
CHAPTER  12

Although these jet planes are rather large, from a distance their motion can be analyzed 
as if each were a particle.
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KINEMATICS 
OF A  
PARTICLE

12.1 INTRODUCTION
Engineering mechanics is the study of the state of rest or motion of 
bodies subjected to the action of forces. It is divided into two areas, 
namely, statics and dynamics. Statics is concerned with the equilibrium 
of a body that is either at rest or moves with constant velocity. Here 
we will consider dynamics, which deals with the accelerated motion of 
a body. This subject will be presented in two parts: kinematics, which 
treats only the geometric aspects of the motion, and kinetics, which is 
the analysis of the forces causing the motion. To develop these principles, 
the dynamics of a particle will be discussed first, followed by topics in 
rigid-body dynamics in two and then three dimensions.

■■ To introduce the concepts of position, displacement, velocity, 
and acceleration.

■■ To study particle motion along a straight line and represent this 
motion graphically.

■■ To investigate particle motion along a curved path using different 
coordinate systems.

■■ To present an analysis of dependent motion of two particles.

■■ To examine the principles of relative motion of two particles 
using translating axes.

CHAPTER OBJECTIVES

Lecture Summary and Quiz,
Example, and Problem-

solving videos are available
where this icon appears.
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Historically, the principles of dynamics developed when it was possible 
to make an accurate measurement of time. Galileo Galilei (1564–1642) 
was one of the first major contributors to this field. His work consisted 
of experiments using pendulums and falling bodies. The most significant 
contributions to dynamics, however, were made by Isaac Newton  
(1642–1727), who is noted for his formulation of the three fundamental 
laws of motion and the law of universal gravitational attraction. Shortly 
after these laws were postulated, important techniques for their 
application were developed by Euler, D’Alembert, Lagrange, and others.

There are many problems in engineering whose solutions require 
application of the principles of dynamics. For example, bridges and 
frames are subjected to moving loads and natural forces caused by 
wind and earthquakes. The structural design of any vehicle, such as an 
automobile or airplane, requires consideration of the motion to which 
it is subjected. This is also true for many mechanical devices, such as 
motors, pumps, movable tools, industrial manipulators, and machinery. 
Furthermore, predictions of the motions of artificial satellites, projectiles, 
and spacecraft are based on the theory of dynamics. With further 
advances in technology, there will be an even greater need for knowing 
how to apply the principles of this subject.

Problem Solving. Dynamics is considered to be more involved 
than statics since both the forces applied to a body and its motion must be 
taken into account. Also, many applications require using calculus, rather 
than just algebra and trigonometry. In any case, the most effective way of 
learning the principles of dynamics is to solve problems. To be successful 
at this, it is necessary to present the work in a logical and orderly manner 
as suggested by the following sequence of steps:

1. Read the problem carefully and try to correlate the actual physical 
situation with the theory you have studied.

2. Draw any necessary diagrams and tabulate the problem data.

3. Establish a coordinate system and apply the relevant principles, 
generally in mathematical form.

4. Solve the necessary equations using a consistent set of units, and 
report the answer with no more than three significant figures, which 
is generally the accuracy of the given data.

5. Study the answer using technical judgment and common sense to 
determine whether or not it seems reasonable.

In applying this general procedure, do the work as neatly as possible. 
Being neat generally stimulates clear and orderly thinking, and vice versa. 
If you are having trouble developing your problem-solving skills, consider 
watching the videos available at www.pearson.com/hibbeler.

M12_HIBB1930_15_GE_C12.indd   24 22/03/23   5:19 PM

Sam
ple

 p
ag

es



 12.2 reCtilinear KinematiCs: Continuous motion 25

12

12.2  RECTILINEAR KINEMATICS: 
CONTINUOUS MOTION

We will begin our study of dynamics by discussing the kinematics of 
a particle that moves along a straight path. Recall that a particle has 
a mass but negligible size and shape, so we will limit application to 
those objects that have dimensions that are of no consequence in the 
analysis of the motion. For example, a rocket, projectile, or a vehicle 
can be considered as a particle, as long as its motion is characterized 
by the motion of its mass center, and any rotation of the body is 
neglected.

Rectilinear Kinematics. The kinematics of a particle is 
characterized by specifying, at any given instant, the particle’s position, 
velocity, and acceleration.

Position. The rectilinear or straight-line path of a particle will be 
defined using a single coordinate axis s, Fig. 12–1a. The origin O on 
the path is a fixed point, and from this point the position coordinate s  
is used to specify the location of the particle at any given instant. 
The magnitude of s is the distance from O to the particle, usually 
measured in meters (m), and the sense of direction is defined by 
the algebraic sign of s. Although the choice is arbitrary, here s will 
be positive when the particle is located to the right of the origin, 
and it will be negative if the particle is located to the left of O.  
Position is actually a vector quantity since it has both magnitude and 
direction; however, it is being represented by the algebraic scalar s, 
rather than in boldface s, since the direction always remains along 
the coordinate axis.

Displacement. The displacement of the particle is defined as the 
change in its position. For example, if the particle moves from one point 
to another, Fig. 12–1b, the displacement is

∆s = s′ - s

In this case ∆s is positive since the particle’s final position is to 
the right of its initial position, i.e., s′ 7 s. Displacement is also a 
vector quantity, and it should be distinguished from the distance 
the particle travels. Specifically, the distance traveled is a positive 
scalar that represents the total length of path over which the particle 
travels.

s

s

Position

(a)

O

Fig. 12–1

s

s

Displacement

(b)

s9

O
Ds
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Velocity. If the particle moves through a displacement ∆s during the 
time interval ∆t, the average velocity of the particle is

vavg =
∆s
∆t

If we take smaller and smaller values of ∆t, the magnitude of ∆s becomes 
smaller and smaller. Consequently, the instantaneous velocity is a vector 
defined as v = lim

∆tS0
(∆s>∆t), or

( S+ ) v =
ds
dt

 (12–1)

Since ∆t or dt is always positive, the sign used to define the sense of the 
velocity is the same as that of ∆s or ds. For example, if the particle is 
moving to the right, Fig. 12–1c, the velocity is positive; whereas if it is 
moving to the left, the velocity is negative. (This is emphasized here by 
the arrow written at the left of Eq. 12–1.) The magnitude of the velocity is 
known as the speed, and it is generally expressed in units of m>s.

Occasionally, the term “average speed” is used. The average speed is 
always a positive scalar and is defined as the total distance traveled by a 
particle, sT , divided by the elapsed time ∆t; i.e.,

(vavg)sp =
sT

∆t

For example, the particle in Fig. 12–1d travels along the path of length sT  
in time ∆t, so its average speed is (vavg)sp = sT>∆t, but its average 
velocity is vavg = - ∆s>∆t.

s

Velocity

(c)

O
Ds

v

Ds

s
P

sT

Average velocity and
Average speed

O

P9

(d)

Fig. 12–1 (cont.)
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Acceleration. If the velocity of the particle is known at two points, 
then the average acceleration of the particle during the time interval ∆t 
is defined as

aavg =
∆v

∆t

Here ∆v represents the difference in the velocity during the time interval 
∆t, i.e., ∆v = v′ - v, Fig. 12–1e.

The instantaneous acceleration at time t is a vector that is found by 
taking smaller and smaller values of ∆t and corresponding smaller and 
smaller values of ∆v, so that a = lim

∆tS0
(∆v>∆t), or

( S+ ) a =
dv

dt
 (12–2)

Substituting Eq. 12–1 into this result, we can also write

( S+ ) a =
d2s

dt2

Both the average and instantaneous acceleration can be either positive 
or negative. In particular, when the particle is slowing down, or its speed is 
decreasing, the particle is said to be decelerating. In this case, v′ in Fig. 12–1f  
is less than v, and so ∆v = v′ - v will be negative. Consequently, a will 
also be negative, and therefore it will act to the left, in the opposite sense 
to v. Also, notice that if the particle is originally at rest, then it can have an 
acceleration if a moment later it has a velocity v′. Units commonly used 
to express the magnitude of acceleration are m>s2.

Finally, an important differential relation involving the displacement, 
velocity, and acceleration along the path may be obtained by eliminating 
the time differential dt between Eqs. 12–1 and 12–2. We have 

dt =
ds
v

=
dv

a
or

( S+ ) a ds = v dv  (12–3)

Although we have now produced three important kinematic 
equations, realize that the above equation is not independent of  
Eqs. 12–1 and 12–2.

s

Acceleration

(e)

O

a

v v9

s
P

Deceleration

(f)

O

P9

v v9

a

Fig. 12–1 (cont.)
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Constant Acceleration, a = ac 

. When the acceleration is 
constant, each of the three kinematic equations ac = dv>dt, v = ds>dt, 
and ac ds = v dv can be integrated to obtain formulas that relate ac , v, 
s, and t.

Velocity as a Function of Time. Integrating ac = dv>dt, 
assuming that initially v = v0 when t = 0, we get

L
v

v0

dv = L
t

0
ac dt

( S+ ) v = v0 + ac t (12–4)
Constant Acceleration

Position as a Function of Time. Integrating  v =  ds>dt =  v0 +  act, 
assuming that initially s = s0 when t = 0, yields

L
s

s0

ds = L
t

0
(v0 + act) dt

( S+ ) s = s0 + v0t + 1
2 ac t

2 (12–5)
Constant Acceleration

Velocity as a Function of Position. If we solve for t in Eq. 12–4 
and substitute it into Eq. 12–5, or integrate v dv = ac ds, assuming that 
initially v = v0 at s = s0, we get

L
v

v0

v dv = L
s

s0

ac ds

( S+ ) v

2 = v0
2 + 2ac(s - s0) (12–6)

Constant Acceleration

The algebraic signs of s0 , v0, and ac , used in these equations, are 
determined from the positive direction of the s axis as indicated by the arrow 
written at the left of each equation. It is important to remember that these 
equations are useful only when the acceleration is constant and when t = 0, 
s = s0 , v = v0 . A typical example of constant accelerated motion occurs 
when a body falls freely toward the earth. If air resistance is neglected and 
the distance of fall is short, then the constant downward acceleration of the 
body when it is close to the earth is approximately 9.81 m>s2.

During the time this rocket undergoes 
rectilinear motion, its altitude as a 
function of time can be measured and 
expressed as s = s(t). Its velocity can 
then be found using v = ds>dt, and its 
acceleration can be determined from 
a = dv>dt.
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12• Dynamics is the study of bodies that have accelerated motion.

• Kinematics is a study of the geometry of the motion.

• Kinetics is a study of the forces that cause the motion.

• Rectilinear kinematics refers to straight-line motion.

• Speed refers to the magnitude of velocity.

• Average speed is the total distance traveled divided by the total time. This is different from the average 
velocity, which is the displacement divided by the time.

• A particle that is slowing down is decelerating.

• A particle can have an acceleration and yet have zero velocity.

• The relationship a ds = v dv is derived from a = dv>dt and v = ds>dt, by eliminating dt.

IMPORTANT POINTS

Coordinate System.
• Establish a position coordinate s along the path and specify its fixed origin and positive direction.

• Since motion is along a straight line, the vector quantities position, velocity, and acceleration can be 
represented as algebraic scalars. For analytical work the sense of s, v, and a is then defined by their 
algebraic signs.

• The positive sense for each of these scalars can be indicated by an arrow shown alongside each kinematic 
equation as it is applied.

Kinematic Equations.
• If a relation is known between any two of the four variables a, v, s, and t, then a third variable can be 

obtained by using one of the kinematic equations, a = dv>dt, v = ds>dt or a ds = v dv, since each 
equation relates all three variables.*

• Whenever integration is performed, it is important that the position and velocity be known at a given 
instant in order to evaluate either the constant of integration if an indefinite integral is used, or the limits 
of integration if a definite integral is used.

• Remember that Eqs. 12–4 through 12–6 have limited use. These equations apply only when the acceleration 
is constant and the initial conditions are s = s0 and v = v0 when t = 0.

* Some standard differentiation and integration formulas are given in Appendix A.

PROCEDURE FOR ANALYSIS

Refer to the companion website for  
Lecture Summary and Quiz videos.
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EXAMPLE 12.1

The car in Fig. 12–2 moves in a straight line such that for a short time 
its velocity is defined by v = (0.9t2 + 0.6t) m>s, where t is in seconds. 
Determine its position and acceleration when t = 3 s. When t = 0, s = 0.

s

O

a, v

Fig. 12–2

SOLUTION

Coordinate System. The position coordinate extends from the 
fixed origin O to the car, positive to the right.

Position. Since v = f(t), the car’s position can be determined from 
v = ds>dt, since this equation relates v, s, and t. Noting that s = 0 
when t = 0, we have*

( S+ )  v =
ds
dt

= (0.9t2 + 0.6t)

 L
s

0
ds = L

t

0
(0.9t2 + 0.6t)dt

 s `
s

0
= 0.3t3 + 0.3t2 `

t

0

 s = 0.3t3 + 0.3t2

When t = 3 s,

 s =  0.3(3)3 + 0.3(3)2 = 10.8 m Ans.

Acceleration. Since v = f(t), the acceleration is determined from 
a = dv>dt, since this equation relates a, v, and t.

( S+ )   a =
dv

dt
=

d
dt

 (0.9t2 + 0.6t) = 1.8t + 0.6

When t = 3 s,

 a = 1.8(3) + 0.6 = 6.00 m>s2 S  Ans.

NOTE: The formulas for constant acceleration cannot be used to solve 
this problem, because the acceleration is a function of time.

* The same result can be obtained by evaluating a constant of integration C rather than 
using definite limits on the integral. For example, integrating ds = (0.9t2 + 0.6t)dt 
yields s = 0.3t3 + 0.3t2 + C. Using the condition that at t = 0, s = 0, then C = 0.
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EXAMPLE 12.2

A small projectile is fired vertically downward into a fluid with an initial 
velocity of 60 m>s. Due to the drag resistance of the fluid the projectile 
experiences a deceleration of a = (-0.4v

3) m>s2, where v is in m>s. 
Determine the projectile’s velocity and position 4 s after it is fired.

SOLUTION

Coordinate System. Since the motion is downward, the position 
coordinate is positive downward, with origin located at O, Fig. 12–3.

Velocity. Here a = f(v) and so we must determine the velocity as a 
function of time using a = dv>dt, since this equation relates v, a, and t. 
(Why not use v = v0 + act?) Separating the variables and integrating, 
with v0 = 60 m>s when t = 0, yields*

(+ T) a =
dv

dt
= -0.4v

3 

L
v

60 m>s
 

dv

-0.4v

3 = L
t

0
dt

1
-0.4

 a 1
-2

b  
1
v

2 `
60

v

= t - 0

1
0.8

 c 1
v

2 -
1

(60)2 d = t

v = e c 1
(60)2 + 0.8t d

-1>2
f

 

m>s

Here the positive root is taken, since the projectile will continue to 
move downward. When t = 4 s,

 v = 0.559 m>sT  Ans.

Position. Knowing v = f(t), we can obtain the projectile’s position 
from v = ds>dt, since this equation relates s, v, and t. Using the initial 
condition s = 0, when t = 0, we have

(+ T) v =
ds
dt

= c 1
(60)2 + 0.8t d

-1>2

L
s

0
ds = L

t

0
c 1
(60)2 + 0.8t d

-1>2
dt

s =
2

0.8
 c 1

(60)2 + 0.8t d
1>2

`
0

t

s =
1

0.4
 e c 1

(60)2 + 0.8t d
1>2

-
1
60

f  m

When t = 4 s,
 s = 4.43 m Ans.
* The same result can be obtained by evaluating a constant of integration C rather than 
using definite limits on the integral.

s

O

Fig. 12–3
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A

O

vA 5 75 m>s

vB 5 0

sA 5 40 m

s

sB

B

C

Fig. 12–4

EXAMPLE 12.3

During a test the rocket in Fig. 12–4 travels upward at 75 m>s, and when 
it is 40 m from the ground its engine fails. Determine the maximum height 
sB reached by the rocket and its speed just before it hits the ground. While 
in motion the rocket is subjected to a constant downward acceleration of 
9.81 m>s2 due to gravity. Neglect the effect of air resistance.

SOLUTION

Coordinate System. The origin O for the position coordinate s is 
taken at ground level with positive upward, Fig. 12–4.

Maximum Height. Since the rocket is traveling upward, 
vA = +75 m>s when t = 0. At the maximum height s = sB the velocity 
vB = 0. For the entire motion, the acceleration is ac = -9.81 m>s2 
(negative since it acts in the opposite sense to positive velocity or 
positive displacement). Since ac is constant the rocket’s position may 
be related to its velocity at the two points A and B on the path by 
using Eq. 12–6, namely,

(+ c)  vB
2 = vA

2 + 2ac(sB - sA)

 0 = (75 m>s)2 + 2(-9.81 m>s2)(sB - 40 m)

   sB = 327 m Ans.

Velocity. To obtain the velocity of the rocket just before it hits the 
ground, we can apply Eq. 12–6 between points B and C, Fig. 12–4.

 (+ c) vC
2 = vB

2 + 2ac(sC - sB)

 = 0 + 2(-9.81 m>s2)(0 - 327 m)

 vC = -80.1 m>s = 80.1 m>s T  Ans.

The negative root was chosen since the rocket is moving downward.
Similarly, Eq. 12–6 may also be applied between points A and C, i.e.,

 (+ c)  vC
2 = vA

2 + 2ac(sC - sA)

= (75 m>s)2 + 2(-9.81 m>s2)(0 - 40 m) 

 vC = -80.1 m>s = 80.1 m>s T  Ans.

NOTE: It should be realized that the rocket is subjected to a deceleration 
from A to B of 9.81 m>s2, and then from B to C it is accelerated at this 
rate. Furthermore, even though the rocket momentarily comes to rest 
at B (vB = 0) the acceleration at B is still 9.81 m>s2 downward!
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EXAMPLE 12.4

A metallic particle is subjected to the influence of a magnetic field 
as it travels downward from plate A to plate B, Fig. 12–5. If the 
particle is released from rest at the midpoint C, s = 100 mm, and 
the acceleration is a = (4s) m>s2, where s is in meters, determine the  
velocity of the particle when it reaches plate B, s = 200 mm, and  
the time it takes to travel from C to B.

SOLUTION

Coordinate System. As shown in Fig. 12–5, s is positive downward, 
measured from plate A.

Velocity. Since a = f(s), the velocity as a function of position can be 
obtained by using v dv = a ds. Realizing that v = 0 at s = 0.1 m, we have

 (+ T) v dv = a ds 

L
v

0
v dv = L

s

0.1 m
4s ds

1
2

 v2 `
0

v

=
4
2

 s2 `
0.1 m

s

 v = 2(s2 - 0.01)1>2 m>s (1)

At s = 200 mm = 0.2 m,

 vB = 0.346 m>s = 346 mm>s T  Ans.

Time. The time for the particle to travel from C to B can be 
obtained using v = ds>dt and Eq. 1, where s = 0.1 m when t = 0. 
From Appendix A,

 (+ T) ds = v dt

 = 2(s2 - 0.01)1>2dt 

L
s

0.1
 

ds

(s2 - 0.01)1>2 = L
t

0
2 dt 

  ln12s2 - 0.01 + s2 `
0.1

s

= 2t `
0

t

 ln12s2 - 0.01 + s2 + 2.303 = 2t

At s = 0.2 m,

 t =
ln12(0.2)2 - 0.01 + 0.22 + 2.303

2
= 0.658 s Ans.

NOTE: The formulas for constant acceleration cannot be used here 
because the acceleration changes with position, i.e., a = 4s.

A

200 mm

100 mm

B

s
C

Fig. 12–5

M12_HIBB1930_15_GE_C12.indd   33 22/03/23   5:20 PM

Sam
ple

 p
ag

es



34  Chapter 12  KinematiCs of a part iCle 

12

O

s 5 24.0 m s 5 6.125 m

t 5 2 s t 5 0 s t 5 3.5 s

(a)

Fig. 12–6

(0, 0)

v (m>s)

v 5 3t2 2 6t

(2 s, 0)
t (s)

(1 s, 23 m>s)

(b)

EXAMPLE 12.5

A particle moves along a horizontal path with a velocity of 
v = (3t2 - 6t) m>s, where t is in seconds. If it is initially located at 
the origin O, determine the distance traveled in 3.5 s, and the particle’s 
average velocity and average speed during the time interval.

SOLUTION

Coordinate System. Here positive motion is to the right, measured 
from the origin O, Fig. 12–6a.

Distance Traveled. Since v = f(t), the position as a function of 
time may be found by integrating v = ds>dt with t = 0, s = 0.

 ( S+ )  ds = v dt 
= (3t2 - 6t) dt

L
s

0
ds = L

t

0
(3t2 - 6t) dt 

 s = (t3 - 3t2) m (1)

In order to determine the distance traveled in 3.5 s, it is necessary 
to investigate the path of motion. If we graph the velocity function,  
Fig. 12–6b, then it shows that for 0 6 t 6 2 s the velocity is negative, 
which means the particle is traveling to the left, and for t 7 2 s the 
velocity is positive, and hence the particle is traveling to the right. 
Also, note that v = 0 when t = 2 s. The particle’s position when 
t = 0, t = 2 s, and t = 3.5 s can be determined from Eq. 1. This yields

s ∙ t = 0 = 0 s ∙ t = 2 s = -4.0 m s ∙ t = 3.5 s = 6.125 m

The path is shown in Fig. 12–6a. Hence, the distance traveled in 3.5 s is

 sT = 4.0 + 4.0 + 6.125 = 14.125 m = 14.1 m Ans.

Velocity. The displacement from t = 0 to t = 3.5 s is

∆s = s ∙ t = 3.5 s - s ∙ t = 0 = 6.125 m - 0 = 6.125 m

and so the average velocity is

 vavg =
∆s
∆t

=
6.125 m

3.5 s - 0
= 1.75 m>s S  Ans.

The average speed is defined in terms of the total distance traveled sT . 
This positive scalar is

 (vavg)sp =
sT

∆t
=

14.125 m
3.5 s - 0

= 4.04 m>s Ans.

NOTE: In this problem, the acceleration is a = dv>dt = (6t - 6) m>s2, 
which is not constant.

Refer to the companion website for a self quiz of these 
Example problems.
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F12–5. The position of the particle is s = (2t2 - 8t + 6) m, 
where t is in seconds. Determine the time when the velocity 
of the particle is zero, and the total distance traveled by the 
particle when t = 3 s.

F12–1. Initially, the car travels along a straight road with a 
speed of 35 m>s. If the brakes are applied and the speed of 
the car is reduced to 10 m>s in 15 s, determine the constant 
deceleration of the car.

FUNDAMENTAL PROBLEMS

s

Prob. F12–2

Prob. F12–1

s

Prob. F12–5

s

s

Prob. F12–6

F12–2. A ball is thrown vertically upward with a speed of 
15 m>s. Determine the time of flight when it returns to its 
original position.

F12–3. A particle travels along a straight line with a velocity 
of v = (4t - 3t2) m>s, where t is in seconds. Determine the 
position of the particle when t = 4 s. s = 0 when t = 0.

F12–4. A particle travels along a straight line with a speed 
v = (0.5t3 - 8t) m>s, where t is in seconds. Determine the 
acceleration of the particle when t = 2 s.

F12–6. A particle travels along a straight line with an 
acceleration of a = (10 - 0.2s) m>s2, where s is measured 
in meters. Determine the velocity of the particle when 
s = 10 m if v = 5 m>s at s = 0.

F12–7. A particle moves along a straight line such that its 
acceleration is a = (4t2 - 2) m>s2, where t is in seconds. 
When t = 0, the particle is located 2 m to the left of the 
origin, and when t = 2 s, it is 20 m to the left of the origin. 
Determine the position of the particle when t = 4 s.

F12–8. A particle travels along a straight line with a 
velocity of v = (20 - 0.05s2) m>s, where s is in meters. 
Determine the acceleration of the particle at s = 15 m.

Partial solutions and answers to all Fundamental Problems are given in the back of the book. Video solutions are 
available for select Fundamental Problems on the companion website.

M12_HIBB1930_15_GE_C12.indd   35 22/03/23   5:20 PM

Sam
ple

 p
ag

es



36  Chapter 12  KinematiCs of a part iCle 

12
12–9. When two cars A and B are next to one another, 
they are traveling in the same direction with speeds vA and 
vB, respectively. If B maintains its constant speed, while A 
begins to decelerate at aA, determine the distance d between 
the cars at the instant A stops.

12–1. A particle is moving along a straight line such that 
its position is defined by s = (10t2 + 20) mm, where t is in 
seconds. Determine (a) the displacement of the particle 
during the time interval from t = 1 s to t = 5 s, (b) the average 
velocity of the particle during this time interval, and (c) the 
acceleration when t = 1 s.

12–2. Starting from rest, a particle moving in a straight 
line has an acceleration of a = (2t - 6) m>s2, where t is in 
seconds. What is the particle’s velocity when t = 6 s, and 
what is its position when t = 11 s?

12–3. A particle moves along a straight line such that its 
position is defined by s = (t2 - 6t + 5) m. Determine the 
average velocity, the average speed, and the acceleration of 
the particle when t = 6 s.

*12–4. A particle travels along a straight line with a velocity 
v = (12 - 3t2) m>s, where t is in seconds. When t = 1 s, the 
particle is located 10 m to the left of the origin. Determine 
the acceleration when t = 4 s, the displacement from t = 0 
to t = 10 s, and the distance the particle travels during this  
time period.

12–5. The acceleration of a particle as it moves along 
a straight line is given by a = (2t - 1) m>s2, where t is in 
seconds. If s = 1 m and v = 2 m>s when t = 0, determine 
the particle’s velocity and position when t = 6 s. Also, 
determine the total distance the particle travels during this 
time period.

12–6. The velocity of a particle traveling in a straight 
line is given by v = (6t - 3t2) m>s, where t is in seconds. If 
s = 0 when t = 0, determine the particle’s deceleration and 
position when t = 3 s. How far has the particle traveled 
during the 3-s time interval, and what is its average speed?

12–7. A particle moving along a straight line is subjected 
to a deceleration a = (-2v

3) m>s2, where v is in m>s. If it 
has a velocity v = 8 m>s and a position s = 10 m when t = 0, 
determine its velocity and position when t = 4 s.

*12–8. A particle moves along a straight line such that its 
position is defined by s = (2t3 + 3t2 - 12t - 10) m. Determine 
the velocity, average velocity, and the average speed of the 
particle when t = 3 s.

PROBLEMS

BA

d

Prob. 12–9

12–10. A particle moves along a straight path with an 
acceleration of a = (5>s)  m>s2, where s is in meters. 
Determine the particle’s velocity when s = 2 m, if it is 
released from rest when s = 1 m.

12–11. A particle moves along a straight line with an 
acceleration of a = 5>(3s  1>3 + s  5>2) m>s2, where s is in 
meters. Determine the particle’s velocity when s = 2 m, if it 
starts from rest when s = 1 m. Use a numerical method to 
evaluate the integral.

*12–12. A particle travels along a straight-line path such 
that in 4 s it moves from an initial position sA = -8 m to a 
position sB = +3 m. Then in another 5 s it moves from sB to 
sC = -6 m. Determine the particle’s average velocity and 
average speed during the 9-s time interval.

12–13. The speed of a particle traveling along a straight 
line within a liquid is measured as a function of its position 
as v = (100 - s) mm>s, where s is in millimeters. Determine 
(a) the particle’s deceleration when it is located at point A,  
where sA = 75 mm, (b) the distance the particle travels 
before it stops, and (c) the time needed to stop the particle.
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12–18. Car A starts from rest at t = 0 and travels along a  
straight road with a constant acceleration of 1.8 m>s2 until it 
reaches a speed of 24 m>s. Afterwards it maintains this speed. 
Also, when t = 0, car B located 1800 m down the road is 
traveling towards A at a constant speed of 18 m>s. Determine 
the distance traveled by car A when they pass each other.

12–14. The acceleration of a rocket traveling upward is 
given by a = (6 + 0.02s) m>s2, where s is in meters. Determine 
the rocket’s velocity when s = 2 km and the time needed to 
reach this attitude. Initially, v = 0 and s = 0 when t = 0.

12–15. The sports car travels along the straight road such 
that v = 32100 -  s m>s, where s is in meters. Determine 
the time for the car to reach s = 60 m. How much time does 
it take to stop?

s

v

Prob. 12–15

s

Prob. 12–14
12–19. A train starts from rest at station A and accelerates 
at 0.5  m>s2 for 60 s. Afterwards it travels with a constant 
velocity for 15 min. It then decelerates at 1 m>s2 until it is  
brought to rest at station B. Determine the distance between 
the stations.

A B

1800 m

18 m>s

Prob. 12–18

 

s v

Prob. 12–21

*12–16. A particle is moving with a velocity of v0 when 
s = 0 and t = 0. If it is subjected to a deceleration of a = -kv

3, 
where k is a constant, determine its velocity and position as 
functions of time.

12–17. A particle is moving along a straight line with an 
initial velocity of 6 m>s when it is subjected to a deceleration 
of a = (-1.5v

1>2) m>s2, where v is in m>s. Determine how far 
it travels before it stops. How much time does this take?

*12–20. A sandbag is dropped from a balloon which is 
ascending vertically at a constant speed of 6 m>s. If the bag 
is released with the same upward velocity of 6 m>s when  
t = 0 and hits the ground when t = 8 s, determine the speed of 
the bag as it hits the ground and the altitude of the balloon 
at this instant.

12–21. When a train is traveling along a straight track at 
2 m>s, it begins to accelerate at a = (60v

-4) m>s2, where v is  
in m>s. Determine its velocity v and the position 3 s after 
the acceleration.
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*12–28. As a body is projected to a high altitude above the 
earth’s surface, the variation of the acceleration of gravity 
with respect to altitude y must be taken into account. 
Neglecting air resistance, this acceleration is determined 
from the formula a = -g0[R

2>(R + y)2], where g0 is the 
constant gravitational acceleration at sea level, R is the 
radius of the earth, and the positive direction is measured 
upward. If g0 = 9.81 m>s2 and R = 6356 km, determine 
the minimum initial velocity (escape velocity) at which a 
projectile should be shot vertically from the earth’s surface 
so that it does not fall back to the earth. Hint: This requires 
that v = 0 as y S ∞ .

12–29. Accounting for the variation of gravitational 
acceleration a with respect to altitude y (see Prob. 12–28), 
derive an equation that relates the velocity of a freely 
falling particle to its altitude. Assume that the particle is 
released from rest at an altitude y0 from the earth’s surface. 
With what velocity does the particle strike the earth if it 
is released from rest at an altitude y0 = 500 km? Use the 
numerical data in Prob. 12–28.

12–30. A train is initially traveling along a straight track 
at a speed of 90 km>h. For 6 s it is subjected to a constant 
deceleration of 0.5 m>s2, and then for the next 5 s it has 
a constant deceleration ac. Determine ac so that the train 
stops at the end of the 11-s time period.

12–31. Two cars A and B start from rest at a stop line.  
Car A has a constant acceleration of aA = 8 m>s2, while 
Car B has an acceleration of aB = (2t3>2) m>s2, where t is in 
seconds. Determine the distance between the cars when A 
reaches a velocity of vA = 120 km>h.

*12–32. A sphere is fired downward into a medium with 
an initial speed of 27 m>s. If it experiences a deceleration 
of a = (-6t) m>s2, where t is in seconds, determine the 
distance traveled before it stops.

12–33. The velocity of a particle traveling along a straight 
line is v =  v0 - ks, where k is constant. If s =  0 when t =  0, 
determine the position and acceleration of the particle as a 
function of time.

12–34. Ball A is thrown vertically upward from the top 
of a 30-m-high building with an initial velocity of 5 m>s. At 
the same instant another ball B is thrown upward from the 
ground with an initial velocity of 20 m>s. Determine the 
height from the ground and the time at which they pass.

12–22. When a particle falls through the air, its initial 
acceleration a = g diminishes until it is zero, and thereafter 
it falls at a constant or terminal velocity vf . If this variation of 
the acceleration can be expressed as a = (g>v

2
 f)(v

2
 f - v

2),  
determine the time needed for the velocity to become 
v = vf>2. Initially the particle falls from rest.

12–27. A ball is thrown with an upward velocity of 5 m>s  
from the top of a 10-m-high building. One second later 
another ball is thrown upward from the ground with a 
velocity of 10 m>s. Determine the height from the ground 
where the two balls pass each other.

v

Prob. 12–23

12–23. The acceleration of the boat is defined by  
a = (1.5 v1>2) m>s. Determine its speed when t = 4 s if it has 
a speed of 3 m>s when t = 0.

*12–24. A particle is moving along a straight line such 
that its acceleration is defined as a = (-2v) m>s2, where v 
is in meters per second. If v = 20 m>s when s = 0 and t = 0, 
determine the particle’s position, velocity, and acceleration 
as functions of time.

12–25. When a particle is projected vertically upward 
with an initial velocity of v0, it experiences an acceleration  
a =  -(g + kv

2), where g is the acceleration due to gravity, k 
is a constant, and v is the velocity of the particle. Determine 
the maximum height reached by the particle.

12–26. If the effects of atmospheric resistance are 
accounted for, a freely falling body has an acceleration 
defined by the equation a = 9.81[1 - v

 2 (10 -4)] m>s2, 
where v is in m>s and the positive direction is downward. 
If the body is released from rest at a very high altitude, 
determine (a) the velocity when t = 5 s, and (b) the body’s 
terminal or maximum attainable velocity (as t S ∞).
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12.3  RECTILINEAR KINEMATICS: 
ERRATIC MOTION

When a particle has erratic or changing motion, then its position, velocity, 
and acceleration cannot be described by a single continuous mathematical 
function along the entire path. Instead, a series of functions will be 
required to specify the motion at different intervals. For this reason, it is 
convenient to represent the motion as a graph. If this graph relates any 
two of the variables s, v, a, t, then it can be used to construct subsequent 
graphs relating two other variables since the variables are related by the 
differential relationships v = ds>dt, a = dv>dt, or a ds = v dv. Several 
situations are possible.

The s–t, V–t, and a–t Graphs. To construct the v9t graph given 
the s–t graph, Fig. 12–7a, the equation v = ds>dt should be used, since it 
relates the variables s and t to v. This equation states that

 
ds
dt

= v

slope of
s9t graph

= velocity

For example, by measuring the slope on the s–t graph when t = t1, the 
velocity is v1, Fig. 12–7a. The v9t graph can be constructed by plotting 
this and other values at each instant, Fig. 12–7b.

The a–t graph can be constructed from the v9t graph in a similar 
manner, since

 
dv

dt
= a 

slope of
v9t graph

 = acceleration

Examples of various measurements are shown in Fig. 12–8a and plotted 
in Fig. 12–8b.

If the s–t curve for each interval of motion can be expressed by a 
mathematical function s = s(t), then the equation of the v9t and a–t 
graph for the same interval can be obtained from succesive derivatives of 
this function with respect to time since v = ds/dt and a = dv>dt. Since 
differentiation reduces a polynomial of degree n to that of degree n – 1, 
then if the s–t graph is parabolic (a second-degree curve), the v9t graph 
will be a sloping line (a first-degree curve), and the a–t graph will be a 
constant or a horizontal line (a zero-degree curve).

tO

v0 5 t 5 0

(a)

s

ds
dt

v1 5 t1

s1

t1 t2 t3

s2
s3

ds
dt

v2 5 t2
ds
dt

v3 5 t3
ds
dt

tO

(b)

v0

v

v1

v3

v2

t1 t2

t3

Fig. 12–7

a0 5

v

tt1 t2 t3

v1

v2

v3

v0

a1 5

a2 5

O

(a)

a3 5 t3
dv

dt

t2
dv

dtt 5 0
dv

dt

t1
dv

dt

t

a

a0 5 0
a1 a2

a3
t1 t2 t3O

(b)

Fig. 12–8
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If the a–t graph is given, Fig. 12–9a, the v9t graph may be constructed 
using a = dv>dt, written as

 ∆v = La dt 

 change in
velocity

 =  
area under
a9t graph

Therefore, to construct the v9t graph, we begin with the particle’s initial 
velocity v0 and then add to this small increments of area (∆v) determined 
from the a–t graph. In this manner successive points, v1 = v0 + ∆v, etc., 
are determined, Fig. 12–9b. When doing this, an algebraic addition of the 
area increments of the a–t graph is necessary, since areas lying above the  
t axis correspond to an increase in v (“positive” area), whereas those 
lying below the axis indicate a decrease in v (“negative” area).

Similarly, if the v9t graph is given, Fig. 12–10a, it is possible to determine 
the s–t graph using v = ds>dt, written as

 ∆s = Lv dt

 displacement =
area under
v9t graph

Here we begin with the particle’s initial position s0 and add 
(algebraically) to this small area increments ∆s determined from the  
v9t graph, Fig. 12–10b.

Due to the integration, if segments of the a–t graph can be described 
by a series of equations, then each of these equations can be successively 
integrated to yield equations describing the corresponding segments of 
the v9t and s–t graphs. As a result, if the a–t graph is linear (a first-degree 
curve), integration will yield a v9t graph that is parabolic (a second-
degree curve) and an s–t graph that is cubic (third-degree curve).

t

a

a0

t1

Dv 5 10

t1

t

v

v0

t1

v1
Dv

(a)

(b)

a dt

Fig. 12–9

t

v

v0

t1

t

s

s0

t1

s1
Ds

(b)

(a)

Ds 5 10

t1
v dt

Fig. 12–10
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The V–s and a–s Graphs. If the a–s graph can be constructed, 
then points on the v9s graph can be determined by using v dv = a ds. 
Integrating this equation between the limits v = v0 at s = s0 and v = v1 
at s = s1 , we have,

1
2(v

2
1 - v

2
0) = L

s1

s0

 a ds 

 area under
  a9s graph

For example, if the red area in Fig. 12–11a is determined, and the initial 
velocity v0 at s0 = 0 is known, then v1 = 121 s1

0
a ds + v0

221>2, Fig. 12–11b. 
Other points on the v–s graph can be determined in this same manner.

If the v–s graph is known, the acceleration a at any position s can be 
determined using a ds = v dv, written as

 a = vadv

ds
b

velocity times
acceleration = slope of

v9s graph

For example, at point (s, v) in Fig. 12–12a, the slope dv>ds of the  
v–s graph is measured. Then with v and dv>ds known, the value of a can 
be calculated, Fig. 12–12b.

The v–s graph can also be constructed from the a–s graph, or vice 
versa, by approximating the known graph in various intervals with 
mathematical functions, v = f(s) or a = g(s), and then using a ds = v dv 
to obtain the other graph.

a

a0

s1

1  a ds 5    (v1
2
 2 v0

2)
0

s1

(a)

1—
2

s

Fig. 12–11

v

v0

s1

v1

(b)

s

v

v0

(a)

s

dv

ds

v

s

Fig. 12–12

a0

(b)

s

a

s

a 5 v(dv>ds)

Refer to the companion website for Lecture 
Summary and Quiz videos.
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t (s)

s (m)

150

30

10 30

(a)

s 5 0.3t2

s 5 6t 2 30

EXAMPLE 12.6

A bicycle moves along a straight road such that its position is described 
by the graph shown in Fig. 12–13a. Construct the v9t and a–t graphs for 
0 … t … 30 s.

SOLUTION

V–t Graph. Since v = ds>dt, the v9t graph can be determined by 
differentiating the equations defining the s–t graph, Fig. 12–13a. We have

0 … t 6 10 s; s = (0.3t 2) m  v =
ds
dt

= (0.6t) m>s

10 s 6 t … 30 s; s = (6t - 30) m v =
ds
dt

= 6 m>s

These results are plotted in Fig. 12–13b. We can also obtain specific 
values of v by measuring the slope of the s–t graph at a given instant. 
For example, at t = 20 s, the slope of the s–t graph is determined from 
the straight line from 10 s to 30 s, i.e.,

t = 20 s; v =
∆s
∆t

=
150 m - 30 m

30 s - 10 s
= 6 m>s

a–t Graph. Since a = dv>dt, the a–t graph can be determined by 
differentiating the equations defining the lines of the v9t graph. This yields

0 … t 6 10 s;    v = (0.6t) m>s    a =
dv

dt
= 0.6 m>s2

10 6 t … 30 s;   v = 0.6 m>s            a =
dv

dt
= 0

These results are plotted in Fig. 12–13c.

NOTE: The sudden change in a at t = 10 s represents a discontinuity,  but 
actually this change must occur during a short, but finite time.

t (s)

v (m>s)

6

10 30

(b)

v 5 0.6t
v 5 6

t (s)

a (m>s2)

0.6

30

(c)

10

Fig. 12–13
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