backup in a safe location. Here are a few things to think about:

- Save your work-in-progress frequently, perhaps every 5 to 10 minutes. Many software programs will do this for you automatically if you give them instructions about whether and how often to do it.
- Save at least two copies of important files, and save them in different places perhaps one file at home and another at the office, at a relative's home, or somewhere in cyberspace. One option is to save documents on a flash drive or external hard drive. Another is to copy them to an electronic dropbox, iCloud (for Macintosh), or other Internet-based storage mechanism. One of us authors uses a flash drive to back up much of her past work (including several book manuscripts) and any inprogress work; she keeps this flash drive in her purse and takes it everywhere she goes. Also, she occasionally sends herself in-progress documents as attachments to self-addressed e-mail messages—giving her an almost-current backup version of the documents in the event that an unintended keystroke somehow wreaks havoc on what she has written.
- Save various versions of your work with distinct labels that help you identify each version—for instance, by including the date on which you completed each file.

• If your computer completely dies—seemingly beyond resuscitation—some software programs (e.g., Norton Utilities) may be able to fix the damage and retrieve some or all of the lost material. And service departments at computer retailers can often retrieve documents from the hard drives of otherwise "dead" machines.

2. Use such features as the spell checker and grammar checker to look for errors, but do NOT rely on them exclusively. Although computers are marvelous machines, their "thinking" capabilities have not yet begun to approach those of the human mind. For instance, although a computer can detect spelling errors, it does so by comparing each word against its internal "dictionary" of correctly spelled words. Not every word in the English language will be included in the dictionary; for instance, proper nouns (e.g., surnames such as Leedy and Ormrod) will not be. Furthermore, it may assume that *abut* is spelled correctly when the word you really had in mind was *about*, and it may very well not know that *there* should actually be *their* or *they're*.

3. **Print out a paper copy for final proofreading and editing.** One of us authors once had a student who turned in a dissertation draft chock-full of spelling and grammatical errors—and this from a student who was, ironically, teaching a college-level English composition course at the time. A critical and chastising e-mail message to the student made her irate; she had checked her document quite thoroughly before submitting it, she replied, and was convinced that it was virtually error-free. When her paper draft was returned to her almost bloodshot with spelling and grammatical corrections in red ink, she was quite contrite. "I don't know how I missed them all!" she said. When asked if she had ever edited a printed copy of the draft, she replied that she had not, figuring that she could read her work just as easily on her computer monitor and thereby save a tree or two. But in our own experience, it is *always* a good idea to read a printed version of what you have written. For some reason, reading a paper copy often alerts us to errors we have previously overlooked on the computer screen.

The Human Mind

The research tools discussed so far—the library, computer technology, measurement, statistics, and language—are effective only to the extent that another critical tool also comes into play. The human mind is undoubtedly the most important tool in the researcher's toolbox. Nothing equals its powers of comprehension, integrative reasoning, and insight.

Over the past few millennia, human beings have developed a number of general strategies through which they can more effectively reason about and better understand worldly phenomena. Key among these strategies are critical thinking, deductive logic, inductive reasoning, scientific methods, theory building, and collaboration with other minds.

Critical Thinking

Before beginning a research project, good researchers typically look at research reports and theoretical discussions related to their topic of interest. But they don't just accept research findings and theories at face value; instead, they scrutinize those findings and theories for faulty assumptions, questionable logic, weaknesses in methodologies, and unwarranted conclusions. And, of course, good researchers scrutinize their *own* work for the same kinds of flaws. In other words, good researchers engage in critical thinking.

In general, **critical thinking** involves evaluating the accuracy, credibility, and worth of information and lines of reasoning. Critical thinking is reflective, logical, and evidence-based. It also has a purposeful quality to it—that is, the researcher thinks critically in order to achieve a particular goal.