
Mechanics

OVERVIEW 

PART ONE 

A wilderness hiker uses the Global Positioning 
System (GPS) to follow her chosen route.  
 A farmer plows a field with centimeter-scale 

precision, guided by GPS and saving precious fuel as 
a result. One scientist uses GPS to track endangered 
elephants, another to study the accelerated flow of 
glaciers as Earth’s climate warms. Our deep under-
standing of motion is what lets us use a constellation 
of satellites, 20,000 km up and moving faster than 
10,000 km/h, to find positions on Earth so precisely.

Motion occurs at all scales, from the intricate 
dance of molecules at the heart of life’s cellular 
mechanics, to the everyday motion of cars, baseballs, 
and our own bodies, to the trajectories of GPS and 
TV satellites and of spacecraft exploring the distant 

planets, to the stately motions of the celestial bodies 
themselves and the overall expansion of the uni-
verse. The study of motion is called mechanics. The 
11 chapters of Part 1 introduce the physics of mo-
tion, first for individual bodies and then for compli-
cated systems whose constituent parts move relative 
to one another.

We explore motion here from the viewpoint of 
Newtonian mechanics, which applies accurately in  
all cases except the subatomic realm and when rela-
tive speeds approach that of light. The Newtonian 
mechanics of Part 1 provides the groundwork for 
much of the material in subsequent parts, until, in 
the book’s final chapters, we extend mechanics into 
the subatomic and high-speed realms.

A hiker checks her position using signals from GPS satellites.

31
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Learning Outcomes
After finishing this chapter, you should be able to:

LO 2.1	 Define fundamental motion concepts: position, velocity, 
acceleration.

LO 2.2	 Distinguish instantaneous from average velocity and 
acceleration.

LO 2.3	 Determine velocity and position when acceleration is 
constant.

LO 2.4	 Describe how gravity near Earth’s surface provides an example 
of constant acceleration.

LO 2.5	 Use calculus to deal with nonconstant acceleration.

Skills & Knowledge You’ll Need
■■ Units for measuring space and time 

(Section 1.2)

■■ Working with numbers using scien-
tific notation and significant  
figures (Section 1.3)

■■ Your background in algebra and in-
troductory calculus

Motion in a Straight Line

The server tosses the tennis ball straight up and hits it on its way down. Right 
at its peak height, the ball has zero velocity, but what’s its acceleration?

Electrons swarming around atomic nuclei, cars speeding along a high-
way, blood coursing through your veins, galaxies rushing apart in the 

expanding universe—all these are examples of matter in motion. The study 
of motion without regard to its cause is called kinematics (from the Greek 
“kinema,” or motion, as in motion pictures). This chapter deals with the 
simplest case: a single object moving in a straight line. Later, we generalize 
to motion in more dimensions and with more complicated objects. But the 
basic concepts and mathematical techniques we develop here continue  
to apply.

2.1  Average Motion
LO 2.1	 Define fundamental motion concepts: position, velocity, 

acceleration.

You drive 15 minutes to a pizza place 10 km away, grab your pizza, and re-
turn home in another 15 minutes. You’ve traveled a total distance of 20 km, 
and the trip took half an hour, so your average speed—distance divided by 
time—was 40 kilometers per hour. To describe your motion more precisely, we 
introduce the quantity x that gives your position at any time t. We then define the 
displacement, ∆x, as the net change in position: ∆x = x2 - x1, where x1 and 

1 
Doing Physics

4 
Force and Motion

3 
Motion in Two and 
Three Dimensions2
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2.1  Average Motion  33

x2 are your starting and ending positions, respectively. Your average velocity, v, is displace-
ment divided by the time interval:

	 v =
∆x
∆t
  1average velocity2	 (2.1)

where ∆t = t2 - t1 is the interval between your ending and starting times. The bar in v 
indicates an average quantity (and is read “v bar”). The symbol ∆ (capital Greek delta) 
stands for “the change in.” For the round trip to the pizza place, your overall displacement 
was zero, and therefore your average velocity was also zero—even though your average 
speed was not (Fig. 2.1).

Directions and Coordinate Systems
It matters whether you go north or south, east or west. Displacement therefore includes not 
only how far but also in what direction. For motion in a straight line, we can describe both 
properties by taking position coordinates x to be positive going in one direction from some 
origin, and negative in the other. This gives us a one-dimensional coordinate system. The 
choice of coordinate system—both of origin and of which direction is positive—is entirely 
up to you. The coordinate system isn’t physically real; it’s just a convenience we create to 
help in the mathematical description of motion.

Figure 2.2 shows some cities in the American Midwest that lie on a north–south line. We’ve 
established a coordinate system with northward direction positive and origin at Kansas City. 
Arrows show displacements from Houston to Des Moines and from International Falls to Des 
Moines; the former is approximately +1300 km, and the latter is approximately -750 km, 
with the minus sign indicating a southward direction. Suppose the Houston-to-Des Moines 
trip takes 2.6 hours by plane; then the average velocity is 11300 km2/12.6 h2 = 500 km/h. 
If the International Falls-to-Des Moines trip takes 10 h by car, then the average velocity is 
1-750 km2/110 h2 = -75 km/h; again, the minus sign indicates southward.

In calculating average velocity, all that matters is the overall displacement. Maybe that 
trip from Houston to Des Moines was a nonstop flight going 500 km/h. Or maybe it involved 
a faster plane that stopped for half an hour in Kansas City. Maybe the plane even went first to 
Minneapolis, then backtracked to Des Moines. No matter: The displacement remains 1300 
km and, as long as the total time is 2.6 h, the average velocity remains 500 km/h.

∆x is the displacement—the change in the 
object’s position during the time interval ∆t.  
It’s given by ∆x = x2 - x1.Average velocity of an object 

in straight-line motion. The bar 
designates “average.”

∆t is the time interval during which 
the change in position occurs.
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At time t1 = 0, your
position is x1 = 0.

Now your position is x2 = 0,
so  your displacement is
∆x = x2 - x1 = 0,
and your average 

velocity v =        = 0.

But your average speed was
40 km>h.

∆x
∆t

FIGURE 2.1  Position versus time for the pizza trip.

From Houston to
Des Moines is a
displacement of
+1300 km.

The choice of
origin is arbitrary.

+1200 km
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N
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From International
Falls to Des Moines
is a displacement
of -750 km.

FIGURE 2.2  Describing motion in the 
central United States.

2.1 We just described three trips from Houston to Des Moines: (a) direct, (b) with a 
stop in Kansas City, and (c) via Minneapolis. For which of these trips is the average 
speed the same as the average velocity? Where the two differ, which is greater?G

O
T 
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?
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34  Chapter 2  Motion in a Straight Line

To get a cheap flight from Houston to Kansas City—a distance of 
1000 km—you have to connect in Minneapolis, 700 km north of 
Kansas City. The flight to Minneapolis takes 2.2 h, then you have a 
30-min layover, and then a 1.3-h flight to Kansas City. What are your 
average velocity and your average speed on this trip?

INTERPRET We interpret this as a one-dimensional kinematics 
problem involving the distinction between velocity and speed, and 
we identify three distinct travel segments: the two f lights and the 
layover. We identify the key concepts as speed and velocity; their 
distinction is clear from our pizza example.

DEVELOP Figure 2.2 is our drawing. We determine that Equation 2.1, 
v = ∆x/∆t, will give the average velocity, and that the average speed 
is the total distance divided by the total time. We develop our plan: 
Find the displacement and the total time, and use those values to get 
the average velocity; then find the total distance traveled and use that 
along with the total time to get the average speed.

EVALUATE You start in Houston and end up in Kansas City, for a displace-
ment of 1000 km—regardless of how far you actually traveled. The total 
time for the three segments is ∆t = 2.2 h + 0.50 h + 1.3 h = 4.0 h. 
Then the average velocity, from Equation 2.1, is

v =
∆x
∆t

=
1000 km

4.0 h
= 250 km/h

However, that Minneapolis connection means you’ve gone an extra 
2 * 700 km, for a total distance of 2400 km in 4 h. Thus your average 
speed is 12400 km2/14.0 h2 = 600 km/h, more than twice your aver-
age velocity.

ASSESS Make sense? Average velocity depends only on the net dis-
placement between the starting and ending points. Average speed 
takes into account the actual distance you travel—which can be a lot 
longer on a circuitous trip like this one. So it’s entirely reasonable that 
the average speed should be greater.

Speed and Velocity: Flying with a ConnectionEXAMPLE 2.1

2.2  Instantaneous Velocity
LO 2.2	 Distinguish instantaneous from average velocity and acceleration.

Geologists determine the velocity of a lava flow by dropping a stick into the lava and tim-
ing how long it takes the stick to go a known distance (Fig. 2.3a). Dividing the distance by 
the time then gives the average velocity. But did the lava flow faster at the beginning of the 
interval? Or did it speed up and slow down again? To understand motion fully, including 
how it changes with time, we need to know the velocity at each instant.

Geologists could explore that detail with a series of observations taken over smaller in-
tervals of time and distance (Fig. 2.3b). As the size of the intervals shrinks, a more detailed 
picture of the motion emerges. In the limit of very small intervals, we’re measuring the 
velocity at a single instant. This is the instantaneous velocity, or simply the velocity. The 
magnitude of the instantaneous velocity is the instantaneous speed.

The average velocity as the stick 
goes from A to B is v = ∆x>∆t.

Using shorter distance intervals gives details 
about how the velocity changes.

(a)

(b)

∆t

A B
∆x

∆t1 = 5 s ∆t2 = 10 s

∆t3 = 15 s ∆t4 = 10 s

∆x1 ∆x2 ∆x3 ∆x4
A B

FIGURE 2.3  Determining the velocity of a lava flow.
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2.2  Instantaneous Velocity  35

Given position x as a function of time t, calculus shows how to find the velocity v = dx/dt. 
Consult Tactics 2.1 if you haven’t yet seen derivatives in your calculus class or if you need 
a refresher.

Average velocity is the
slope of this line.

As the interval gets
shorter, average 
velocity approaches 
instantaneous
velocity at time t1.

(a)

(b)

Time, t
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t1 t2

t1

FIGURE 2.4  Position-versus-time graph for 
the motion in Fig. 2.3.

The slopes of three tangent
lines give the instantaneous
velocity at three different times.
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FIGURE 2.5  The instantaneous velocity is 
the slope of the tangent line.

2.2 The figures show position-versus-time graphs for four objects. Which object 
is moving with constant speed? Which reverses direction? Which starts slowly and 
then speeds up?
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You might object that it’s impossible to achieve that limit of an arbitrarily small time in-

terval. With observational measurements that’s true, but calculus lets us go there. Figure 2.4a  
is a plot of position versus time for the stick in the lava flow shown in Fig. 2.3. Where the 
curve is steep, the position changes rapidly with time—so the velocity is greater. Where 
the curve is flatter, the velocity is lower. Study the clocks in Fig. 2.3b and you’ll see that 
the stick starts out moving rapidly, then slows, and then speeds up a bit at the end. The 
curve in Fig. 2.4a reflects this behavior.

Suppose we want the instantaneous velocity at the time marked t1 in Fig. 2.4a. We can ap-
proximate this quantity by measuring the displacement ∆x over the interval ∆t between t1 and 
some later time t2: The ratio ∆x/∆t is then the average velocity over this interval. Note that this 
ratio is the slope of a line drawn through points on the curve that mark the ends of the interval.

Figure 2.4b shows what happens as we make the time interval ∆t arbitrarily small: 
Eventually, the line between the two points becomes indistinguishable from the tangent 
line to the curve. That tangent line has the same slope as the curve right at the point we’re 
interested in, and therefore it defines the instantaneous velocity at that point. We write this 
mathematically by saying that the instantaneous velocity is the limit, as the time interval 
∆t becomes arbitrarily close to zero, of the ratio of displacement ∆x to ∆t:

	 v = lim
∆tS0

 
∆x
∆t

	 (2.2a)

You can imagine making the interval ∆t as close to zero as you like, getting ever better 
approximations to the instantaneous velocity. Given a graph of position versus time, an 
easy approach is to “eyeball” the tangent line to the graph at a point you’re interested in; 
its slope is the instantaneous velocity (Fig. 2.5).

Given position as a mathematical function of time, calculus provides a quick way to 
find instantaneous velocity. In calculus, the result of the limiting process described in 
Equation 2.2a is called the derivative of x with respect to t and is given the symbol dx/dt:

dx
dt

= lim
∆tS0

 
∆x
∆t

The quantities dx and dt are called infinitesimals; they represent vanishingly small quanti-
ties that result from the limiting process. We can then write Equation 2.2a as

	 v =
dx
dt
  1instantaneous velocity2	 (2.2b)

Instantaneous velocity is given by the derivative dx/dt—the 
rate of change of position with respect to time.

The instantaneous velocity v is 
the velocity at a single instant 
of time.

dx and dt are infinitesimally small quantities that result from the 
limiting procedure described in Fig. 2.4 and Equation 2.2a.
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36  Chapter 2  Motion in a Straight Line

EXAMPLE 2.2 Instantaneous Velocity: A Rocket Ascends

The altitude of a rocket in the first half-minute of its ascent is given by 
x = bt2, where the constant b is 2.90 m/s2. Find a general expression 
for the rocket’s velocity as a function of time and from it the instan-
taneous velocity at t = 20 s. Also find an expression for the average 
velocity, and compare your two velocity expressions.

INTERPRET We interpret this as a problem involving the compari-
son of two distinct but related concepts: instantaneous velocity and 
average velocity. We identify the rocket as the object whose veloc-
ities we’re interested in.

DEVELOP Equation 2.2b, v = dx/dt, gives the instantaneous veloc-
ity, and Equation 2.1, v = ∆x/∆t, gives the average velocity. Our plan 
is to use Equation 2.3, dx/dt = nbtn-1, to evaluate the derivative that 
gives the instantaneous velocity. Then we can use Equation 2.1 for the 
average velocity, but first we’ll need to determine the displacement 
from the equation we’re given for the rocket’s position.

EVALUATE Applying Equation 2.2b with position given by x = bt2 
and using Equation 2.3 to evaluate the derivative, we have

v =
dx
dt

=
d1bt22

dt
= 2bt

for the instantaneous velocity. Evaluating at time t = 20 s with 
b = 2.90 m/s2 gives v = 116 m/s. For the average velocity we need 
the total displacement at 20 s. Since x = bt2, Equation 2.1 gives

v =
∆x
∆t

=
bt2

t
= bt

where we’ve used x = bt2 for ∆x and t for ∆t because both position 
and time are taken to be zero at liftoff. Comparison with our earlier re-
sult shows that the average velocity from liftoff to any particular time 
is exactly half the instantaneous velocity at that time.

ASSESS Make sense? Yes: The rocket’s speed is always increasing, so 
its velocity at the end of any time interval is greater than the average 
velocity over that interval. The fact that the average velocity is exactly 
half the instantaneous velocity results from the quadratic 1t22 depen-
dence of position on time.

LANGUAGE  Language often holds clues to the meaning of 
physical concepts. In this example we speak of the instantaneous 
velocity at a particular time. That wording should remind you of 
the limiting process that focuses on a single instant. In contrast, 
we speak of the average velocity over a time interval, since 
averaging explicitly involves a range of times.

Tactics 2.1 TAKING DERIVATIVES

You don’t have to go through an elaborate limiting process every time you want to find an instantaneous ve-
locity. That’s because calculus provides formulas for the derivatives of common functions. For example, any 
function of the form x = btn, where b and n are constants, has the derivative

	
dx
dt

= nbtn-1	 (2.3)

Appendix A lists derivatives of other common functions.

where ∆v is the change in velocity and the bar on a indicates that this is an average value. Just 
as we defined instantaneous velocity through a limiting procedure, we define instantaneous 
acceleration as

When a and v have the
same direction, the 
car speeds up.

When a is opposite
v, the car slows.

(a)

(b)

v

a

v

a

FIGURE 2.6  Acceleration and velocity.

2.3  Acceleration
LO 2.2	 Distinguish instantaneous from average velocity and acceleration.

When velocity changes, as in Example 2.2, an object undergoes acceleration. Quantitatively, 
we define acceleration as the rate of change of velocity, just as we defined velocity as the 
rate of change of position. The average acceleration over a time interval ∆t is

	 a =
∆v
∆t
  1average acceleration2	 (2.4)

Average acceleration of 
an object in straight-line 
motion. The bar designates 
“average.”

∆t is the time interval during which the change in velocity occurs.

∆v is the change in the 
object’s velocity during the 
time interval ∆t. It’s given by 
∆v = v2 - v1.
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2.3  Acceleration  37

	 a = lim
∆tS0

 
∆v
∆t

=
dv
dt
  1instantaneous acceleration2	 (2.5)

As we did with velocity, we also use the term acceleration alone to mean instantaneous 
acceleration.

In one-dimensional motion, acceleration is either in the direction of the velocity or 
opposite it. In the former case the accelerating object speeds up, whereas in the latter it 
slows (Fig. 2.6). Although slowing is sometimes called deceleration, it’s simpler to use 
acceleration to describe the time rate of change of velocity no matter what’s happening. 
With two-dimensional motion, we’ll find much richer relationships between the directions 
of velocity and acceleration.

Since acceleration is the rate of change of velocity, its units are (distance per time) per 
time, or distance/time2. In SI, that’s m/s2. Sometimes acceleration is given in mixed units; 
for example, a car going from 0 to 60 mi/h in 10 s has an average acceleration of 6 mi/h/s.

Position, Velocity, and Acceleration
Figure 2.7 shows graphs of position, velocity, and acceleration for an object undergoing 
one-dimensional motion. In Fig. 2.7a, the rise and fall of the position-versus-time curve 
shows that the object first moves away from the origin, reverses, then reaches the origin again 
at t = 4 s. It then continues moving into the region x 6 0. Velocity, shown in Fig. 2.7b,  
is the slope of the position-versus-time curve in Fig. 2.7a. Note that the magnitude of the 
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reaches a maxi-
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velocity is zero.

Here the velocity
peaks, so the 
acceleration is zero.
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FIGURE 2.7  (a) Position, (b) velocity, and 
(c) acceleration versus time.

The instantaneous acceleration a is the 
acceleration at a single instant of time.

The result of that limiting procedure is the derivative 
dv/dt—the rate of change of velocity with respect to time.

a is given by the same limiting procedure 
that led to instantaneous velocity v.

CONCEPTUAL EXAMPLE 2.1 Acceleration without Velocity?
At the peak 
of its flight, 
the ball is 
instantaneously 
at rest.

Just before the peak,
v is positive;  just
after, it’s negative.

Since v is steadily decreasing, the 
acceleration is constant and negative.

(a)

(b)

(c)

Can an object be accelerating even though it’s not moving?

EVALUATE Figure 2.7 shows that velocity is the slope of the position 
curve—and the slope depends on how the position is changing, not 
on its actual value. Similarly, acceleration depends only on the rate of 
change of velocity, not on velocity itself. So there’s no intrinsic reason 
why there can’t be acceleration at an instant when velocity is zero.

ASSESS Figure 2.8, which shows a ball thrown straight up, is a case 
in point. Right at the peak of its flight, the ball’s velocity is instanta-
neously zero. But just before the peak it’s moving upward, and just 
after it’s moving downward. No matter how small a time interval you 
consider, the velocity is always changing. Therefore, the ball is accel-
erating, even right at the instant its velocity is zero.

MAKING THE CONNECTION Just 0.010 s before it peaks, the ball 
in Fig. 2.8 is moving upward at 0.098 m/s; 0.010 s after it peaks, 
it’s moving downward with the same speed. What’s its average ac-
celeration over this 0.02-s interval?

EVALUATE Equation 2.4 gives the average acceleration: a = ∆v/∆t  
=  1-0.098 m/s - 0.098 m/s2/10.020 s2 = -9.8 m/s2.  Here  we’ve 
implicitly chosen a coordinate system with a positive upward  
direction, so both the final velocity and the acceleration are negative. 
The time interval is so small that our result must be close to the instan-
taneous acceleration right at the peak—when the velocity is zero. You 
might recognize 9.8 m/s2 as the acceleration due to the Earth’s gravity. FIGURE 2.8  Our sketch for Conceptual Example 2.1.

M02_WOLF0141_04_GE_C02.indd   37 08/05/20   4:37 PM

Sam
ple

 pa
ge

s



38  Chapter 2  Motion in a Straight Line

velocity (that is, the speed) is large where the curve in Fig. 2.7a is steep—that is, where posi-
tion is changing most rapidly. At the peak of the position curve, the object is momentarily at 
rest as it reverses, so there the position curve is flat and the velocity is zero. After the object 
reverses, at about 2.7 s, it’s heading in the negative x-direction, and so its velocity is negative.

Just as velocity is the slope of the position-versus-time curve, acceleration is the slope 
of the velocity-versus-time curve. Initially that slope is positive—velocity is increasing—
but eventually it peaks at the point of maximum velocity and zero acceleration, and then it 
decreases. That velocity decrease corresponds to a negative acceleration, as shown clearly 
in the region of Fig. 2.7c beyond about 1.3 s.

Acceleration is the rate of change of velocity, and velocity is the rate of change of 
position. That makes acceleration the rate of change of the rate of change of position. 
Mathematically, acceleration is the second derivative of position with respect to time. 
Symbolically, we write the second derivative as d2x/dt2. Then the relationship among  
acceleration, velocity, and position can be written

	 a =
dv
dt

=
d
dt

 adx
dt

b =
d2x

dt2 	 (2.6)

Equation 2.6 expresses acceleration in terms of position through the calculus operation of 
taking the second derivative. If you’ve studied integrals in calculus, you can see that it should 
be possible to go the opposite way, finding position as a function of time given acceleration as 
a function of time. In Section 2.4 we’ll do this for the special case of constant acceleration, al-
though there we’ll take an algebra-based approach; Problem 93 obtains the same results using 
calculus. We’ll take a quick look at nonconstant acceleration in Section 2.6. The Application on 
this page provides an important technology that finds an object’s position from its acceleration.

2.3 An elevator is going up at constant speed, slows to a stop, then starts down and 
soon reaches the same constant speed it had going up. Is the elevator’s average accel-
eration between its upward and downward constant-speed motions (a) zero, (b) down-
ward, (c) first upward and then downward, or (d) first downward and then upward?

G
O

T 
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?

2.4  Constant Acceleration
LO 2.3	 Determine velocity and position when acceleration is constant.

The description of motion has an especially simple form when acceleration is constant. 
Suppose an object starts at time t = 0 with some initial velocity v0 and constant accelera-
tion a. Later, at some time t, it has velocity v. Because the acceleration doesn’t change, its 
average and instantaneous values are identical, so we can write

a = a =
∆v
∆t

=
v - v0

t - 0
or, rearranging,

	 v = v0 + at  1for constant acceleration only2	 (2.7)

Velocity v as a function  
of time when acceleration  
a is constant.

Velocity changes linearly  
with time.

v0 is the initial velocity at time t = 0. Remember that this equation is only for the  
special case of constant acceleration!

SPECIAL CASES  Many equations we develop are special cases of more general laws, and 
they’re limited to special circumstances. Equation 2.7 is a case in point: It applies only when 
acceleration is constant.

This equation says that the velocity changes from its initial value by an amount that is the 
product of acceleration and time.

Given an object’s initial position and velocity, 
and its subsequent acceleration—which may 
vary with time—it’s possible to invert Equation 
2.6 and solve for position (more on the mathe-
matics of this inversion in Section 2.6). Inertial 
guidance systems, also called inertial navigation 
systems, exploit this principle to allow subma-
rines, ships, and airplanes to keep track of their 
locations based solely on internal measurements 
of their own acceleration. This frees them from 
the need for external positioning references such 
as GPS, radar, or direct observation. Inertial 
guidance is especially important for submarines, 
which usually can’t access external sources for 
information about their positions. In the one-
dimensional motion of this chapter, an inertial 
guidance system would consist of a single accel-
erometer whose reading is tracked continually. 
In practical systems, three accelerometers at 
right angles track acceleration in all three dimen-
sions. Information from on-board gyroscopes 
registers orientation, so the system “knows” the 
changing directions of the three accelerations.

Early inertial guidance systems were heavy 
and expensive, but the miniaturization of acceler-
ometers and gyroscopes—so that they’re now in 
every smartphone—has enabled smaller and less 
expensive inertial guidance systems. The photo 
shows a complete inertial navigation system de-
veloped by the U.S. Defense Advanced Research 
Projects Agency (DARPA) for use in locations 
where GPS signals aren’t available; it’s so small 
that it fits within the Lincoln Memorial on a penny!

APPLICATION Inertial 
Guidance
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2.4  Constant Acceleration  39

Having determined velocity as a function of time, we now consider position. With con-
stant acceleration, velocity increases steadily—and thus the average velocity over an interval 
is the average of the velocities at the beginning and the end of that interval. So we can write

	 v = 1
21v0 + v2	 (2.8)

for the average velocity over the interval from t = 0 to some later time when the velocity 
is v. We can also write the average velocity as the change in position divided by the time 
interval. Suppose that at time 0 our object was at position x0. Then its average velocity 
over a time interval from 0 to time t is

v =
∆x
∆t

=
x - x0

t - 0

where x is the object’s position at time t. Equating this expression for v with the expression 
in Equation 2.8 gives

	 x = x0 + vt = x0 + 1
21v0 + v2t	 (2.9)

But we already found the instantaneous velocity v that appears in this expression; it’s given 
by Equation 2.7. Substituting and simplifying then give the position as a function of time:

	 x = x0 + v0 t + 1
2 at2  1for constant acceleration only2	 (2.10)

Does Equation 2.10 make sense? With no acceleration 1a = 02, position would in-
crease linearly with time, at a rate given by the initial velocity v0. With constant acceler-
ation, the additional term 12 at2 describes the effect of the ever-changing velocity; time is 
squared because the longer the object travels, the faster it moves, so the more distance it 
covers in a given time. Figure 2.9 shows the meaning of the terms in Equation 2.10.

How much runway do I need to land a jetliner, given touchdown speed and a constant 
acceleration? A question like this involves position, velocity, and acceleration without ex-
plicit mention of time. So we solve Equation 2.7 for time, t = 1v - v02/a, and substitute 
this expression for t in Equation 2.9 to write

x - x0 = 1
2 
1v0 + v21v - v02

a

or, since 1a + b21a - b2 = a2 - b2,

	 v2 = v0
2 + 2a1x - x02	 (2.11)

Equations 2.7, 2.9, 2.10, and 2.11 link all possible combinations of position, 
velocity, and acceleration for motion with constant acceleration. We summarize them 
in Table 2.1 and remind you that they apply only in the case of constant acceleration.

Although we derived these equations algebraically, we could instead have used calcu-
lus. Problem 93 takes this approach in getting from Equation 2.7 to Equation 2.10.

Using the Equations of Motion
The equations in Table 2.1 fully describe motion under constant acceleration. Don’t re-
gard them as separate laws, but recognize them as complementary descriptions of a single 
underlying phenomenon—one-dimensional motion with constant acceleration. Having several 
equations provides convenient starting points for approaching problems. Don’t memorize these 
equations, but grow familiar with them as you work problems. We now offer a strategy for solv-
ing problems about one-dimensional motion with constant acceleration using these equations.

x0 is the initial position. It’s plotted 
as a horizontal line in Fig. 2.9.

This term results from the constant acceleration a. It gives a quadratic 
increase in position, as described by the curve in Fig. 2.9.

Position x as a function  
of time when acceleration 
a is constant

v0 is the initial velocity. The term v0t 
describes a linear change in position, as 
described by the diagonal line in Fig. 2.9.

Remember that this equation 
is only for the special case of 
constant acceleration!

1
2

Acceleration causes the
position–time graph to
curve upward.

With no
acceleration,

position changes
at a steady rate.

With v = 0 and a = 0, position doesn’t change.

x

tTime, t

Po
si

tio
n,

 x

x0

v0t
x0

Slope = v0

at2

FIGURE 2.9  Meaning of the terms in 
Equation 2.10.

Table 2.1  Equations of Motion for  
Constant Acceleration

Equation Contains Number

v = v0 + at v, a, t; no x 2.7 

x = x0 + 1
21v0 + v2t x, v, t; no a 2.9 

x = x0 + v0t + 1
2 at2 x, a, t; no v 2.10

v2 = v0
2 + 2a1x - x02 x, v, a; no t 2.11

}
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40  Chapter 2  Motion in a Straight Line

The next two examples are typical of problems involving constant acceleration. 
Example 2.3 is a straightforward application of the equations we’ve just derived to a single 
object. Example 2.4 involves two objects, in which case we need to write equations de-
scribing the motions of both objects.

INTERPRET  Interpret the problem to be sure it asks about motion with constant acceleration. 
Next, identify the object(s) whose motion you’re interested in.

DEVELOP  Draw a diagram with appropriate labels, and choose a coordinate system. For in-
stance, sketch the initial and final physical situations, or draw a position-versus-time graph. 
Then determine which equations of motion from Table 2.1 contain the quantities you’re given 
and will be easiest to solve for the unknown(s).

EVALUATE  Solve the equations in symbolic form and then evaluate numerical quantities.

ASSESS  Does your answer make sense? Are the units correct? Do the numbers sound reason-
able? What happens in special cases—for example, when a distance, velocity, acceleration, or 
time becomes very large or very small?

PROBLEM-SOLVING STRATEGY 2.1 Motion with Constant Acceleration

A jetliner touches down at 270 km/h. The plane then decelerates (i.e., 
undergoes acceleration directed opposite its velocity) at 4.5 m/s2. 
What’s the minimum runway length on which this aircraft can land?

INTERPRET  We interpret this as being a problem about one-
dimensional motion with constant acceleration and identify the 
airplane as the object of interest.

DEVELOP  We determine that Equation 2.11, v2 = v0
2 + 2a1x - x02, 

relates distance, velocity, and acceleration; so our plan is to solve that 
equation for the minimum runway length. We want the airplane to 
come to a stop, so the final velocity v is 0, and v0 is the initial touch-
down velocity. If x0 is the touchdown point, then the quantity x - x0 is 
the distance we’re interested in; we’ll call this ∆x.

EVALUATE  Setting v = 0 and solving Equation 2.11 then give

∆x =
-v0

2

2a
=

- 31270 km/h211000 m/km211/3600 h/s242

1221-4.5 m/s22 = 625 m

Note that we used a negative value for the acceleration because the 
plane’s acceleration is directed opposite its velocity—which we chose 
as the positive x-direction. We also converted the speed to m/s for 
compatibility with the SI units given for acceleration.

ASSESS  Make sense? That 625 m is just over one-third of a mile, 
which seems a bit short. However, this is an absolute minimum with 
no margin of safety. For full-sized jetliners, the standard for minimum 
landing runway length is about 5000 feet or 1.5 km.

BE CAREFUL WITH MIXED UNITS  Frequently, problems are 
stated in units other than SI. Although it’s possible to work 
consistently in other units, when in doubt, convert to SI. In 
this problem, the acceleration is originally in SI units but the 
velocity isn’t—a sure indication of the need for conversion.

EXAMPLE 2.3 Motion with Constant Acceleration: Landing a Jetliner
Worked Example with Variation Problems

A speeding motorist zooms through a 50 km/h zone at 75 km/h (that’s 
21 m/s) without noticing a stationary police car. The police officer im-
mediately heads after the speeder, accelerating at 2.5 m/s2. When the 
officer catches up to the speeder, how far down the road are they, and 
how fast is the police car going?

INTERPRET  We interpret this as two problems about one-dimensional 
motion with constant acceleration. We identify the objects in question 
as the speeding car and the police car. Their motions are related be-
cause we’re interested in the point where the two coincide.

DEVELOP  It’s helpful to draw a sketch showing qualitatively the 
position-versus-time graphs for the two cars. Since the speeding car 
moves with constant speed, its graph is a straight line. The police car is 
accelerating from rest, so its graph starts flat and gets increasingly 
steeper. Our sketch in Fig. 2.10 shows clearly the point we’re interested 

EXAMPLE 2.4 Motion with Two Objects: Speed Trap!

FIGURE 2.10  Our sketch of position versus time for the cars in 
Example 2.4.

Motorist
passes
police
car.

Police car
catches up.
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2.5  The Acceleration of Gravity  41

2.5  The Acceleration of Gravity
LO 2.4	 Describe how gravity near Earth’s surface provides an example of  

constant acceleration.

Drop an object, and it falls at an increasing rate, accelerating because of gravity (Fig.  2.11).  
The acceleration is constant for objects falling near Earth’s surface, and furthermore it has 
the same value for all objects. This value, the acceleration of gravity, is designated g and 
is approximately 9.8 m/s2 near Earth’s surface.

The acceleration of gravity applies strictly only in free fall—motion under the influ-
ence of gravity alone. Air resistance, in particular, may dramatically alter the motion, giv-
ing the false impression that gravity acts differently on lighter and heavier objects. As 
early as the year 1600, Galileo is reputed to have shown that all objects have the same 
acceleration by dropping objects off the Leaning Tower of Pisa. Astronauts have verified 
that a feather and a hammer fall with the same acceleration on the airless Moon—although 
that acceleration is less than on Earth.

Although g is approximately constant near Earth’s surface, it varies slightly with 
latitude and even local geology. The variation with altitude becomes substantial over 
distances of tens to hundreds of kilometers. But nearer Earth’s surface it’s a good ap-
proximation to take g as strictly constant. Then an object in free fall undergoes constant 
acceleration, and the equations of Table 2.1 apply. In working gravitational problems, we 
usually replace x with y to designate the vertical direction. If we make the arbitrary but 
common choice that the upward direction is positive, then acceleration a becomes -g 
because the acceleration is downward.

in, when the two cars coincide for the second time. Equation 2.10, 
x = x0 + v0t + 1

2  at2, gives position versus time with constant accel-
eration. Our plan is (1) to write versions of this equation specialized 
to each car, (2) to equate the resulting position expressions to find the 
time when the cars coincide, and (3) to find the corresponding posi-
tion and the police car’s velocity. For the latter we’ll use Equation 2.7,  
v = v0 + at.

EVALUATE  Let’s take the origin to be the point where the speeder 
passes the police car and t = 0 to be the corresponding time, as 
marked in Fig. 2.10. Then x0 = 0 in Equation 2.10 for both cars, 
while the speeder has no acceleration and the police car has no initial 
velocity. Thus our two versions of Equation 2.10 are

xs = vs0 t 1speeder2 and xp = 1
2 ap t

2 1police car2
Equating xs and xp tells when the speeder and the police car are at the 
same place, so we write vs0 t = 1

2 ap t
2. This equation is satisfied when 

t = 0 or t = 2vs0 /ap. Why two answers? We asked for any times when 
the two cars are in the same place. That includes the initial encounter at 

t = 0 as well as the later time t = 2vs0 /ap when the police car catches 
the speeder; both points are shown on our sketch. Where does this oc-
cur? We can evaluate using t = 2vs0 /ap in the speeder’s equation:

xs = vs0 t = vs0 
2vs0

ap
=

2vs 0
2

ap
=

122121 m/s22

2.5 m/s2 = 350 m

Equation 2.7 then gives the police car’s speed at this time:

vp = ap t = ap
2vs0

ap
= 2vs0 = 150 km/h

ASSESS  Make sense? As Fig. 2.10 shows, the police car starts from rest 
and undergoes constant acceleration, so it has to be going faster at the 
point where the two cars meet. In fact, it’s going twice as fast—again, 
as in Example 2.2, that’s because the police car’s position depends qua-
dratically on time. That quadratic dependence also tells us that the po-
lice car’s position-versus-time graph in Fig. 2.10 is a parabola.

FIGURE 2.11  Strobe photo of a  
falling ball. Successive images are 
farther apart, showing that the ball is 
accelerating.

2.4 The police car in Example 2.4 starts with zero velocity and is going at twice the 
car’s velocity when it catches up to the car. So at some intermediate instant it must 
be going at the same velocity as the car. Is that instant (a) halfway between the times 
when the two cars coincide, (b) closer to the time when the speeder passes the sta-
tionary police car, or (c) closer to the time when the police car catches the speeder?

G
O

T 
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?
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42  Chapter 2  Motion in a Straight Line

In Example 2.5 the diver was moving downward, and the downward gravitational accel-
eration steadily increased his speed. But, as Conceptual Example 2.1 suggested, the accel-
eration of gravity is downward regardless of an object’s motion. Throw a ball straight up, 
and it’s accelerating downward even while moving upward. Since velocity and acceleration 
are in opposite directions, the ball slows until it reaches its peak, then pauses instanta-
neously, and then gains speed as it falls. All the while its acceleration is 9.8 m/s2 downward.

A diver drops from a 10-m-high cliff. At what speed does he enter the 
water, and how long is he in the air?

INTERPRET  This is a case of constant acceleration due to gravity, 
and the diver is the object of interest. The diver drops a known dis-
tance starting from rest, and we want to know the speed and time 
when he hits the water.

DEVELOP  Figure 2.12 is a sketch showing what the diver’s position 
versus time should look like. We’ve incorporated what we know: 
the initial position 10 m above the water, the start from rest, and the 
downward acceleration that results in a parabolic position-versus-time 
curve. Given the dive height, Equation 2.11 determines the speed v. 
Following our newly adopted convention that y designates the ver-
tical direction, we write Equation 2.11 as v2 = v 2

0 + 2a1y - y02. 
Since the diver starts from rest, v0 = 0 and the equation becomes 
v2 = -2g1y - y02. So our plan is first to solve for the speed at the 
water, then use Equation 2.7, v = v0 + at, to get the time.

EVALUATE Our sketch shows that we’ve chosen y = 0 at the water, 
so y0 = 10 m and Equation 2.11 gives

�v �  = 2-2g1y - y02 = 21-2219.8 m/s2210 m - 10 m2
 = 14 m/s

This is the magnitude of the velocity, hence the absolute value sign; 
the actual value is v = -14 m/s, with the minus sign indicating down-
ward motion. Knowing the initial and final velocities, we use Equation 
2.7 to find how long the dive takes. Solving that equation for t gives

t =
v0 - v

g
=

0 m/s - 1-14 m/s2
9.8 m/s2 = 1.4 s

Note the careful attention to signs here; we wrote v with its negative 
sign and used a = -g in Equation 2.7 because we defined downward 
to be the negative direction in our coordinate system.

ASSESS  Make sense? Our expression for v gives a higher speed with 
a greater acceleration or a greater distance y - y0 —both as expected. 
Our approach here isn’t the only one possible; we could also have 
found the time by solving Equation 2.10 and then evaluating the speed 
using Equation 2.7.

EXAMPLE 2.5 Constant Acceleration Due to Gravity: Cliff Diving
Worked Example with Variation Problems

Curve is flat
here because diver
starts from rest.

We want this 
slope (speed) c

cand
this time.

FIGURE 2.12  Our sketch for Example 2.5.

You toss a ball straight up at 7.3 m/s; it leaves your hand at 1.5 m 
above the floor. Find when it hits the floor, the maximum height it 
reaches, and its speed when it passes your hand on the way down.

INTERPRET  We have constant acceleration due to gravity, and here 
the object of interest is the ball. We want to find time, height, and 
speed.

DEVELOP  The ball starts by going up, eventually comes to a stop, 
and then heads downward. Figure 2.13 is a sketch of the height versus 
time that we expect, showing what we know and the three quantities 
we’re after. Equation 2.10, y = y0 + v0 t + 1

2 at2, determines position 

as a function of time, so our plan is to use that equation to find the 
time the ball hits the floor (again, we’ve replaced horizontal position 
x with height y in Equation 2.10). Then we can use Equation 2.11, 
v2 = v0

2 + 2a1y - y02, to find the height at which v = 0 —that is, 
the peak height. Finally, Equation 2.11 will also give us the speed at 
any height, letting us answer the question about the speed when the 
ball passes the height of 1.5 m on its way down.

EVALUATE Our sketch shows that we’ve taken y = 0 at the 
f loor; so when the ball is at the f loor, Equation 2.10 becomes 
0 = y0 + v0 t - 1

2 gt2, which we can solve for t using the quadratic 
formula [Appendix A; t = 1v0 { 2v0

2 + 2y0  g2/g]. Here v0 is the 

EXAMPLE 2.6 Constant Acceleration Due to Gravity: Tossing a Ball
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2.6  When Acceleration Isn’t Constant  43

initial velocity, 7.3 m/s; it’s positive because the motion is initially 
upward. The initial position is the hand height, so y0 = 1.5 m, and 
g of course is 9.8 m/s2 (we accounted for the downward accelera-
tion by putting a = -g in Equation 2.10). Putting in these numbers 
gives t = 1.7 s or -0.18 s; the answer we want is 1.7 s. At the peak 
of its flight, the ball’s velocity is instantaneously zero because it’s 

moving neither up nor down. So we set v2 = 0 in Equation 2.11 to get 
0 = v0

2 - 2g1y - y02. Solving for y then gives the peak height:

y = y0 +
v0

2

2g
= 1.5 m +

17.3 m/s22

12219.8 m/s22 = 4.2 m

To find the speed when the ball reaches 1.5 m on the way down, 
we set y = y0 in Equation 2.11. The result is v2 = v0

2 , so v = {v0 or 
{7.3 m/s. Once again, there are two answers. The equation has given 
us all the velocities the ball has at 1.5 m—including the initial upward 
velocity and the later downward velocity. We’ve shown here that an 
upward-thrown object returns to its initial height with the same speed 
it had initially.

ASSESS  Make sense? With no air resistance to sap the ball of its 
energy, it seems reasonable that the ball comes back down with the 
same speed—a fact we’ll explore further when we introduce energy 
conservation in Chapter 7. But why are there two answers for time 
and velocity? Equation 2.10 doesn’t “know” about your hand or the 
floor; it “assumes” the ball has always been undergoing downward 
acceleration g. We asked of Equation 2.10 when the ball would be 
at y = 0. The second answer, 1.7 s, was the one we wanted. But if 
the ball had always been in free fall, it would also have been on the 
floor 0.18 s earlier, heading upward. That’s the meaning of the other 
answer, -0.18 s, as we’ve indicated on our sketch. Similarly, Equation 
2.11 gave us all the velocities the ball had at a height of 1.5 m, includ-
ing both the initial upward velocity and the later downward velocity.

We’re given the
initial speed and
height.

Here is another
time the ball
would have been
at floor level.

The curve is flat at
the top since speed
is instantaneously 
zero.

We want this
height c

cand
this speed c

cand this 
time.

FIGURE 2.13  Our sketch for Example 2.6.

2.6  When Acceleration Isn’t Constant
LO 2.5	 Use calculus to deal with nonconstant acceleration.

Sections 2.4 and 2.5 both dealt with constant acceleration. Fortunately, there are many 
important applications, such as situations involving gravity near Earth’s surface, where ac-
celeration is constant. But when it isn’t, then the equations listed in Table 2.1 don’t apply. 
In Chapter 3 you’ll see that acceleration can vary in magnitude, direction, or both. In the 
one-dimensional situations of the current chapter, a nonconstant acceleration a would be 
specified by giving a as a function of time t: a(t). If you’ve already studied integral calcu-
lus, then you know that integration is the opposite of differentiation. Since acceleration is 
the derivative of velocity, you get from acceleration to velocity by integration; from there 
you can get to position by integrating again. Mathematically, we express these relations as

	 v1t2 = La1t2 dt	 (2.12)

	 x1t2 = Lv1t2 dt	 (2.13)

 MULTIPLE ANSWERS  Frequently the mathematics of a problem gives more than one 
answer. Think about what each answer means before discarding it! Sometimes an answer 
isn’t consistent with the physical assumptions of the problem, but other times all answers are 
meaningful even if they aren’t all what you’re looking for.

2.5 Standing on a roof, you simultaneously throw one ball straight up and drop 
another from rest. Which hits the ground first? Which hits the ground moving 
faster?G

O
T 

IT
?

NIST-F1, shown here with its developers, is one 
of two atomic clocks that set the United States’ 
standard of time. The clock is so accurate that 
it won’t gain or lose more than a second in 100 
million years! It gets its remarkable accuracy by 
monitoring a super-cold clump of freely falling 
cesium atoms for what is, in this context, a long 
time period of about 1 s. The atom clump is put in 
free fall by a more sophisticated version of the ball 
toss in Example 2.6. In the NIST-F1 clock, laser 
beams gently “toss” the ball of atoms upward 
with a speed that gives it an up-and-down travel 
time of about 1 s (see Problem 72). For this reason 
NIST-F1 is called an atomic fountain clock. In the 
photo you can see the clock’s towerlike structure 
that accommodates this atomic fountain.

APPLICATION Keeping Time
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44  Chapter 2  Motion in a Straight Line

These results don’t fully determine v and x; you also need to know the initial conditions (usu-
ally, the values at time t = 0 ); these provide what are called in calculus the constants of inte-
gration. In Problem 93, you can evaluate the integral in Equation 2.13 for the case of constant 
acceleration, giving an alternate derivation of Equations 2.7 and 2.10. Problems 88, 94, and 95 
challenge you to use integral calculus to find an object’s position in the case of nonconstant 
accelerations, while Problem 96 explores the case of an exponentially decreasing acceleration.

Summary

Big Idea

The big ideas here are those of kinematics—the study of motion 
without regard to its cause. Position, velocity, and acceleration are 
the quantities that characterize motion:

Position Velocity

Rate of
change

Rate of
change

Acceleration

Key Concepts and Equations
Average velocity and acceleration involve changes in position and velocity, respectively, oc-
curring over a time interval ∆t:

 v =
∆x
∆t

 

 a =
∆v
∆t

Here ∆x is the displacement, or change in position, and ∆v is the change in velocity.
Instantaneous values are the limits of infinitesimally small time intervals and are given 

by calculus as the time derivatives of position and velocity:

 v =
dx
dt

 

 a =
dv
dt

∆t
∆x

Time, t

Po
si

tio
n,

 x

This line’s 
slope is the
average
velocity c

cand this line’s 
slope is the instantaneous
velocity.

∆t
∆v

Time, t
0

V
el

oc
ity

, v

cwhile the
instantaneous
acceleration a
is the slope of

this line.

The average acceleration a
is this line’s slope c

2.6 The graph shows accelera-
tion versus time for three differ-
ent objects, all of which start at 
rest from the same position. Only 
object (b) undergoes constant ac-
celeration. Which object is going 
fastest at the time t1?

G
O

T 
IT
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(a)

(b)

(c)

0

Time, t

A
cc

el
er

at
io

n,
 a

0 t1

Chapter 2
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For Thought and Discussion  45

Applications
Constant acceleration is a special case that yields simple equations describing  
one-dimensional motion:

 v = v0 + at

 x = x0 + v0 t + 1
2 at2

 v2 = v0
2 + 2a1x - x02

These equations apply only in the case of constant acceleration.

1
2

x

tTime, t

Po
si

tio
n,

 x

x0

v0t
x0

Slope = v0

at2

An important example is the acceleration of 
gravity, essentially constant near Earth’s surface, 
with magnitude approximately 9.8 m/s2.

At the peak 
of its flight, 
the ball is 
instantaneously 
at rest.

Just before the peak,
v is positive;  just
after, it’s negative.

Since v is steadily decreasing, the 
acceleration is constant and negative.

v 0

v0

-v0

a 0

-9.8 m>s2

H
ei

gh
t, 

y

Time, t

Time, t

Time, t

 P

LO 2.1	 Define fundamental motion concepts: position, velocity, and 
acceleration.
For Thought and Discussion Questions 2.2, 2.5, 2.6; 
Exercises 2.11, 2.12, 2.13, 2.14, 2.15, 2.16, 2.20, 2.21, 2.22, 
2.23, Problems 2.49, 2.51, 2.52

LO 2.2	� Distinguish instantaneous from average velocity and 
acceleration.
For Thought and Discussion Questions 2.1, 2.4, 2.8, 2.9, 2.10; 
Exercises 2.17, 2.18, 2.19, 2.24, 2.25; Problems 2.50, 2.83

LO 2.3	� Determine velocity and position when acceleration is constant.
For Thought and Discussion Question 2.7; Exercises 2.26, 

2.27, 2.28, 2.30, 2.31, 2.32, 2.33, 2.34; Problems 2.55, 2.56, 
2.57, 2.58, 2.61, 2.62, 2.63, 2.64, 2.65, 2.66, 2.67, 2.68, 2.69, 
2.70, 2.81, 2.87, 2.93

LO 2.4	� Describe how gravity near Earth’s surface provides an exam-
ple of constant acceleration.
For Thought and Discussion Question 2.7; Exercises 2.29, 
2.35, 2.36, 2.37, 2.38, 2.39, 2.40; Problems 2.59, 2.60, 2.71, 
2.72, 2.73, 2.74, 2.75, 2.76, 2.77, 2.78, 2.79, 2.80, 2.82, 2.84, 
2.85, 2.86, 2.89, 2.90, 2.91, 2.92, 2.97

LO 2.5	 Use calculus to deal with nonconstant acceleration.
Problems 2.53, 2.54, 2.88, 2.94, 2.95, 2.96

Mastering Physics Go to www.masteringphysics.com to access assigned homework and self-study tools such as 
Dynamic Study Modules, practice quizzes, video solutions to problems, and a whole lot more!
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Learning Outcomes  After finishing this chapter, you should be able to:

For Thought and Discussion

1.	 Under what conditions are average and instantaneous velocity 
equal?

2.	 Does a speedometer measure speed or velocity?
3.	 You check your odometer at the beginning of a day’s driving and 

again at the end. Under what conditions would the difference be-
tween the two readings represent your displacement?

4.	 Consider two possible definitions of average speed: (a) the av-
erage of the values of the instantaneous speed over a time in-
terval and (b) the magnitude of the average velocity. Are these 

definitions equivalent? Give two examples to demonstrate your 
conclusion.

5.	 Is it possible to be at position x = 0 and still be moving?
6.	 Are the velocity and acceleration of a body always in the same 

direction?
7.	 You and your friend are throwing two identical balls straight up in 

the air. What are the parameters that determine the heights up to 
which the balls reach? What are the velocities of the balls when 
they reach the maximum height?

8.	 In which of the velocity-versus-time graphs shown in Fig. 2.14 
would the average velocity over the interval shown equal the aver-
age of the velocities at the ends of the interval?
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46  Chapter 2  Motion in a Straight Line

b = 80 m/s, c = 4.9 m/s2, t is the time in seconds, and y is in me-
ters. (a) Use differentiation to find a general expression for the rock-
et’s velocity as a function of time. (b) When is the velocity zero?

Section 2.3  Acceleration
20.	 You’re driving at the 50 km/h speed limit when you spot a sign 

showing a speed-limit increase to 80 km/h. If it takes 15.7 s to 
reach the new speed limit, what’s your average acceleration? 
Express it in m/s2.

21.	 Starting from rest, a subway train first accelerates to 25 m/s and 
then brakes. Forty-eight seconds after starting, it’s moving at  
18 m/s. What’s its average acceleration in this 48-s interval?

22.	 NASA’s New Horizons spacecraft was launched in 2006 and flew 
past Pluto in 2015. New Horizons’ solid-fuel booster rocket gave 
it an average acceleration of 6.16 m/s2, bringing it to a speed of 
16.3 km/s before the booster dropped away. How long did this 
acceleration last?

23.	 An egg drops from a second-story window, taking 1.12 s to fall 
and reaching 11.0 m/s just before hitting the ground. On contact, 
the egg stops completely in 0.133 s. Calculate the magnitude of 
its average acceleration (a) while falling and (b) while stopping.

24.	 An airplane’s takeoff speed is 320 km/h. If its average accelera-
tion is 2.9 m/s2, how much time is it accelerating down the run-
way before it lifts off?

25.	 ThrustSSC, the world’s first supersonic car, accelerates from rest 
to 1000 km/h in 16 s. What’s its acceleration?

Section 2.4  Constant Acceleration
26.	 You’re driving at 65 km/h when you apply constant acceleration 

to pass another car. Twelve seconds later, you’re doing 85 km/h. 
How far did you go in this time?

27.	 Differentiate both sides of Equation 2.10, and show that you get 
Equation 2.7.

28.	 A 2016 study found that snakes’ heads, when striking, undergo 
average accelerations of about 40 m/s2, for a period of about 
50 ms. Using these values, find (a) the maximum speed of the 
snake’s head and (b) the distance the head travels during the 
strike. Give your answers to one significant figure.

29.	 A rocket starts from rest and rises with constant acceleration to a 
height h, at which point it’s rising at speed v. Find expressions for (a) 
the rocket’s acceleration and (b) the time it takes to reach height h.

30.	 Starting from rest, a car accelerates at a constant rate, reaching 88 km/h 
in 12 s. Find (a) its acceleration and (b) how far it goes in this time.

31.	 A car initially moving at 90 km/h begins slowing at a constant 
rate 40 m short of a stoplight. If the car comes to a full stop just at 
the light, what is the magnitude of its acceleration?

32.	 In a medical X-ray tube, electrons are accelerated to a velocity 
of 108 m/s and then slammed into a tungsten target. As they stop, 
the electrons’ rapid acceleration produces X rays. Given that it 
takes an electron on the order of 1 ns to stop, estimate the dis-
tance it moves while stopping.

33.	 California’s Bay Area Rapid Transit System (BART) uses an au-
tomatic braking system triggered by earthquake warnings. The 
system is designed to prevent disastrous accidents involving 
trains traveling at a maximum of 112 km/h and carrying a total 
of some 45,000 passengers at rush hour. If it takes a train 24 s to 
brake to a stop, how much advance warning of an earthquake is 
needed to bring a 112-km/h train to a reasonably safe speed of 42 
km/h when the earthquake strikes?

34.	 You’re driving at speed v0 when you spot a stationary moose on 
the road, a distance d ahead. Find an expression for the magni-
tude of the acceleration you need if you’re to stop before hitting 
the moose.
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FIGURE 2.15  Exercise 18

9.	 If you travel in a straight line at 50 km/h for 1 h and at 100 km/h 
for another hour, is your average velocity 75 km/h? If not, is it 
more or less?

10.	 If you travel in a straight line at 50 km/h for 50 km and then at 
100 km/h for another 50 km, is your average velocity 75 km/h? If 
not, is it more or less?

Exercises and Problems

Exercises

Section 2.1  Average Motion
11.	 In 2009, Usain Bolt of Jamaica set a world record in the 100-m 

dash with a time of 9.58 s. What was his average speed?
12.	 Earth’s diameter is approximately 12,700 kilometers. Estimate 

the speed of a point on Earth’s equator as it’s carried around with 
Earth’s rotation.

13.	 Starting from home, you bicycle 24 km north in 2.5 h and then turn 
around and pedal straight home in 1.5 h. What are your (a) displace-
ment at the end of the first 2.5 h, (b) average velocity over the first 2.5 h,  
(c) average velocity for the homeward leg of the trip, (d) displace-
ment for the entire trip, and (e) average velocity for the entire trip?

14.	 On November 5, 2018, NASA’s Voyager 2 spacecraft became the 
second human-made object to leave the solar system and enter 
interstellar space. It was then about 18 billion kilometers from 
Earth. How long did it take Voyager 2’s radio signals, traveling at 
the speed of light, to reach Earth from this distance?

15.	 Alistair Brownlee of Team Great Britain won the 2016 Olympic 
triathlon, completing the 1.5-km swim, 40-km bicycle ride, and 
10-km run in 1 h, 45 min, 1 s. What was his average speed?

16.	 What is the conversion factor from meters per second to kilometers 
per hour?

Section 2.2  Instantaneous Velocity
17.	 On a single graph, plot distance versus time for the first two trips 

from Houston to Des Moines described on page 33. For each 
trip, identify graphically the average velocity and, for each seg-
ment of the trip, the instantaneous velocity.

18.	 For the motion plotted in Fig. 2.15, estimate (a) the greatest veloc-
ity in the positive x-direction, (b) the greatest velocity in the neg-
ative x-direction, (c) any times when the object is instantaneously 
at rest, and (d) the average velocity over the interval shown.

v
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v

t
(b)

v

t
(c)

FIGURE 2.14  For Thought and Discussion 8

19.	 A model rocket is launched straight upward. Its altitude 
y as a function of time is given by y = bt - ct2, where 
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Exercises and Problems  47

Section 2.5  The Acceleration of Gravity
35.	 A delivery drone drops a package onto a customer’s porch. If the 

package can withstand a maximum impact speed of 8.00 m/s, what’s 
the maximum height from which the drone can drop the package?

36.	 Your friend is sitting 5.1 m above you on a tree branch. How fast 
should you throw an apple so it just reaches her?

37.	 A model rocket leaves the ground, heading straight up with speed v. 
Find expressions for (a) its maximum altitude and (b) its speed when 
it’s at half the maximum altitude.

38.	 A foul ball leaves the bat going straight up at 29 m/s. (a) How 
high does it rise? (b) How long is it in the air? Neglect the dis-
tance between bat and ground.

39.	 A Frisbee is lodged in a tree 6.4 m above the ground. A rock 
thrown from below must be going at least 3 m/s to dislodge the 
Frisbee. How fast must such a rock be thrown upward if it leaves 
the thrower’s hand 1.3 m above the ground?

40.	 Space pirates kidnap an earthling and hold him on one of the so-
lar system’s planets. With nothing else to do, the prisoner amuses 
himself by dropping his watch from eye level (170 cm) to the 
floor. He observes that the watch takes 0.95 s to fall. On what 
planet is he being held? (Hint: Consult Appendix E.)

Example Variations
The following problems are based on two examples from the text. Each 
set of four problems is designed to help you make connections that 
enhance your understanding of physics and to build your confidence 
in solving problems that differ from ones you’ve seen before. The first 
problem in each set is essentially the example problem but with differ-
ent numbers. The second problem presents the same scenario as the 
example but asks a different question. The third and fourth problems 
repeat this pattern but with entirely different scenarios.

41.	 Example 2.3:	A jetliner touches down at 288 km/h. The plane 
then decelerates (i.e., undergoes acceleration directed opposite to 
its velocity) at 3.38 m/s2. What’s the minimum runway length on 
which this plane can land?

42.	 Example 2.3: 	A jetliner touches down at 275 km/h on a 1.2-km-
long runway. What’s the minimum safe value for the magnitude 
of its acceleration as it slows to a stop?

43.	 Example 2.3: 	You’re driving at 45.0 km/h when you spot a 
moose in the road ahead. If your car is capable of slowing at 
0.766 m/s2, how far from the moose do you need to hit the brakes?

44.	 Example 2.3:	You’re driving at 45.0 km/h when you spot a 
moose in the road, 102 m ahead. What’s the minimum value for 
the magnitude of your braking acceleration if you’re to avoid hit-
ting the moose?

45.	 Example 2.5: 	A diver drops from a 9.21-m high cliff. (a) At what 
speed does she enter the water? and (b) how long is she in the air?

46.	 Example 2.5: 	A diver drops from a cliff, and enters the water 
1.05 s later. Find (a) the cliff height and (b) the speed with the 
diver enters the water.

47.	 Example 2.5:	A delivery drone drops a well-cushioned package 
from a height of 12.5 m onto a customer’s porch. (a) At what 
speed does the package hit the porch? and (b) how long is it in 
the air?

48.	 Example 2.5:	An online retailer makes deliveries by drone, and 
packages the goods so they can withstand an impact at up to 
10.0 m/s. (a) What’s the maximum height from which the drone 
can safely drop a package? and (b) how long would a package 
dropped from this height be in the air?

Problems
49.	 You allow 45 min to drive 30 km to the airport, but you’re caught 

in heavy traffic and average only 15 km/h for the first 20 min. What 
must your average speed be on the rest of the trip if you’re to catch 
your flight?

50.	 You travel one-third of the distance to your destination at speed 
2v, and the remaining two-thirds at speed v. Find an expression 
for your average speed in terms of v.

51.	 You can run 9.0 m/s, 20% faster than your brother. How much head 
start should you give him in order to have a tie race over 100 m?

52.	 A plane leaves London for Singapore, 10,886 km away. With a 
strong tailwind, its speed is 1040 km/h. At the same time, a sec-
ond plane leaves Singapore for London. Flying into the wind, it 
makes only 765 km/h. When and where do the two planes pass 
each other?

53.	 An object’s  posi t ion is  given by x = bt + ct3,  where 
b = 1.50 m/s, c = 0.640 m/s3, and t is time in seconds. To 
study the limiting process leading to the instantaneous velocity, 
calculate the object’s average velocity over time intervals from 
(a) 1.00 s to 3.00 s, (b) 1.50 s to 2.50 s, and (c) 1.95 s to 2.05 
s. (d) Find the instantaneous velocity as a function of time by 
differentiating, and compare its value at 2 s with your average 
velocities.

54.	 An object’s position as a function of time t is given by x = bt4, 
with b a constant. Find an expression for the instantaneous ve-
locity, and show that the average velocity over the interval from 
t = 0 to any time t is one-fourth of the instantaneous velocity at t.

55.	 In a 400-m drag race, two cars start at the same time, and each 
maintains a constant acceleration. The winner’s acceleration is 
4.25 m/s2, and the winner reaches the finish line 248 ms before 
the loser does. By what distance is the loser behind when the 
winner reaches the finish line?

56.	 Squaring Equation 2.7 gives an expression for v2. Equation 2.11 
also gives an expression for v2. Equate the two expressions, and 
show that the resulting equation reduces to Equation 2.10.

57.	 During the complicated sequence that landed the rover Curiosity 
on Mars in 2012, the spacecraft reached an altitude of 142 m 
above the Martian surface, moving vertically downward at 32.0 
m/s. It then entered a so-called constant deceleration (CD) phase, 
during which its velocity decreased steadily to 0.75 m/s while it 
dropped to an altitude of 23 m. What was the magnitude of the 
spacecraft’s acceleration during this CD phase?

58.	 The position of a car in a drag race is measured each second, and 
the results are tabulated below.

Time t (s) 0 1 2 3 4 5

Position x (m) 0 1.7 6.2 17 24 40

Assuming the acceleration is approximately constant, plot po-
sition versus a quantity that should make the graph a straight 
line. Fit a line to the data, and from it determine the approximate 
acceleration.

59.	 A fireworks rocket explodes at a height of 82.0 m, producing frag-
ments with velocities ranging from 7.68 m/s downward to 16.7 
m/s upward. Over what time interval are fragments hitting the 
ground?

60.	 The muscles in a grasshopper’s legs can propel the insect upward 
at 3.0 m/s. How high can the grasshopper jump?

61.	 On packed snow, computerized antilock brakes can reduce a car’s 
stopping distance by 51%. By what percentage is the stopping 
time reduced?
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48  Chapter 2  Motion in a Straight Line

62.	 A particle leaves its initial position x0 at time t = 0, moving in the 
positive x-direction with speed v0 but undergoing acceleration of 
magnitude a in the negative x-direction. Find expressions for (a) the 
time when it returns to x0 and (b) its speed when it passes that point.

63.	 A hockey puck moving at 30 m/s slams through a wall of snow 
38 cm thick. It emerges moving at 18 m/s. Assuming constant 
acceleration, find (a) the time the puck spends in the snow and 
(b) the thickness of a snow wall that would stop the puck entirely.

64.	 A subway train is stalled in a station. A second train approaches 
the station at 61.2 km/h and brakes to a halt in 37.6 s, stopping just 
1.35 m short of the stalled train. What was the distance between 
the two trains at the instant the moving train began to brake?

65.	 A jetliner touches down at 270 km/h and comes to a halt 26 s 
later. What’s the shortest runway on which this aircraft can land?

66.	 A motorist suddenly notices a stalled car and slams on the 
brakes, slowing at 6.3 m/s2. Unfortunately, this isn’t enough, and 
a collision ensues. From the damage sustained, police estimate 
that the car was going 18 km/h at the time of the collision. They 
also measure skid marks 34 m long. (a) How fast was the motor-
ist going when the brakes were first applied? (b) How much time 
elapsed from the initial braking to the collision?

67.	 A racing car undergoing constant acceleration covers 140 m in 
3.6 s. (a) If it’s moving at 53 m/s at the end of this interval, what 
was its speed at the beginning of the interval? (b) How far did it 
travel from rest to the end of the 140-m distance?

68.	 The maximum braking acceleration of a car on a dry road is 
about 8 m/s2. If two cars move head-on toward each other at 88 
km/h (55 mi/h), and their drivers brake when they’re 85 m apart, 
will they collide? If so, at what relative speed? If not, how far 
apart will they be when they stop? Plot distance versus time for 
both cars on a single graph.

69.	 After 40 minutes of running, at the 8-km point in a 9-km race, 
you find yourself 140 m behind the leader and moving at the same 
speed. What should your acceleration be if you’re to catch up by 
the finish line? Assume that the leader maintains constant speed.

70.	 You’re speeding at 85 km/h when you notice that you’re only 10 m 
behind the car in front of you, which is moving at the legal speed 
limit of 60 km/h. You slam on your brakes, and your car slows at 
the rate of 4.2 m/s2. Assuming the other car continues at constant 
speed, will you collide? If so, at what relative speed? If not, what 
will be the distance between the cars at their closest approach?

71.	 Airbags cushioned the Mars rover Spirit’s landing, and the rover 
bounced some 15 m vertically after its first impact. Assuming 
no loss of speed at contact with the Martian surface, what was 
Spirit’s impact speed?

72.	 Calculate the speed with which cesium atoms must be “tossed” 
in the NIST-F1 atomic clock so that their up-and-down travel 
time is 1.0 s. (See the Application on page 43.)

73.	 A falling object travels one-fourth of its total distance in the last 
second of its fall. From what height was it dropped?

74.	 You’re on a NASA team engineering a probe to land on Jupiter’s 
moon Io, and your job is to specify the impact speed the probe 
can tolerate without damage. Rockets will bring the probe to a 
halt 100 m above the surface, after which it will fall freely. What 
speed do you specify? (Consult Appendix E.)

75.	 You’re atop a building of height h, and a friend is poised to drop 
a ball from a window at h/2. Find an expression for the speed at 
which you should simultaneously throw a ball downward, so the 
two hit the ground at the same time.

76.	 A castle’s defenders throw rocks down on their attackers from 
a 15-m-high wall, with initial speed 10 m/s. How much faster 

are the rocks moving when they hit the ground than if they were 
simply dropped?

77.	 Two divers jump from a 3.00-m platform. One jumps upward at 
1.80 m/s, and the second steps off the platform as the first passes 
it on the way down. (a) What are their speeds as they hit the  
water? (b) Which hits the water first and by how much?

78.	 A balloon is rising at 10 m/s when its passenger throws a ball 
straight up at 12 m/s relative to the balloon. How much later does 
the passenger catch the ball?

79.	 In 2014 the Philae spacecraft became the first artifact to land on 
a comet. Unfortunately, Philae bounced off the comet’s surface 
and ultimately landed in a nonideal location. After its first contact, 
Philae was moving upward at 38 cm/s, and it rose to a maximum 
height of about 1 km. Estimate the gravitational acceleration of the 
comet, assuming it’s constant (not a very good assumption in this 
case).

80.	 You’re at mission control for a rocket launch, deciding whether 
to let the launch proceed. A band of clouds 5.1 km thick ex-
tends upward from 1.1 km altitude. The rocket will accelerate at 
4.3 m/s2, and it isn’t allowed to be out of sight for more than 30 s. 
Should you allow the launch?

81.	 You’re an investigator for the National Transportation Safety 
Board, examining a subway accident in which a train going at 
80 km/h collided with a slower train traveling in the same direc-
tion at 25 km/h. Your job is to determine the relative speed of the 
collision to help establish new crash standards. The faster train’s 
“black box” shows that its brakes were applied and it began slow-
ing at the rate of 2.1 m/s2 when it was 50 m from the slower train, 
while the slower train continued at constant speed. What do you 
report?

82.	 On October 14, 2012, daredevil skydiver Felix Baumgartner 
jumped from a height of 38,969.4 meters over Roswell, New 
Mexico, becoming the first skydiver to break the sound barrier. 
The acceleration of gravity at his jump height was 9.70 m/s2, and 
there was essentially no air resistance at that altitude. (a) How 
long did it take Baumgartner to reach the speed of sound, which is 
322 m/s at that altitude? (b) How far did he fall during that time?

83.	 Consider an object traversing a distance L, part of the way at speed 
v1 and the rest of the way at speed v2. Find expressions for the 
object’s average speed over the entire distance L when the object 
moves at each of the two speeds v1 and v2 for (a) half the total time 
and (b) half the total distance. (c) In which case is the average speed 
greater?

84.	 An object’s position as a function of time is given by x = bt2 - ct4, 
where b has the value 1.82 m/s2, which puts the object at x = 0 at 
t = 0. (a) Find the value of c such that the object will again be 
at x = 0 when t = 2.54 s. Also, find (b) the object’s speed and 
(c) its acceleration at that time.

85.	 Ice skaters, ballet dancers, and basketball players executing ver-
tical leaps often give the illusion of “hanging” almost motionless 
near the top of the leap. To see why this is, consider a leap to 
maximum height h. Of the total time spent in the air, what frac-
tion is spent in the upper half (i.e., at y 7 1

2h)?
86.	 You’re staring idly out your dorm window when you see a water 

balloon fall past. If the balloon takes 0.22 s to cross the 1.3-m 
vertical extent of the window, from what height above the win-
dow was it dropped?

87.	 A police radar’s effective range is 1.0 km, and your radar detec-
tor’s range is 1.8 km. You’re going 90 km/h in a 50 km/h zone 
when the radar detector beeps. At what rate must you slow to 
avoid a speeding ticket?
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