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2  Number,  algebra aNd geometry

 1.1 introduction
Mathematics plays an important role in our lives. It is used in everyday activities from 
buying food to organizing maintenance schedules for aircraft. Through applications devel-
oped in various cultural and historical contexts, mathematics has been one of the decisive 
factors in shaping the modern world. It continues to grow and to find new uses, particu-
larly in engineering and technology, from electronic circuit design to machine learning.

Mathematics provides a powerful, concise and unambiguous way of organizing and 
communicating information. It is a means by which aspects of the physical universe 
can be explained and predicted. It is a problem-solving activity supported by a body of 
knowledge. Mathematics consists of facts, concepts, skills and thinking processes – 
aspects that are closely interrelated. It is a hierarchical subject in that new ideas and 
skills are developed from existing ones. This sometimes makes it a difficult subject for 
learners who, at every stage of their mathematical development, need to have ready 
recall of material learned earlier.

In the first two chapters we shall summarize the concepts and techniques that most 
students will already understand and we shall extend them into further developments in 
mathematics. There are four key areas of which students will already have considerable 
knowledge.

● numbers
● algebra
● geometry
● functions

These areas are vital to making progress in engineering mathematics (indeed, they will 
solve many important problems in engineering). Here we will aim to consolidate that 
knowledge, to make it more precise and to develop it. In this first chapter we will deal 
with the first three topics; functions are considered next (see Chapter 2).

 1.2 Number and arithmetic

 1.2.1 Number line

Mathematics has grown from primitive arithmetic and geometry into a vast body of 
knowledge. The most ancient mathematical skill is counting, using, in the first instance, 
the natural numbers and later the integers. The term natural numbers commonly refers 
to the set ℕ = {1, 2, 3, p}, and the term integers to the set ℤ = {0, 1, −1, 2, −2, 3, 
−3, p}. The integers can be represented as equally spaced points on a line called the 
number line as shown in Figure 1.1. In a computer the integers can be stored exactly. 
The set of all points (not just those representing integers) on the number line represents 
the real numbers (so named to distinguish them from the complex numbers, which are 

-0.5 √2
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5

1
Figure 1.1
The number line.
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1.2   Number and arithmetic     3

discussed in Chapter 3). The set of real numbers is denoted by ℝ. The general real num-
ber is usually denoted by the letter x and we write ‘x in ℝ’, meaning x is a real number. 
A real number that can be written as the ratio of two integers, like 32  or − 7

5 , is called a 
rational number. Other numbers, like Ë2 and , that cannot be expressed in that way 
are called irrational numbers. In a computer the real numbers can be stored only to a 
limited number of figures. This is a basic difference between the ways in which com-
puters treat integers and real numbers, and is the reason why the computer languages 
commonly used by engineers distinguish between integer values and variables on the 
one hand and real number values and variables on the other.

	 1.2.2	 Representation of numbers

For everyday purposes we use a system of representation based on ten numerals: 0, 1, 
2, 3, 4, 5, 6, 7, 8, 9. These ten symbols are sufficient to represent all numbers if a posi­
tion notation is adopted. For whole numbers this means that, starting from the right-
hand end of the number, the least significant end, the figures represent the number of 
units, tens, hundreds, thousands, and so on. Thus one thousand, three hundred and sixty-
five is represented by 1365, and two hundred and nine is represented by 209. Notice the 
role of the 0 in the latter example, acting as a position keeper. The use of a decimal point 
makes it possible to represent fractions as well as whole numbers. This system uses ten 
symbols. The number system is said to be ‘to base ten’ and is called the decimal sys-
tem. Other bases are possible: for example, the Babylonians used a number system to 
base sixty, a fact that still influences our measurement of time. In some societies a num
ber system evolved with more than one base, a survival of which can be seen in imperial 
measures (inches, feet, yards, p ). For some applications it is more convenient to use 
a base other than ten. Early electronic computers used binary numbers (to base two); 
modern computers use hexadecimal numbers (to base sixteen). For elementary (pen-
and-paper) arithmetic a representation to base twelve would be more convenient than 
the usual decimal notation because twelve has more integer divisors (2, 3, 4, 6) than 
ten (2, 5).

In a decimal number the positions to the left of the decimal point represent units 
(100), tens (101), hundreds (102) and so on, while those to the right of the decimal point 
represent tenths (10−1), hundredths (10−2) and so on. Thus, for example,

2	 1	 4	 ·	 3	 6
T	 T	 T		  T	 T
102	 101	 100		  10−1	 10−2

so

214.36 = 2(102) + 1(101) + 4(100) + 3 61
10

1
100( )  ( )+

	 = 200 + 10 + 4 + 3
10

6
100  +

	 = 21436
100

5359
25  =

In other number bases the pattern is the same: in base b the position values are b0, 
b1, b2, p and b−1, b−2, p . Thus in binary (base two) the position values are units, twos, 
fours, eights, sixteens and so on, and halves, quarters, eighths and so on. In hexadecimal 
(base sixteen) the position values are units, sixteens, two hundred and fifty-sixes and so 
on, and sixteenths, two hundred and fifty-sixths and so on.
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4    Number,  Algebra and Geometry

	 Example 1.1	 Write (a) the binary number 10111012 as a decimal number and (b) the decimal  
number 11510 as a binary number.

	 Solution	 (a)	 10111012	= 1(26) + 0(25) + 1(24) + 1(23) + 1(22) + 0(21) + 1(20)

		  = 6410 + 0 + 1610 + 810 + 410 + 0 + 110

		  = 9310

(b)	 We achieve the conversion to binary by repeated division by 2. Thus

115 ÷ 2 = 57  remainder 1	 (20)

  57 ÷ 2 = 28  remainder 1	 (21)

  28 ÷ 2 = 14  remainder 0	 (22)

  14 ÷ 2 =   7  remainder 0	 (23)

    7 ÷ 2 =   3  remainder 1	 (24)

    3 ÷ 2 =   1  remainder 1	 (25)

    1 ÷ 2 =   0  remainder 1	 (26)

so that

11510 = 11100112

	 Example 1.2	 Represent the numbers (a) two hundred and one, (b) two hundred and seventy-five,  
(c) five and three-quarters and (d) one-third in

	 (i)	 decimal form using the figures 0, 1, 2, 3, 4, 5, 6, 7, 8, 9;

	(ii)	 binary form using the figures 0, 1;

	(iii)	 duodecimal (base twelve) form using the figures 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, Δ, e.

	 Solution	 (a)	 two hundred and one

	 (i)	 =	2 (hundreds) + 0 (tens) and 1 (units) = 20110

	(ii)	 =	1 (one hundred and twenty-eight) + 1 (sixty-four) + 1 (eight) + 1 (unit) 
		  = 110010012

	(iii)  =	1 (gross) + 4 (dozens) + 9 (units) = 14912

		  Here the subscripts 10, 2, 12 indicate the number base.

(b)	 two hundred and seventy-five

	 (i)	 =	2 (hundreds) + 7 (tens) + 5 (units) = 27510

	 (ii)	 =	1 (two hundred and fifty-six) + 1 (sixteen) + 1 (two) + 1 (unit) = 1000100112
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1.2   Number and arithmetic     5

	(iii)	 =	1 (gross) + 10 (dozens) + eleven (units) = 1Δe12

		  (Δ represents ten and e represents eleven)

(c)	 five and three-quarters

	 (i)	 =	5 (units) + 7 (tenths) + 5 (hundredths) = 5.7510

	(ii)	 =	1 (four) + 1 (unit) + 1 (half) + 1 (quarter) = 101.112

	(iii)	 =	5 (units) + 9 (twelfths) = 5.912

(d)	 one-third

	 (i)	 = 3 (tenths) + 3 (hundredths) + 3 (thousandths) + p = 0.333 p 10

	(ii)	 = 1 (quarter) + 1 (sixteenth) + 1 (sixty-fourth) + p = 0.010101 p 2

	(iii)	 = 4 (twelfths) = 0.412

	 1.2.3	 Rules of arithmetic

The basic arithmetical operations of addition, subtraction, multiplication and division are 
performed subject to the Fundamental Rules of Arithmetic. For any three numbers  
a, b and c:

(a1)	 the commutative law of addition

a + b = b + a

(a2)	 the commutative law of multiplication

a × b = b × a

(b1)	 the associative law of addition

(a + b) + c = a + (b + c)

(b2)	 the associative law of multiplication

(a × b) × c = a × (b × c)

(c1)	 the distributive law of multiplication over addition and subtraction

(a + b) × c = (a × c) + (b × c)

(a − b) × c = (a × c) − (b × c)

(c2)	 the distributive law of division over addition and subtraction

(a + b) ÷ c = (a ÷ c) + (b ÷ c)

(a − b) ÷ c = (a ÷ c) − (b ÷ c)

Here the brackets indicate which operation is performed first. These operations are 
called binary operations because they associate with every two members of the set of 
real numbers a unique third member; for example,

2 + 5 = 7    and    3 × 6 = 18
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6    Number,  Algebra and Geometry

	 Example 1.3	 Find the value of (100 + 20 + 3) × 456.

	 Solution	 Using the distributive law we have

(100 + 20 + 3) × 456 = 100 × 456 + 20 × 456 + 3 × 456

	 = 45 600 + 9120 + 1368 = 56 088

Here 100 × 456 has been evaluated as

100 × 400 + 100 × 50 + 100 × 6

and similarly 20 × 456 and 3 × 456.
This, of course, is normally set out in the traditional school arithmetic way:

     456
     123 ×
	 1 368
	 9 120
45 600
56 088

	 Example 1.4	 Rewrite (a + b) × (c + d) as the sum of products.

	 Solution	 Using the distributive law we have

(a + b) × (c + d) = a × (c + d) + b × (c + d)

= (c + d) × a + (c + d) × b

= c × a + d × a + c × b + d × b

= a × c + a × d + b × c + b × d

applying the commutative laws several times.

A further operation used with real numbers is that of powering. For example, a × a  
is written as a2, and a × a × a is written as a3. In general the product of n a’s where  
n is a positive integer is written as an. (Here the n is called the index or exponent.) 
Operations with powering also obey simple rules:

an × am = an+m	 (1.1a)

an ÷ am = an−m	 (1.1b)

(an)m = anm	 (1.1c)

From rule (1.1b) it follows, by setting n = m and a ≠ 0, that a0 = 1. It is also convention 
to take 00 = 1. The process of powering can be extended to include the fractional powers 
like a1/2. Using rule (1.1c),
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1.2   Number and arithmetic     7

(a1/n)n = an/n = a1

and we see that

a1/n = nËa

the nth root of a. Also, we can define a−m using rule (1.1b) with n = 0, giving

1 ÷ am = a−m,        a ≠ 0

Thus a−m is the reciprocal of am. In contrast with the binary operations +, ×, − and ÷, 
which operate on two numbers, the powering operation ( )r operates on just one element 
and is consequently called a unary operation. Notice that the fractional power

am/n = (nËa)m = nË(am)

is the nth root of am. If n is an even integer, then am/n is not defined when a is negative. 
When nËa is an irrational number then such a root is called a surd.

Numbers like Ë2 were described by the Greeks as a-logos, without a ratio number. 
An Arabic translator took the alternative meaning ‘without a word’ and used the Arabic 
word for ‘deaf’, which subsequently became surdus, Latin for deaf, when translated 
from Arabic to Latin in the mid-twelfth century.

	 Example 1.5	 Find the values of

(a)	 271/3	 (b)	 (−8)2/3	 (c)  16−3/2

(d)	 (−2)−2	 (e)	 (−1/8)−2/3	 (f )  (9)−1/2

	 Solution	 (a)	 271/3 = 3Ë27 = 3

(b)	 (−8)2/3 = (3Ë(−8))2 = (−2)2 = 4

(c)	 16−3/2 = (161/2)−3 = (4)−3 = 1
43  = 1

64

(d)	 (−2)−2 = 
1

2 2
1
4( )

  
−

=

(e)	 (−1/8)−2/3 = [3Ë(−1/8)]−2 = [3Ë(−1)/ 3Ë(8)]−2 = [−1/2]−2 = 4

(f)	 (9)−1/2 = (3)−1 = 1
3

	 Example 1.6	 Express (a) in terms of Ë2 and simplify (b) to (f ).

(a)	 Ë18 + Ë32 − Ë50	 (b)  6/Ë2	 (c)  (1 − Ë3)(1 + Ë3)

(d) 
2

1 3  − ÷ 	 (e)  (1 + Ë6)(1 − Ë6)	 (f ) 
1 2

1 6

  

  

−
+

÷
÷
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8    Number,  Algebra and Geometry

	 Solution	 (a)	 Ë18 = Ë(2 × 9) = Ë2 × Ë9 = 3Ë2

	 Ë32 = Ë(2 × 16) = Ë2 × Ë16 = 4Ë2

	 Ë50 = Ë(2 × 25) = Ë2 × Ë25 = 5Ë2

Thus Ë18 + Ë32 − Ë50 = 2Ë2.

(b)	 6/Ë2 = 3 × 2/Ë2

Since 2 = Ë2 × Ë2, we have 6/Ë2 = 3Ë2.

(c)	 (1 − Ë3)(1 + Ë3) = 1 + Ë3 − Ë3 − 3 = −2

(d) � Using the result of part (c), 
2

1 3  − ÷
 can be simplified by multiplying ‘top and

	 bottom’ by 1 + Ë3 (notice the sign change in front of the Ë  ). Thus

2

1 3

2 1 3

1 3 1 3  
  

(   )

(   )(   )−
=

+
− +÷

÷
÷ ÷

= 
2 1 3

1 3

(   )

  

+
−

÷

= −1 − Ë3

(e)	 (1 + Ë6)(1 − Ë6) = 1 − Ë6 + Ë6 − 6 = −5

(f)	 Using the same technique as in part (d) we have

1 2

1 6

1 2 1 6

1 6 1 6

  

  
  

(   )(   )

(   )(   )

−
+

=
− −
+ −

÷
÷

÷ ÷
÷ ÷

	 = 
1 2 6 1

1 6

      

  

− − +
−

÷ ÷ ÷ 2

	 = − (1 − Ë2 − Ë6 + 2Ë3)/5

	 This process of expressing the irrational number so that all of the surds are in the 
numerator is called rationalization.

When evaluating arithmetical expressions the following rules of precedence are observed:

●	 the powering operation ( )r is performed first
●	 then multiplication × and/or division ÷
●	 then addition + and/or subtraction −

When two operators of equal precedence are adjacent in an expression the left-hand 
operation is performed first. For example,

12 − 4 + 13 = 8 + 13 = 21

and

15 ÷ 3 × 2 = 5 × 2 = 10
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1.2   Number and arithmetic     9

The precedence rules are overridden by brackets; thus

12 − (4 + 13) = 12 − 17 = −5

and

15 ÷ (3 × 2) = 15 ÷ 6 = 2.5

This order of precedence is commonly referred to as BODMAS/BIDMAS (meaning: 
brackets, order/index, multiplication, addition, subtraction).

	 Example 1.7	 Evaluate 7 − 5 × 3 ÷ 22.

	 Solution	 Following the rules of precedence, we have

7 − 5 × 3 ÷ 22 = 7 − 5 × 3 ÷ 4 = 7 − 15 ÷ 4 = 7 − 3.75 = 3.25

1.2.4    Exercises

1	 Find the decimal equivalent of 110110.1012.

2	 Find the binary and octal (base eight) equivalents 
of the decimal number 16 321. Obtain a simple 
rule that relates these two representations of the 
number, and hence write down the octal equivalent 
of 10111001011012.

3	 Find the binary and octal equivalents of the 
decimal number 30.6. Does the rule obtained in 
Question 2 still apply?

4	 Use binary arithmetic to evaluate

(a)  100011.0112 + 1011.0012

(b)  111.100112 × 10.1112

5	 Simplify the following expressions, giving the 
answers with positive indices and without brackets:

(a)	 23 × 2−4	 (b)	 23 ÷ 2−4       (c)  (23)−4

(d)	 31/3 × 35/3	 (e)	 (36)−1/2	 (f )  163/4

6	 The expression 7 − 2 × 32 + 8 may be evaluated 
using the usual implicit rules of precedence. It 
could be rewritten as ((7 − (2 × (32))) + 8) using 
brackets to make the precedence explicit. Similarly 
rewrite the following expressions in fully bracketed 
form:

(a)	 21 + 4 × 3 ÷ 2

(b)	 17 − 62+3

(c)	 4 × 23 − 7 ÷ 6 × 2

(d)	 2 × 3 − 6 ÷ 4 + 32−5

7	 Express the following in the form x + yË2 with x 
and y rational numbers:

(a)	 (7 + 5Ë2)3	 (b)  (2 + Ë2)4

(c)	 3Ë(7 + 5Ë2)	 (d)  Ë(11
2  − 3Ë2)

8	 Show that

1
2 2a b c

a b c
a b c  

  
  

  +
=

−
−÷

÷

Hence express the following numbers in the form  
x + yËn where x and y are rational numbers and n is 
an integer:

(a) 
1

7 5 2  + ÷
	 (b)	

2 3 2

9 7 2

  

  

+
−

÷
÷

(c) 
4 2 3

7 3 3

  

  

−
−

÷
÷

	 (d)	
2 4 5

4 5

  

  

+
−

÷
÷

9	 Find the difference between 2 and the squares of

1

1

3

2

7

5

17

12

41

29

99

70
, , , , , 

(a) Verify that successive terms of the sequence 
stand in relation to each other as m/n does to  
(m + 2n)/(m + n).

(b) Verify that if m/n is a good approximation to  
Ë2 then (m + 2n)/(m + n) is a better one, and that  
the errors in the two cases are in opposite directions.

(c) Find the next three terms of the above sequence. 
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10    Number,  Algebra and Geometry

	 1.2.5	 Inequalities

The number line (Figure 1.1) makes explicit a further property of the real numbers – 
that of ordering. This enables us to make statements like ‘seven is greater than two’ and 
‘five is less than six’. We represent this using the comparison symbols

>, ‘greater than’
<, ‘less than’

It also makes obvious two other comparators:

=, ‘equals’
≠, ‘does not equal’

These comparators obey simple rules when used in conjunction with the arithmetical 
operations. For any four numbers a, b, c and d:

(a < b and c < d)	 implies    a + c < b + d	 (1.2a)

(a < b and c > d)	 implies    a − c < b − d	 (1.2b)

(a < b and b < c)	 implies    a < c	 (1.2c)

	 a < b	 implies    a + c < b + c	 (1.2d)

(a < b and c > 0)	 implies    ac < bc	 (1.2e)

(a < b and c < 0)	 implies    ac > bc	 (1.2f)

(a < b and ab > 0)	 implies  
1 1

a b
  � 	 (1.2g)

	 Example 1.8	 Show, without using a calculator, that Ë2 + Ë3 > 2(4Ë6).

	 Solution	 By squaring we have that

(Ë2 + Ë3)2 = 2 + 2Ë2Ë3 + 3 = 5 + 2Ë6

Also

(2Ë6)2 = 24 < 25 = 52

implying that 5 > 2Ë6. Thus

(Ë2 + Ë3)2 > 2Ë6 + 2Ë6 = 4Ë6

and, since Ë2 + Ë3 is a positive number, it follows that

Ë2 + Ë3 > Ë(4Ë6) = 2(4Ë6)
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1.2   Number and arithmetic     11

4.3 10.10

distance
5.8

distance
5.8

-1.5

Figure 1.2	
Illustration of  
∙ x − 4.3 ∙ = 5.8.

	 1.2.6	 Modulus and intervals

The size of a real number x is called its modulus (or absolute value) and is denoted by 
∙ x ∙ (or sometimes by mod(x)). Thus

| |x
x x

x x
  

      (   )

    (   )
=

−





�

�

0

0  
	 (1.3)

where the comparator ⩾ indicates ‘greater than or equal to’. (Likewise ⩽ indicates ‘less 
than or equal to’.)

Geometrically ∙ x ∙ is the distance of the point representing x on the number line from 
the point representing zero. Similarly ∙ x − a ∙ is the distance of the point representing 
x on the number line from that representing a.

The set of numbers between two distinct numbers, a and b say, defines an open 
interval on the real line. This is the set {x:a < x < b, x in ℝ} and is usually denoted by 
(a, b). (Set notation will be fully described later (see Chapter 6); here {x:P} denotes the 
set of all x that have property P.) Here the double-sided inequality means that x is greater 
than a and less than b; that is, the inequalities a < x and x < b apply simultaneously. An 
interval that includes the end points is called a closed interval, denoted by [a, b], with

[a, b] = {x:a ⩽ x ⩽ b, x in ℝ}

Note that the distance between two numbers a and b might be either a − b or b − a 
depending on which was the larger. An immediate consequence of this is that

∙ a − b ∙ = ∙ b − a ∙

since a is the same distance from b as b is from a.

	 Example 1.9	 Find the values of x so that

∙ x − 4.3 ∙ = 5.8

	 Solution	 ∙ x − 4.3 ∙ = 5.8 means that the distance between the real numbers x and 4.3 is 5.8 units, 
but does not tell us whether x > 4.3 or whether x < 4.3. The situation is illustrated in 
Figure 1.2, from which it is clear that the two possible values of x are −1.5 and 10.1.

	 Example 1.10	 Express the sets (a) {x: ∙ x − 3 ∙ < 5, x in ℝ} and (b) {x: ∙ x + 2 ∙ ⩽ 3, x in ℝ} as intervals.

	 Solution	 (a)  ∙ x − 3 ∙ < 5 means that the distance of the point representing x on the number line from 
the point representing 3 is less than 5 units, as shown in Figure 1.3(a). This implies that

−5 < x − 3 < 5
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12    Number,  Algebra and Geometry

Adding 3 to each member of this inequality, using rule (1.2d), gives

−2 < x < 8

and the set of numbers satisfying this inequality is the open interval (−2, 8).

(b)  Similarly ∙ x + 2 ∙ ⩽ 3, which may be rewritten as ∙ x − (−2) ∙ ⩽ 3, means that the  
distance of the point x on the number line from the point representing −2 is less than  
or equal to 3 units, as shown in Figure 1.3(b). This implies

−3 ⩽ x + 2 ⩽ 3

Subtracting 2 from each member of this inequality, using rule (1.2d), gives

−5 ⩽ x ⩽ 1

and the set of numbers satisfying this inequality is the closed interval [−5, 1].
It is easy (and sensible) to check these answers using spot values. For example, put-

ting x = −4 in (b) gives ∙ −4 + 2 ∙ < 3 correctly. Sometimes the sets ∙ x + 2 ∙ ⩽ 3 and 
∙ x + 2 ∙ < 3 are described verbally as ‘lies in the interval x equals −2 ; 3’.

-7 -6 -5 -4 -3 -2 -1 0
(b)

1 2 3 4 5 6 7

-5 -4 -3 -2 -1 0 1 2
(a)

3 4 5 6 7 8 9
Figure 1.3	
(a) The open interval 
(−2, 8). (b) The closed 
interval [−5, 1].

 
We note in passing the following results. For any two real numbers x and y:

∙ xy ∙ = ∙ x ∙ ∙ y ∙	 (1.4a)

∙ x ∙ < a for a > 0,    implies    −a < x < a	 (1.4b)

∙ x + y ∙ ⩽ ∙ x ∙ + ∙ y ∙,    known as the ‘triangle inequality’	 (1.4c)
1
2 (x + y) ⩾ Ë(xy),    when x ⩾ 0 and y ⩾ 0	 (1.4d)

Result (1.4d) is proved in Example 1.11 below and may be stated in words as

the arithmetic mean  1
2 (x + y) of two positive numbers x and y is greater 

than or equal to the geometric mean Ë(xy). Equality holds only when y = x.

Results (1.4a) to (1.4c) should be verified by the reader, who may find it helpful to 
try some particular values first, for example setting x = −2 and y = 3 in (1.4c).
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1.2   Number and arithmetic     13

	 Example 1.11	 Prove that for any two positive numbers x and y, the arithmetic–geometric inequality

1
2  (x + y) ⩾ Ë(xy)

holds.

Deduce that x + 1x ⩾ 2 for any positive number x.
We have to prove that 12(x + y) − √(xy) is greater than or equal to zero. Let E denote 

the expression (x + y) − 2√(xy). Then

E × [(x + y) + 2√(xy)] = (x + y)2 − 4(xy)

(see Example 1.13)

E = x2 + 2xy + y2 − 4xy
= x2 − 2xy + y2

= (x−y)2

which is greater than zero unless x = y. Since (x + y) + 2√(xy) is positive, this implies

E ⩾ 0 or 12(x + y) ⩾ Ë(xy). Setting y = 1x, we obtain

1
2
¢x +

1
x ≤ ⩾ A ax.

1
x b = 1

or ¢x +
1
x ≤ ⩾ 2

10	 Show that (Ë5 + Ë13)2 > 34 and determine 
without using a calculator the larger of Ë5 + Ë13 
and Ë3 + Ë19.

11	 Show the following sets on number lines and 
express them as intervals:

(a)	 {x:∙ x − 4 ∙ ⩽ 6}	 (b)  {x:∙ x + 3 ∙ < 2}

(c)	 {x:∙ 2x − 1 ∙ ⩽ 7}	 (d)  {x:∙ 14  x + 3 ∙ < 3}

12	 Show the following intervals on number lines and 
express them as sets in the form {x:∙ ax + b ∙ < c} 
or {x:∙ ax + b ∙ ⩽ c}:

(a)	 (1, 7)	 (b)  [−4, −2]

(c)	 (17, 26)	 (d)  [ , ]− 1
2

3
4

1.2.7    Exercises
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14    Number,  Algebra and Geometry

	 1.3	A lgebra
The origins of algebra are to be found in Arabic mathematics as the name suggests, 
coming from the word aljabara meaning ‘combination’ or ‘re-uniting’. Algorithms  
are rules for solving problems in mathematics by standard step-by-step methods.  
Such methods were first described by the ninth-century mathematician Abu Ja’far 
Mohammed ben Musa from Khwarizm, modern Khiva on the southern border of 
Uzbekistan. The Arabic al-Khwarizm (‘from Khwarizm’) was Latinized to algorithm  
in the late Middle Ages. Often the letter x is used to denote an unassigned (or free)  
variable. It is thought that this is a corruption of the script letter r abbreviating the 
Latin word res, thing. The use of unassigned variables enables us to form mathematical  
models of practical situations as illustrated in the following example. First we deal with 
a specific case and then with the general case using unassigned variables.

The idea, first introduced in the seventeenth century, of using letters to represent 
unspecified quantities led to the development of algebraic manipulation based on the 
elementary laws of arithmetic. This development greatly enhanced the problem-solving 
power of mathematics – so much so that it is difficult now to imagine doing mathematics 
without this resource.

	 Example 1.12	 A pipe has the form of a hollow cylinder as shown in Figure 1.4. Find its mass when

(a)  its length is 1.5 m, its external diameter is 205 mm, its internal diameter is 160 mm 
and its density is 5500 kg m−3;

(b)  its length is l m, its external diameter is D mm, its internal diameter is d mm and its 
density is r kg m−3. Notice here that the unassigned variables l, D, d, r are pure num-
bers and do not include units of measurement.

 

13	 Given that a < b and c < d, which of the  
following statements are always true?

(a)	 a − c < b − d	 (b)  a − d < b − c

(c)	 ac < bd	 (d) 
1 1

b a
  �

In each case either prove that the statement is  
true or give a numerical example to show it can  
be false.

If, additionally, a, b, c and d are all greater  
than zero, how does that modify your  
answer?

14	 The average speed for a journey is the distance 
covered divided by the time taken.

(a)	 A journey is completed by travelling for the first 
half of the time at speed v1 and the second half at 
speed v2. Find the average speed va for the journey in 
terms of v1 and v2.

(b)	 A journey is completed by travelling at speed v1 
for half the distance and at speed v2 for the second 
half. Find the average speed vb for the journey in 
terms of v1 and v2.

Deduce that a journey completed by travelling  
at two different speeds for equal distances will take 
longer than the same journey completed at the same 
two speeds for equal times.
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1.3  algebra   15

 Solution (a) Standardizing the units of length, the internal and external diameters are 0.16 m and 
0.205 m respectively. The area of cross-section of the pipe is

0.25 (0.2052 − 0.1602) m2

(Reminder: The area of a circle of diameter D is D2/4.)
Hence the volume of the material of the pipe is

0.25 (0.2052 − 0.1602) × 1.5 m3

and the mass (volume × density) of the pipe is

0.25 × 5500 × (0.2052 − 0.1602) × 1.5 kg

Evaluating this last expression by calculator gives the mass of the pipe as 106   kg to the 
nearest kilogram.

(b) The internal and external diameters of the pipe are d/1000 and D/1000 metres, 
respectively, so that the area of cross-section is

0.25 (D2 − d 2)/1 000 000 m2

The volume of the pipe is

0.25 l(D2 − d 2)/106m3

Hence the mass M kg of the pipe of density r is given by the formulae

M = 0.25 rl(D2 − d 2)/106 = 2.5 rl(D + d)(D − d) × 10−5

 1.3.1 Algebraic manipulation

Algebraic manipulation made possible concise statements of well-known results, such as

(a + b)2 = a2 + 2ab + b2 (1.5)

Previously these results had been obtained by a combination of verbal reasoning and 
elementary geometry as illustrated in Figure 1.5.

ab

a

a

b

b

a2

b2ab

Figure 1.5 
Illustration of 
(a + b)2 = a2 + 2ab 
+ b2.

External
diameter

Internal
diameter

L
ength

Figure 1.4 
Cylindrical pipe 
of Example 1.12.
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16    Number,  Algebra and Geometry

	 Example 1.13	 Prove that

ab =  14  [(a + b)2 − (a − b)2]

Given 702 = 4900 and 362 = 1296, calculate 53 × 17.

	 Solution	 Since

(a + b)2 = a2 + 2ab + b2

we deduce

(a − b)2 = a2 − 2ab + b2

and

(a + b)2 − (a − b)2 = 4ab

and

ab = 14  [(a + b)2 − (a − b)2]

The result is illustrated geometrically in Figure 1.6. Setting a = 53 and b = 17, we have

53 × 17 = 14  [702 − 362] = 901

This method of calculating products was used by the Babylonians and is sometimes called 
‘quarter-square’ multiplication. It has been used in some analogue devices and simulators.

ab

a

ab

b

a

a

b

ab

b a

ab

(a - b)2

b

Figure 1.6	
Illustration of ab = 
1
4 [(a + b)2 − (a − b)2].

	 Example 1.14	 Show that

(a + b + c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ca

	 Solution	 Rewriting a + b + c as (a + b) + c we have

((a + b) + c)2 = (a + b)2 + 2(a + b)c + c2    using (1.5a)

= a2 + 2ab + b2 + 2ac + 2bc + c2

= a2 + b2 + c2 + 2ab + 2bc + 2ac
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1.3  A lgebra     17

	 Example 1.15	 Verify that

(x + p)2 + q − p2 = x2 + 2px + q

and deduce that

ax2 + bx + c =
 
a x

b
a

c
b
a

      +



 + −

2 4

2 2

	 Solution	 (x + p)2 = x2 + 2px + p2

so that

(x + p)2 + q − p2 = x2 + 2px + q

Working in the reverse direction is more difficult

ax2 + bx + c =
 
a x

b
a

x
c
a

2     + +





Comparing x
b
a

x
c
a

2     + +  with x2 + 2px + q, we can identify

b
a

p
c
a

q            = =2 and

Thus we can write

ax2 + bx + c = a[(x + p)2 + q − p2]

where p
b
a

q
c
a

      = =
2

and

giving

ax2 + bx + c =
 

a x
b
a

a
c
a

b
a

      +



 + −



2 4

2 2

2

                        = a x
b
a

c
b
a

      +



 + −

2 4

2 2

This algebraic process is called ‘completing the square’.

We may summarize the results so far

(a + b)2 = a2 + 2ab + b2	 (1.5a)

(a − b)2 = a2 − 2ab + b2	 (1.5b)

a2 − b2 = (a + b)(a − b)	 (1.5c)

a2 + bx + c = a x
b
a

c
b
a

     +



 + −

2 4

2 2

	 (1.5d)

As shown in the previous examples, the ordinary rules of arithmetic carry over to the 
generalized arithmetic of algebra. This is illustrated again in the following example.
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18    Number,  Algebra and Geometry

	 Example 1.16	 Express as a single fraction

(a) 
1

12

2

3

3

4
    − +

      

(b) 
1

1 2

2

1

3

2(   )(   )
  

  
  

  x x x x+ +
−

+
+

+

	 Solution	 (a)  The lowest common denominator of these fractions is 12, so we may write

2

12

1

6
   = =

1

12

2

3

3

4

1 8 9

12
      

    
− + =

− +

(b)  The lowest common multiple of the denominators of these fractions is (x + 1)(x + 2), 
so we may write

=
+ +

 
(   )(   )1 2

x
x x

=
− − + +

+ +
 

        

(   )(   )

1 2 4 3 3

1 2

x x
x x

=
− + + +

+ +
 

  (   )  (   )

(   )(   )

1 2 2 3 1

1 2

x x
x x

=
+ +

−
+

+ +
+

+
+ +

 
(   )(   )

  
(   )

(   )(   )
  

(   )

(   )(   )

1

1 2

2 2

1 2

3 1

1 2x x
x

x x
x

x x

1

1 2

2

1

3

2(   )(   )
  

  
  

  x x x x+ +
−

+
+

+

	 Example 1.17	 Use the method of completing the square to manipulate the following quadratic expres-
sions into the form of a number + (or −) the square of a term involving x.

(a)	 x2 + 3x − 7	 (b)  5 − 4x − x2

(c)	 3x2 − 5x + 4	 (d)  1 + 2x − 2x2

	 Solution	 Remember (a + b)2 = a2 + 2ab + b2.

(a)	 To convert x2 + 3x into a perfect square we need to add  ( )3
2

2. Thus we have

= + − (   )   x 3
2

2 37
4

x x x2 3
2

2 3
2

23 7 7      [(   )   ( ) ]  + − = + − −

(b)	 5 − 4x − x2 = 5 − (4x + x2)

To convert x2 + 4x into a perfect square we need to add 22. Thus we have

x2 + 4x = (x + 2)2 − 22
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1.3  A lgebra     19

and

5 − 4x − x2 = 5 − [(x + 2)2 − 22] = 9 − (x + 2)2

(c)	 First we ‘take outside’ the coefficient of x2:

3x2 − 5x + 4 = 3 2 5
3

4
3(    )x x− +

Then we rearrange

x x x2 5
3

5
6

2 25
36− = − −   (   )  

so that 3x2 − 5x + 4 =  3 35
6

2 25
36

4
3

5
6

2 23
36[(   )    ]  [(   )  ]x x− − + = − + .

(d)	 Similarly

1 + 2x − 2x2 = 1 − 2(x2 − x)

and

x2 − x = (   )  x − −1
2

2 1
4

so that

1 + 2x − 2x2 = 1 2 21
2

2 1
4

3
2

1
2

2  [(   )  ]    (   )− − − = − −x x

The reader should confirm that these results agree with identity (1.5d).

The number 45 can be factorized as 3 × 3 × 5. Any product of numbers from 3, 3 and 
5 is also a factor of 45. Algebraic expressions can be factorized in a similar fashion. An 
algebraic expression with more than one term can be factorized if each term contains 
common factors (either numerical or algebraic). These factors are removed by division 
from each term and the non-common factors remaining are grouped into brackets.

	 Example 1.18	 Factorize xz + 2yz − 2y − x.

	 Solution	 There is no common factor to all four terms so we take them in pairs:

xz + 2yz − 2y − x = (x + 2y)z − (2y + x)

                             = (x + 2y)z − (x + 2y)

                             = (x + 2y)(z − 1)

Alternatively, we could have written

xz + 2yz − 2y − x = (xz − x) + (2yz − 2y)

                             = x(z − 1) + 2y(z − 1)

                             = (x + 2y)(z − 1)

to obtain the same result.

In many problems we are able to facilitate the solution by factorizing a quadratic 
expression ax2 + bx + c ‘by hand’, using knowledge of the factors of the numerical 
coefficients a, b and c.

M01 Modern Engineering Mathematics 53497.indd   19 10/01/2020   17:59

Sam
ple

 p
ag

es



20    Number,  Algebra and Geometry

	 Example 1.19	 Factorize the expressions

(a)  x2 + 12x + 35        (b)  2x2 + 9x − 5

	 Solution	 (a)  Since

(x + a)(x + b) = x2 + (a + b)x + ab

we examine the factors of the constant term of the expression

35 = 5 × 7 = 35 × 1

		  and notice that 5 + 7 = 12 while 35 + 1 = 36. So we can choose a = 5 and b = 7 and 
write

x2 + 12x + 35 = (x + 5)(x + 7)

(b)  Since

(mx + a)(nx + b) = mnx2 + (na + mb)x + ab

		  we examine the factors of the coefficient of x2 and of the constant to give the coefficient 
of x. Here

2 = 2 × 1 and −5 = (−5) × 1 = 5 × (−1)

and we see that

2 × 5 + 1 × (−1) = 9

Thus we can write

(2x − 1)(x + 5) = 2x2 + 9x − 5

		  It is sensible to do a ‘spot-check’ on the factorization by inserting a sample value of x, 
for example x = 1

(1)(6) = 2 + 9 − 5

	 Comment	 Some quadratic expressions, for example x2 + y2, do not have real factors.

The expansion of (a + b)2 in (1.5a) is a special case of a general result for (a + b)n  
known as the binomial expansion. This is discussed again later (see Sections 1.3.6 and 
7.7.2). Here we shall look at the cases for n = 0, 1, p , 6.

Writing these out, we have

(a + b)0 = 1

(a + b)1 = a + b

(a + b)2 = a2 + 2ab + b2

(a + b)3 = a3 + 3a2b + 3ab2 + b3

(a + b)4 = a4 + 4a3b + 6a2b2 + 4ab3 + b4

(a + b)5 = a5 + 5a4b + 10a3b2 + 10a2b3 + 5ab4 + b5

(a + b)6 = a6 + 6a5b + 15a4b2 + 20a3b3 + 15a2b4 + 6ab5 + b6
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