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OVERVIEW

Electromagnetism is one of the fundamental 
forces, and it governs the behavior of matter 
from the atomic scale to the macroscopic world. 

Electromagnetic technology, from computer micro-
chips to cell phones and on to large electric motors 
and generators, is essential to modern society. Even 
our bodies rely heavily on electromagnetism: Electric 
signals pace our heartbeat, electrochemical process-
es transmit nerve impulses, and the electric structure 
of cell membranes mediates the flow of materials 
into and out of the cell.

Four fundamental laws describe electricity and 
magnetism. Two deal separately with the two 

phenomena, while the others reveal profound 
connections that make electricity and magne-
tism aspects of a single phenomenon that we 
call electromagnetism. In this part you’ll come to 
understand those fundamental laws, learn how 
electromagnetism determines the structure and 
behavior of nearly all matter, and explore the 
electromagnetic technologies that play so important 
a role in your life. Finally, you’ll see how the laws 
of electromagnetism lead to electromagnetic waves 
and thus help us understand the nature of light.

Electricity constitutes a significant portion of humankind’s energy, as evidenced by this composite satellite image of Earth at night. 
Nearly all that electrical energy is produced by generators, devices that exploit an intimate relation between electricity and magnetism.

Electromagnetism
PART FOUR
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What holds your body together? What keeps a skyscraper standing? 
What holds your car on the road as you round a turn? What gov-

erns the electronic circuitry in your computer or smartphone, or provides 
the tension in your climbing rope? What enables a plant to make sugar 
from sunlight and simple chemicals? What underlies the awesome beauty 
of lightning? The answer, in all cases, is the electric force. With the excep-
tion of gravity, all the forces we’ve encountered in mechanics—including 
tension forces, normal forces, compression forces, and friction—are based 
on electric interactions; so are the forces responsible for all of chemistry 
and biology. The electric force, in turn, involves a fundamental property of 
matter—namely, electric charge.

20.1  Electric Charge
LO 20.1	 Describe electric charge as a fundamental property  

of matter.

Electric charge is an intrinsic property of the electrons and protons that, along 
with uncharged neutrons, make up ordinary matter. What is electric charge? At 
the most fundamental level we don’t know. We don’t know what mass “really” 
is either, but we’re familiar with it because we’ve spent our lives pushing ob-
jects around. Similarly, our knowledge of electric charge results from observ-
ing the behavior of charged objects.

Charge comes in two varieties, which Benjamin Franklin designated 
positive and negative. Those names are useful because the total charge on 

Learning Outcomes
After finishing this chapter you should be able to:

LO 20.1	 Describe electric charge as a fundamental property of matter.

LO 20.2	 Use Coulomb’s law to calculate the forces between charges.

LO 20.3	 Use the superposition principle to calculate forces involving 
multiple charges.

LO 20.4	 Describe the concept of electric field.

LO 20.5	 Determine the fields of electric charge distributions using 
superposition.

LO 20.6	 Describe the electric dipole and the field it produces.

LO 20.7	 Determine the fields of continuous charge distributions by 
integration.

LO 20.8	 Determine the motion of charged particles in electric fields.

LO 20.9	 Determine forces and torques on electric dipoles in electric fields.

Electric Charge, Force, and Field

22
Electric Potential20 21

Gauss’s Law

19
The Second Law of 
Thermodynamics

18
Heat, Work, and  
the First Law of  

Thermodynamics

What’s the fundamental criterion for initiating a 
lightning strike?

Skills & Knowledge You’ll Need
■■ The concept of force and Newton’s 

second law (Sections 4.2 and 4.3)

■■ The gravitational field (Section 8.5)

■■ Integration techniques for physics 
(Tactics 9.1)

■■ The concept of torque, expressed as a 
cross product (Section 11.2)
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20.2  Coulomb’s Law  385

an object—the object’s net charge—is the algebraic sum of its constituent charges. Like 
charges repel, and opposites attract, a fact that constitutes a qualitative description of the 
electric force.

Quantities of Charge
All electrons carry the same charge, and all protons carry the same charge. The proton’s 
charge has exactly the same magnitude as the electron’s, but with opposite sign. Given 
that electrons and protons differ substantially in other properties—like mass—this elec-
tric relation is remarkable. Exercise 11 shows how dramatically different our world 
would be if there were even a slight difference between the magnitudes of the electron 
and proton charges.

The magnitude of the electron or proton charge is the elementary charge e. Electric 
charge is quantized; that is, it comes only in discrete amounts. In a famous experiment in 
1909, the American physicist R. A. Millikan measured the charge on small oil drops and 
found it was always a multiple of a basic value we now know as the elementary charge.

Elementary particle theories show that the fundamental charge is actually 1
3 e. Such 

“fractional charges” reside on quarks, the building blocks of protons, neutrons, and many 
other particles. Quarks always join to produce particles with integer multiples of the full 
elementary charge, and it seems impossible to isolate individual quarks.

The SI unit of charge is the coulomb (C), named for the French physicist Charles 
Augustin de Coulomb (1736–1806). From the late 19th century to the early 21st cen-
tury, the coulomb was defined in terms of electric current and time—a definition 
that was difficult to implement in practice. The 2019 revision of the SI gave the cou-
lomb a much simpler definition. Now, the elementary charge is defined to be exactly 
1.602176634 * 10-19 C. The coulomb is therefore the number of elementary charges 
equal to the inverse of this number. For our purposes, that’s about 6.24 * 1018 elemen-
tary charges.

Charge Conservation
Electric charge is a conserved quantity, meaning that the net charge in a closed region 
remains constant. Charged particles may be created or annihilated, but always in pairs of 
equal and opposite charge. The net charge always remains the same.

F
S

F
S

FIGURE 20.1  Two balloons carrying similar 
electric charges repel each other.

20.2  Coulomb’s Law
LO 20.2	 Use Coulomb’s law to calculate the forces between charges.

LO 20.3	 Use the superposition principle to calculate forces involving multiple 
charges.

Rub a balloon; it gets charged and sticks to your clothing. Charge another balloon, and the 
two repel (Fig. 20.1). Socks cling to your clothes as they come from the dryer, and bits of 
Styrofoam cling annoyingly to your hands. Walk across a carpet, and you’ll feel a shock 
when you touch a doorknob. All these are common examples where you’re directly aware 
of electric charge.

Electricity would be unimportant if the only significant electric interactions were these 
obvious ones. In fact, the electric force dominates all interactions of everyday matter, 
from the motion of a car to the movement of a muscle. It’s just that matter on a large scale 

20.1 The proton is a composite particle composed of three quarks, all of which are 
either up quarks (u; charge +2

3 e) or down quarks (d; charge -1
3 e). (More on quarks 

in Chapter 39.) Which of these quark combinations is the proton? (a) udd; (b) uuu; 
(c) uud; (d) dddG

O
T 

IT
?
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386  Chapter 20  Electric Charge, Force, and Field

is almost perfectly neutral, meaning it carries zero net charge. Therefore, electric effects 
aren’t obvious. But at the molecular level, the electric nature of matter is immediately 
evident (Fig. 20.2).

Attraction and repulsion of electric charges imply a force. Joseph Priestley and Charles 
Augustin de Coulomb investigated this force in the late 1700s. They found that the force 
between two charges acts along the line joining them, with the magnitude proportional to 
the product of the charges and inversely proportional to the square of the distance between 
them. Coulomb’s law summarizes these results:

rn

rn

rn
kq1q2

r2F12 = 

F12

The unit vector r
always points away from q1.

(a)

(b)

r

q1 q2

F12

r

q1 q2

n

n

n

Here the product
q1q2 is positive,
so F12 is in the
same direction
as r.

S

Here the charges have 
opposite signs, so 
q1q2 6 0 and F12 points 
opposite r.

S

S

S

S

FIGURE 20.3  Quantities in Coulomb’s law 
for calculating the force F

S
12 that q1 exerts 

on q2.

	 F
S

12 =
kq1q2

r2  rn 1Coulomb>s law2	 (20.1)

F
S

12 is the force charge q1 
exerts on charge q2.

k is approximately 
9.0 * 109 N #m2/C2. q1 and q2 are two charges.

r is the distance between  
the two charges.

rn is a unit vector that points from q1 toward 
q2 regardless of the signs of the charges.

where F
S

12 is the force charge q1 exerts on q2 and r is the distance between the charges. 
In SI the proportionality constant k has the approximate value 9.0 * 109 N #  m2/C2. 
Force is a vector, and rn is a unit vector that helps determine its direction. Figure 20.3 
shows that rn lies on a line passing through the two charges and points in the direction 
from q1 toward q2. Reverse the roles of q1 and q2, and you’ll see that F

S
21 has the same 

magnitude as F
S

12 but the opposite direction; thus Coulomb’s law obeys Newton’s third 
law. Figure 20.3 also shows that the force is in the same direction as the unit vector 
when the charges have the same sign, but opposite the unit vector when the charges 
have different signs. Thus Coulomb’s law accounts for the fact that like charges repel 
and opposites attract.

The key to using Coulomb’s law is to remember that force is a vector, and to realize that 
Coulomb’s law in the form of Equation 20.1 gives both the magnitude and direction of the 
electric force. Dealing carefully with vector directions is especially important in situations 
with more than two charges.

INTERPRET  First, make sure you’re dealing with the electric force alone. Identify the charge 
or charges on which you want to calculate the force. Next, identify the charge or charges pro-
ducing the force. These comprise the source charge.

DEVELOP  Begin with a drawing that shows the charges, as in Fig. 20.4. If you’re given charge 
coordinates, place the charges on the coordinate system; if not, choose a suitable coordinate 
system. For each source charge, determine the unit vector(s) in Equation 20.1. If the charges 
lie along or parallel to a coordinate axis, then the unit vector will be one of the unit vectors in, jn, 
or kn, perhaps with a minus sign. In Fig. 20.4, the force on q3 due to q1 is such a case. When the 
two charges don’t lie on a coordinate axis, like q1 and q2 in Fig. 20.4, you can find the unit vec-
tor by noting that the displacement vector r

!
12 points in the desired direction, from the source 

charge to the charge experiencing the force. Dividing r
!
12 by its own magnitude then gives the 

unit vector in the direction of r
!
12; that is, rn = r

!
12/r12.

EVALUATE  For each source charge, determine the electric force using Equation 20.1,

F
S

12 =1kq1q2/r
22rn

with rn the unit vector you’ve just found.

PROBLEM-SOLVING STRATEGY 20.1 Coulomb’s Law

A salt grain is
electrically neutral c

cbut the electric
force is responsible
for its cubical shape.

(a)

(b)

Na Cl

-

+ +
-

+

+

+

+
+

+

+

-

-
-

-

-

-

-

+

FIGURE 20.2  (a) A single salt grain is 
electrically neutral, so the electric force 
isn’t obvious. (b) Actually, the electric 
force determines the structure of salt.
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20.2  Coulomb’s Law  387

ASSESS  As always, assess your answer to see that it makes sense. Is the direction of the force 
you found consistent with the signs and placements of the charges giving rise to the force?

rn

4
5

3
5

r points away from
q1, so here r = i.

i + Here r =  = 

u

0 1
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x (m)

y 
(m

)

q2

q3

j.

24
2  + 3

2  m
 = 5 m

r 12 = 

r12
r12

u

n nn

n

r 12 = 4i 
+ 3j

 m

u

n

n

n n

FIGURE 20.4  Finding unit vectors.

20.2 Charge q1 is located at x = 1 m, y = 0. What should you use for the unit vec-
tor rn in Coulomb’s law if you’re calculating the force that q1 exerts on a charge q2 
located (1) at the origin and (2) at the point x = 0, y = 1 m? Explain why you can 
answer without knowing the sign of either charge.G

O
T 

IT
?

A 1.0@mC charge is at x = 1.0 cm, and a -1.5@mC charge is at 
x = 3.0 cm. What force does the positive charge exert on the negative 
one? How would the force change if the distance between the charges 
tripled?

INTERPRET  Following our strategy, we identify the -1.5@mC charge 
as the one on which we want to find the force and the 1@mC charge as 
the source charge.

DEVELOP  We’re given the coordinates x1 = 1.0 cm and x2 = 3.0 cm. 
Our drawing, Fig. 20.5, shows both charges at their positions on the  
x-axis. With the source charge q1 to the left, the unit vector in the di-
rection from q1 toward q2 is in.

EVALUATE  Now we use Coulomb’s law to evaluate the force:

 F
S

12 =
kq1q2

r2  rn

 =
19.0 * 109 N #  m2/C2211.0 * 10-6 C21-1.5 * 10-6 C2

10.020 m22  in

 = -34in N

This force is for a separation of 2 cm; if that distance tripled, the force 
would drop by a factor of 1/32, to -3.8in N.

ASSESS  Make sense? Although the unit vector in points in the  
+x-direction, the charges have opposite signs and that makes the force 
direction opposite the unit vector, as shown in Fig. 20.5. In simpler 
terms, we’ve got two opposite charges, so they attract. That means 
the force exerted on a charge at x = 3 cm by an opposite charge at 
x = 1 cm had better be in the -x-direction.

Finding the Force: Two ChargesEXAMPLE 20.1

The charges
have opposite
signs, so q1q2
is negative, and 
F is opposite
the direction of r.

The unit vector
is in the direction
from q1 to q2,
so here it’s i.

n

S
n

FIGURE 20.5  Sketch for Example 20.1.

M20_WOLF1186_04_GE_C20.indd   387 19/05/20   1:02 AM

Sam
ple

 pa
ge

s



Point Charges and the Superposition Principle
Coulomb’s law is strictly true only for point charges—charged objects of negligible size. 
Electrons and protons can usually be treated as point charges; so, approximately, can any 
two charged objects if their separation is large compared with their size. But often we’re 
interested in the electric effects of charge distributions—arrangements of charge spread 
over space. Charge distributions are present in molecules, memory cells in your computer, 
your heart, and thunderclouds. We need to combine the effects of two or more charges to 
find the electric effects of such charge distributions.

Figure 20.6 shows two charges q1 and q2 that constitute a simple charge distribution. 
We want to know the net force these exert on a third charge q3. To find that net force, you 
might calculate the forces F

S
13 and F

S
23 from Equation 20.1, and then vectorially add them. 

And you’d be right: The force that q1 exerts on q3 is unaffected by the presence of q2, and 
vice versa, so you can apply Coulomb’s law separately to the pairs q1q3 and q2q3 and then 
combine the results. That may seem obvious, but nature needn’t have been so simple.

The fact that electric forces add vectorially is called the superposition principle. Our 
confidence in this principle is ultimately based on experiments showing that electric and 
indeed electromagnetic phenomena behave according to the principle. With superposition 
we can solve relatively complicated problems by breaking them into simpler parts. If the 
superposition principle didn’t hold, the mathematical description of electromagnetism 
would be far more complicated.

Although the force that one point charge exerts on another decreases with the inverse 
square of the distance between them, the same is not necessarily true of the force resulting 
from a charge distribution. The next example provides a case in point.

CONCEPTUAL EXAMPLE 20.1 Gravity and the Electric Force

The electric force between elementary particles is far stronger than 
the gravitational force, yet gravity is much more obvious in everyday 
life. Why?

EVALUATE  Gravity and the electric force obey similar inverse-square 
laws, and the magnitude of the force is proportional to the product of 
the masses or charges. There’s a big difference, though: There’s only 
one kind of mass, and gravity is always attractive, so large concentra-
tions of mass—like a planet—result in strong gravitational forces. But 
charge comes in two varieties, and opposites attract, so large accumu-
lations of matter tend to be electrically neutral, in which case large-
scale electrical interactions aren’t obvious.

ASSESS  Ironically, it’s the very strength of the electric force that makes 
it less obvious in everyday life. Opposite charges bind strongly, making 
bulk matter electrically neutral and its electrical interactions subtle.

MAKING THE CONNECTION  Compare the magnitudes of the elec-
tric and gravitational forces between an electron and a proton.

EVALUATE  Equation 8.1 gives the gravitational force: Fg = Gme 

mp /r
2. 

Equation 20.1 gives the electric force: �FE � = ke2/r2, where we wrote 
e2 because the electron and proton charges have the same magnitude. 
We aren’t given the distance, but that doesn’t matter because both 
forces have the same inverse-square dependence. The ratio of the force 
magnitudes is huge: FE /Fg = ke2/Gme 

mp = 2.3 * 1039!

F23

F13

Fnet = F13 + F23

q2

q1

q3

SSS

S

S

FIGURE 20.6  The superposition principle 
lets us add vectorially the forces from 
two or more charges.

Charged raindrops are ultimately responsible for lightning, producing 
substantial electric charge within specific regions of a thundercloud. 
Suppose two drops with equal charge q are on the x-axis at x = {a. 
Find the electric force on a third drop with charge Q at an arbitrary 
point on the y-axis.

INTERPRET  Coulomb’s law and the superposition principle apply, 
and we identify Q as the charge for which we want the force. The two 
charges q are the source charges.

DEVELOP  Figure 20.7 is our drawing, showing the charges, the in-
dividual force vectors, and their sum. The drawing shows that the 

distance r in Coulomb’s law is the hypotenuse 2a2 + y2. It’s clear 
from symmetry that the net force is in the y-direction, so we need to 
find only the y-components of the unit vectors. The y-components are 
clearly the same for each, and the drawing shows that they’re given by 
rny = y/2a2 + y2.

EVALUATE  From Coulomb’s law, the y-component of the force from 
each q is Fy = 1kqQ/r22rny, and the net force on Q becomes

F
S

= 2 a kqQ

a2 + y2 ba
y

2a2 + y2
b  jn =

2kqQy

1a2 + y223/2 jn

Finding the Force: Raindrops
Worked Example with Variation Problems

EXAMPLE 20.2

388  Chapter 20  Electric Charge, Force, and Field
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20.3  The Electric Field  389

20.3  The Electric Field
LO 20.4	 Describe the concept of electric field.

In Chapter 8 we defined the gravitational field at a point as the gravitational force per unit 
mass that an object at that point would experience. In that context, we can think of g

!
 as 

the force per unit mass that any object would experience due to Earth’s gravity. So we can 
picture the gravitational field as a set of vectors giving the magnitude and direction of the 
gravitational force per unit mass at each point, as shown in Fig. 20.8a below.

y

2a2 + y2

This is the y-
component of
the displacement
vectors from
q to Q c

cand this is
the magnitude c

cso the y-components
of both unit vectors are

ry = .n

FIGURE 20.7  The force on Q is the vector sum of the forces from 
the individual charges.

The factor of 2 comes from the two charges q, which contribute 
equally to the net force.

ASSESS  Make sense? Evaluating F
S

at y = 0 gives zero force. Here, 
midway between the two charges, Q experiences equal but opposite 
forces and the net force is zero. At large distances y W a, on the 
other hand, we can neglect a2 compared with y2, and the force be-
comes F

S
= k12q2Qjn/y2. This is just what we would expect from a 

single charge 2q a distance y from Q—showing that the system of two 
charges acts like a single charge 2q at distances that are large com-
pared with the charge separation. In between our two extremes the 
behavior of force with distance is more complicated; in fact, its mag-
nitude initially increases as Q moves away from the origin and then 
begins to decrease.

In drawing Fig. 20.7, we tacitly assumed that q and Q have the 
same signs. But our analysis holds even if they don’t; then the product 
qQ is negative, and the forces actually point opposite the directions 
shown in Fig. 20.7.

E2
S

E1
S

(a) (b)

The gravitational field is 
a continuous entity, so 
there are field vectors 
everywhere. We just 
can’t draw them all.

Right at this point the gravitational field 
is described by the vector g. That means 
a mass m placed here would experience 
a gravitational force mg.

Over here, farther from 
the charge producing 
the field, a point charge 
q would experience a 
weaker force qE2 in a 
different direction.

The electric field is a continuous entity, so 
there are field vectors everywhere. We just 
can’t draw them all.

g
u

u

u

S

S

SRight at this point the electric field is 
described by the vector E1. That means 
a point charge q placed here would 
experience an electric force qE1.

FIGURE 20.8  (a) Gravitational and (b) electric fields, here represented as sets of vectors.
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390  Chapter 20  Electric Charge, Force, and Field

The electric field exists at every point in space. When we represent the field by vec-
tors, we can’t draw one everywhere, but that doesn’t mean there isn’t a field at all points. 
Furthermore, we draw vectors as extended arrows, but each vector represents the field 
at only one point—namely, the tail end of the vector. Figure 20.8b illustrates this for the 
electric field of a point charge.

The field concept leads to a shift in our thinking about forces. Instead of the action-
at-a-distance idea that Earth reaches across empty space to pull on the Moon, the field 
concept says that Earth creates a gravitational field and the Moon responds to the field at 
its location. Similarly, a charge creates an electric field throughout the space surrounding 
it. A second charge then responds to the field at its immediate location. Although the field 
reveals itself only through its effect on a charge, the field nevertheless exists at all points, 
whether or not charges are present. Right now you probably find the field concept a bit 
abstract, but as you advance in your study of electromagnetism you’ll come to appreciate 
that fields are an essential feature of our universe, every bit as real as matter itself.

We can use Equation 20.2a as a prescription for measuring electric fields. Place a point 
charge at some location, measure the electric force it experiences, and divide by the charge to 
get the field. In practice, we need to be careful because the field generally arises from some 
distribution of source charges. If the charge we’re using to probe the field—the test charge—
is large, the field it creates may disturb the source charges, altering their configuration and 
thus the field they create. For that reason, it’s important to use a very small test charge.

If we know the electric field E
S

 at a point, we can rearrange Equation 20.2a to find the 
force on any point charge q placed at that point:

Electrophoresis is a widely used application of 
electric fields for separating molecules by size 
and molecular weight. It’s especially useful in 
biochemistry and molecular biology for distin-
guishing larger molecules like proteins and DNA 
fragments. In the commonly used gel electropho-
resis, molecules carrying electric charge move 
through a semisolid but permeable gel under the 
influence of a uniform electric field; the greater 
the charge, the greater the electric force. The gel 
exerts a retarding force that increases with increas-
ing molecular size, with the result that each molec-
ular species moves at a velocity that depends on 
its size and charge. After a given time, the electric 
field is switched off. The locations of the mole-
cules then serve as indicators of their size, with the 
molecules that traveled farthest being the smallest. 
The photo shows a typical gel electrophoresis re-
sult. Here DNA fragments were introduced into 
the seven channels at the top of the gel and then 
moved downward; their final locations indicate 
molecular size. The smaller molecules—those 
with fewer nucleotide base pairs—end up farther 
down on the gel. The electric field is shown by 
the arrow; it needs to point upward because DNA 
fragments carry a negative charge.

E
S

APPLICATION Electrophoresis

	 F
S

= qE
S
  1electric force and field2	 (20.2b)

F
S

 is the electric force … … on a charge q …

… at a point where the electric field is E
S

.

A charged raindrop carrying 10 mC experiences an electric force of 
0.30 N in the +x-direction. What’s the electric field at its location? 
What would the force be on a -5.0@mC drop at the same point?

INTERPRET  In this problem we need to distinguish between elec-
tric force and electric field. The electric field exists with or without 

the charged raindrop present, and the electric force arises when the 
charged raindrop is in the electric field.

DEVELOP  Knowing the electric force and the charge on the 
raindrop, we can use Equation 20.2a, E

S
= F

S
/q, to get the elec-

tric field. Once we know the field, we can use Equation 20.2b, 

Force and Field: Inside a Lightning StormEXAMPLE 20.3

If the charge q is positive, then this force is in the same direction as the field, but if q is 
negative, then the force is opposite to the field direction.

Equations 20.2 show that the units of electric field are newtons per coulomb. Fields of 
hundreds to thousands of N/C are commonplace, while fields of 3 MN/C will tear elec-
trons from air molecules. Sometimes we’re interested in the magnitude of the field but not 
its direction. Then we can use Equations 20.2a and 20.2b without the vector signs. We’ll 
often use the term field strength to be synonymous with the field’s magnitude.

The electric field at any point is the force per unit charge that a charge would experi-
ence at that point. Mathematically,

	 E
S

=
F
S

q
  1electric field2� (20.2a)

E
S

 is the electric field 
at any point.

You can determine E
S

 by measuring the electric force F
S

…

… on a small test charge q.

We can do the same thing with the electric force, defining the electric field as the force 
per unit charge:
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20.4  Fields of Charge Distributions  391

The Field of a Point Charge
Once we know the field of a charge distribution, we can calculate its effect on other 
charges. The simplest charge distribution is a single point charge. Coulomb’s law gives 
the force on a test charge qtest located a distance r from a point charge q: F

S
= 1kqqtest/r

22rn, 
where rn is a unit vector pointing away from q. The electric field arising from q is the force 
per unit charge, or

�THE FIELD IS INDEPENDENT OF THE TEST CHARGE  Does 
the electric field in this example point in the -x-direction 
when the charge is negative? No. The field is independent of 
the particular charge experiencing that field. Here the electric 
field points in the +x-direction no matter what charge you 
put in the field. For a positive charge, the force qE

S
 points in 

the same direction as the field; for a negative charge, q 6 0, 
the force is opposite the field.

Since it’s so closely related to Coulomb’s law for the electric force, we also refer to 
Equation 20.3 as Coulomb’s law. The equation contains no reference to the test charge 
qtest because the field of q exists independently of any other charge. Since rn always points 
away from q, the direction of E

S
is radially outward if q is positive and radially inward if q 

is negative. Figure 20.9 shows some field vectors for a negative point charge, analogous to 
those of the positive point charge in Fig. 20.8b.

FIGURE 20.9  Field vectors for a negative 
point charge.

F
S

= qE
S

, to calculate the force that would act if a different charge 
were at the same point.

EVALUATE  Equation 20.2a gives the electric field:

E
S

=
F
S

q
=

0.30in N
10 mC

= 30in kN/C

Acting on a -5.0@mC charge, this field would result in a force

F
S

= qE
S

= 1-5.0 mC2130in kN/C2 = -0.15in N

ASSESS  Make sense? The force on the second charge is opposite the 
direction of the field because now we’ve got a negative charge in the 
same field.

20.3 A positive point charge is located at the origin of an x–y coordinate system, 
and an electron is placed at a location where the electric field due to the point charge 
is given by E

S
= E01 in + jn2, where E0 is positive. Is the direction of the force on 

the electron (a) toward the origin, (b) away from the origin, (c) parallel to the x-axis, 
or (d) impossible to determine without knowing the coordinates of the electron’s 
position?

G
O

T 
IT

?

20.4  Fields of Charge Distributions
LO 20.5	 Determine the fields of electric charge distributions using superposition.

LO 20.6	 Describe the electric dipole and the field it produces.

LO 20.7	 Determine the fields of continuous charge distributions by integration.

Since the electric force obeys the superposition principle, so does the electric field. That 
means the field of a charge distribution is the vector sum of the fields of the individual 
point charges making up the distribution:

	 E
S

=
F
S

qtest
=

kq

r2  rn  1field of a point charge2	 (20.3)

The electric field E
S

 is the force per unit charge. For a point charge, E
S

 depends on the charge q …

… and on the distance r from the 
charge to the point where the  
field is being evaluated.

The unit vector rn always points 
away from q, regardless of q’s 
sign.

¯̆˙
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392  Chapter 20  Electric Charge, Force, and Field

Here the E
S

i>s are the fields of the point charges qi located at distances ri from the point 
where we’re evaluating the field—called, appropriately, the field point. The rni>s are unit 
vectors pointing from each point charge toward the field point. In principle, Equation 20.4 
gives the electric field of any charge distribution. In practice, the process of summing the 
individual field vectors is often complicated unless the charge distribution contains rela-
tively few charges arranged in a symmetric way.

Finding electric fields using Equation 20.4 involves the same strategy we intro-
duced for finding the electric force; the only difference is that there’s no charge to 
experience the force. The first step then involves identifying the field point. We still 
need to find the appropriate unit vectors and form the vector sum in Equation 20.4. 
Example 20.4 shows how this is done.

Sometimes we’re interested in finding not the electric field but a point or points where 
the field is zero. Conceptual Example 20.2 explores such a case.

Two protons are 3.6 nm apart. Find the electric field at a point be-
tween them, 1.2 nm from one of the protons. Then find the force on an 
electron at this point.

INTERPRET  We follow our electric-force strategy, except that instead 
of identifying the charge experiencing the force, we identify the field 
point as being 1.2 nm from one proton. The source charges are the two 
protons; they produce the field we’re interested in.

DEVELOP  Let’s have the protons define the x-axis, as drawn in  
Fig. 20.10. Then the unit vector rn1 from the left-hand proton toward 
the field point (which we’ve marked P) is + in, while rn2 from the right-
hand proton toward P is - in.

EVALUATE  We now evaluate the field at P using Equation 20.4:

E
S

= E
S

1 + E
S

2 =
ke

r1
2 in +

ke

r2
2 1- in2 = ke a 1

r1
2 -

1

r2
2 b  in

We wrote e for q here because the protons’ charge is the elementary 
charge.

Using e = 1.6 * 10-19 C, r1 = 1.2 nm, and r2 = 2.4 nm gives 
E
S

= 750in MN/C. An electron at P will therefore experience a force 
F
S

= qE = -eE = -0.12in nN.

ASSESS  Make sense? The field points in the positive x-direction, re-
flecting the fact that P is closer to the left-hand proton with its stron-
ger field at P. The force on the electron, on the other hand, is in the 
-x-direction; that’s because the electron is negative (we used q = -e 
for its charge), so the force it experiences is opposite the field. That 
field of almost 1 GN/C sounds huge—but that’s not unusual at the mi-
croscopic scale, where we’re close to individual elementary particles.

Finding the Field: Two ProtonsEXAMPLE 20.4

Unit vectors point from the source
charges toward the field point P.

FIGURE 20.10  Finding the electric field at P.

CONCEPTUAL EXAMPLE 20.2 Zero Field, Zero Force

A positive charge +2Q is located at the origin, and a negative charge 
-Q is at x = a. In which region of the x-axis is there a point where 
the force on a test charge—and therefore the electric field—is zero?

INTERPRET  We’re asked to locate qualitatively a point where the 
field is zero. Our sketch of the situation, Fig. 20.11, shows that the 
two charges divide the x-axis into three regions: (1) to the left of 
2Q (x 6 0), (2) between the charges (0 6 x 6 a), and (3) to the right 
of -Q (x 7 a). We need to determine which region could include a 
point where the electric force on a test charge is zero.

EVALUATE  Consider what would happen to a positive test charge 
placed in each of these three regions. Anywhere in region (1), the test 
charge is closer to the charge with greater magnitude (2Q). That charge 
dominates throughout region (1), where our test charge would experi-
ence a repulsive force (to the left). The electric field, then, can’t be zero 
in region (1). Between the two charges, the repulsive force from 2Q 
on a positive test charge points to the right; so does the attractive force 
from -Q. The field, therefore, can’t be zero in region (2). That leaves 
region (3). Could the field be zero here? Put a positive test charge very 
close to -Q, and it experiences an attractive force toward the left. But 
far away, the distance between 2Q and -Q becomes negligible. The 

	 E
S

= E
S

1 +  E
S

2 +  E
S

3 + g =  a
i

E
S

i = a
 

i

kqi

ri
2  rni	 (20.4)

The electric field E
S

 of a  
distribution of point 
charges…

… is the sum of the fields of the individual point charges.

 ̄ ̆˙ ¯̆˙ ¯̆˙
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FIGURE 20.11  Where is the electric 
field zero? We’ve marked the an-
swer, at x = 3.4a.

The Electric Dipole
One of the most important charge distributions is the electric dipole, consisting of two 
point charges of equal magnitude but opposite sign. Many molecules are essentially di-
poles, so understanding the dipole helps explain molecular behavior (Fig. 20.12). During 
contraction the heart muscle becomes essentially a dipole, and physicians performing 
electrocardiography are measuring, among other things, the strength and orientation of 
that dipole. Antennas used in wireless communications—including radio, TV, wifi, and 
cellphones—are often based on the dipole configuration.

O
-

H
+

H
+

-

+

≃
FIGURE 20.12  A water molecule behaves 
like an electric dipole. Its net charge is 
zero, but regions of positive and nega-
tive charge are separated.

fields of both charges drop off as the inverse square of the distance, 
so at large distances the field of the stronger charge will dominate. 
Therefore there is a point somewhere to the right of -Q where the 
force on a test charge, and therefore the electric field, will be zero.

ASSESS  This answer is consistent with our insight from Example 
20.2 that when we get far from a charge distribution, it begins to re-
semble a point charge with the net charge of the distribution. Here that 
net charge is 2Q -  Q = +Q, so at large distances we should indeed 
have a field pointing away from the charge distribution—and that’s to 
the right in region (3). Although we considered a positive test charge, 
you’ll reach the same conclusion with a negative test charge.

MAKING THE CONNECTION  Find an expression for the position 
where the electric field in this example is zero.

EVALUATE  In Fig. 20.11, we’ve taken the origin at 2Q, so at any po-
sition x in region (3) we’re a distance x from 2Q and a distance x-a 
from -Q. Since we’re to the right of both charges, the unit vector in 
Equation 20.3 for the point-charge field—a vector that always points 
away from the point charge—becomes + in for both charges. Applying 
Equation 20.3, E

S
= 1kq/r22rn, for the fields of the two charges and 

summing gives

E
S

=
k12Q2

x2 in +
k1-Q2
1x - a22 in

If we set this expression to zero, we can cancel k, Q, and in; invert-
ing both sides of the remaining equation gives x2/2 = 1x - a22.  
Finally, taking the square root and solving for x gives the answer: 

x = a22/122 - 12 ≃  3.4a. As a check, note that this point does 
indeed lie to the right of x = a. We’ve marked this point in Fig. 20.11.

A molecule may be modeled approximately as a positive charge q at 
x = a and a negative charge -q at x = -a. Evaluate the electric field 
on the y-axis, and find an approximate expression valid at large dis-
tances 1 � y � W a2.

INTERPRET  Here’s another example where we’ll use our strategy in 
applying Equation 20.4 to calculate the field of a charge distribution. 
We identify the field point as being anywhere on the y-axis and the 
source charges as being {q.

DEVELOP  Figure 20.13 is our drawing. The individual unit vectors 
point from the two charges toward the field point, but the negative 
charge contributes a field opposite its unit vector; we’ve indicated 
the individual fields in Fig. 20.13. Here symmetry makes the y-
components cancel, giving a net field in the -x-direction. So we 
need only the x-components of the unit vectors, which Fig. 20.13 
shows are rnx- = a/r for the negative charge at -a and rnx+ = -a/r 
for the positive charge at a.

EVALUATE  We then evaluate the field using Equation 20.4:

E
S

=
k1-q2

r2  aa
r
b  in +

kq

r2  a-
a
r
b  in = -

2kqa

1a2 + y223/2 in

where in the last step we used r = 2a2 + y2. For � y � W a we can 
neglect a2 compared with y2, giving

E
S

≃ -
2kqa

� y � 3  in  1 � y � W a2

The Electric Dipole: Modeling a MoleculeEXAMPLE 20.5

Here’s the 
field point.

+a is the x-
component of
the displacement
r- from -q to the
field point c

cso the x-component of
the unit vector from -q
is rx-  = a>r c

cand the x-component
of the displacement from
+q is -a, so rx+ = -a>r.nn

u

FIGURE 20.13  Finding the field of an electric dipole.

(continued )

20.4  Fields of Charge Distributions  393
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394  Chapter 20  Electric Charge, Force, and Field

You can show in Problem 54 that the field on the dipole axis is given by

	 E
S

=
2kp

� x � 3 in  a dipole field
for � x � W a, on axis

b 	 (20.6b)

Because the dipole isn’t spherically symmetric, its field depends not only on distance 
but also on orientation; for instance, Equations 20.6 show that the field along the dipole 
axis at a given distance is twice as strong as along the bisector. So it’s important to know 
the orientation of a dipole in space, and therefore we generalize our definition of the di-
pole moment to make it a vector of magnitude p = qd in the direction from the negative 
toward the positive charge (Fig. 20.14).

Example 20.5 shows that the dipole field at large distances decreases as the inverse cube 
of distance. Physically, that’s because the dipole has zero net charge. Its field arises entirely 
from the slight separation of two opposite charges. Because of this separation, the dipole 
field isn’t exactly zero, but it’s weaker and more localized than the field of a point charge. 
Many complicated charge distributions exhibit the essential characteristic of a dipole—that 
is, they’re neutral but consist of separated regions of positive and negative charge—and at 
large distances, such distributions all have essentially the same field configuration.

At large distances the dipole’s physical characteristics q and a enter the equation for 
the electric field only through the product qa. We could double q and halve a, and the di-
pole’s electric field would remain unchanged. At large distances, therefore, a dipole’s elec-
tric properties are characterized completely by its electric dipole moment p, defined as the 
product of the charge q and the separation d between the two charges making up the dipole:

	 p = qd 1dipole moment2	 (20.5)

In Example 20.5 the charge separation was d = 2a, so there the dipole moment was 
p = 2aq. In terms of the dipole moment, the field in Example 20.5 can then be written

	 E
S

= -
kp

� y � 3 in  adipole field for � y � W a,
on perpendicular bisector

b 	 (20.6a)

p
u

+q

-q

d

-

+

FIGURE 20.14  The dipole moment vector 
pS  has magnitude p = qd and points 

from the negative toward the positive 
charge.

20.4 Far from a charge distribution, you measure an electric field strength of 
800 N/C. What will the field strength be if you double your distance from the charge 
distribution, if the distribution consists of (1) a point charge or (2) a dipole?

G
O

T 
IT

?

Continuous Charge Distributions
Although any charge distribution ultimately consists of pointlike electrons and protons, it 
would be impossible to sum all the field vectors from the 1023 or so particles in a typical 
piece of matter. Instead, it’s convenient to make the approximation that charge is spread 
continuously over the distribution. If the charge distribution extends throughout a volume, 
we describe it in terms of the volume charge density r, with units of C/m3. For charge 
distributions spread over surfaces or lines, the corresponding quantities are the surface 
charge density s 1C/m22 and the line charge density l 1C/m2.

ASSESS  Make sense? The dipole has no net charge, so at large distances 
its field can’t have the inverse-square drop-off of a point-charge field.  
Instead the dipole field falls faster, here as 1/ � y � 3. Note that we were 
careful to put absolute value signs on y3; that way, our result applies 
for both positive and negative values of y.

�APPROXIMATIONS  Making approximations requires care. 
Here we’re basically asking for the field when y is so large 
that a is negligible compared with y. So we neglect a2 
compared with y2 when the two are summed, but we don’t 
neglect a when it appears in the numerator, where it isn’t 
being directly compared with y.
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20.4  Fields of Charge Distributions  395

	 E
S

= LdE
S

= L
k dq

r2  rn  afield of a continuous
charge distribution

b 	 (20.7)

The electric field E
S

 of a continuous 
distribution of charges …

dq is an infinitesimal  
charge element.

rn is a unit vector that points away  
from dq, regardless of its sign.

… is determined by integrating the fields 
dE

S
 of infinitesimal charge elements dq.

r is the distance from dq to the point 
where the field is being evaluated.

The limits of this integral include the entire charge distribution.
Calculating the field of a continuous charge distribution involves the same strategy 

we’ve already used: We identify the field point and the source charges—although now the 
source is a continuous charge distribution. Summing the individual field contributions now 
presents us with an integral, and that means writing the unit vectors rn and distances r in 
terms of coordinates over which we can integrate. Setting up the integral involves the same 
strategy we outlined in Chapter 9 to find the center of mass of a continuous distribution of 
matter, and used again in Chapter 10 to find rotational inertias.

rn
rn

rn
E
SP

dq

dq
dq

r
r

r

Charge distribution

dE
S

dE
S

dE
S

FIGURE 20.15  The electric field at P is the 
vector sum of the fields dE

S
 arising from 

the individual charge elements dq, each 
calculated using the appropriate distance 
r and unit vector rn.

A ring of radius a carries a charge Q distributed evenly over the ring. Find 
an expression for the electric field at any point on the axis of the ring.

INTERPRET  We identify the field point as lying anywhere on the 
ring’s axis, and the source charge as the entire ring.

DEVELOP  Let’s take the x-axis to coincide with the ring axis, with 
the center of the ring at x = 0 (Fig. 20.16). The figure shows that the 
y-components of the field contributions from pairs of charge elements 
on opposite sides of the ring cancel; therefore, the net field points in the 
+x-direction (for x 7 0) and we need only the x-components of the 
unit vectors. Those are the same for all unit vectors—namely, rnx = x/r.

EVALUATE  We’re now ready to set up the integral in Equation 20.7.  
Here each charge element contr ibutes the same amount 
dEx = 1k dq/r22rnx = 1k dq/r221x/r2 to the field. Figure 20.16 shows 

that r = 2x2 + a2 = 1x2 + a221/2, so the integral becomes

E = Lring
 dEx = Lring

 
kx dq

1x2 + a223/2 =
kx

1x2 + a223/2 Lring
 dq

The last step follows because we have a fixed field point P, so its coor-
dinate x is a constant for the integration. But the remaining integral is 
just the sum of all the charge elements on the ring—namely, the total 
charge Q. So our result becomes

E =
kQx

1x2 + a223/2  (on@axis field, charged ring)

This is the magnitude; the direction is along the x-axis, away from the 
ring if Q is positive and toward it if Q is negative.

ASSESS  Make sense? At x = 0 the field is zero. A charge placed at 
the ring center is pulled (or pushed) equally in all directions—no net 
force, so no electric field. But for x W a, we get E = kQ/x2—just 
what we expect for a point charge Q. As always, a finite-sized charge 
distribution looks like a point charge at large distances. Problem 73 
shows how you can use the result of this example to find the electric 
field on the axis of a charged disc, and Problem 75 shows that, once 
again, the field at large distances becomes that of a point charge.

Evaluating the Field: A Charged RingEXAMPLE 20.6

FIGURE 20.16  The electric field of a charged ring points along the 
ring axis, since field components perpendicular to the axis cancel  
in pairs.

To calculate the field of a continuous charge distribution, we divide the charged re-
gion into very many small charge elements dq, each small enough that it’s essentially 
a point charge. Each dq then produces an electric field dE

S
 given by Equation 20.3: 

dE
S

= 1k dq/r22rn. We then form the vector sum of all the dE
S
>s (Fig. 20.15). In the limit of 

infinitely many infinitesimally small dq’s and their corresponding dE
S
>s, that sum becomes 

an integral and we have
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396  Chapter 20  Electric Charge, Force, and Field

A long, straight electric power line coincides with the x-axis and car-
ries a uniform line charge density l (unit: C/m). Find the electric field 
on the y-axis using the approximation that the wire is infinitely long.

INTERPRET  We identify the field point as being a distance y from the 
wire, and the source charge as the whole wire.

DEVELOP  Figure 20.17 is our drawing, showing a coordinate system 
with the field point P along the y-axis. We divide the wire into small 
charge elements dq and note that field contributions from two such el-
ements dq on opposite sides of the y-axis contribute fields dE

S
 whose 

x-components cancel. Then we need only the y-component of each unit 
vector, and Figure 20.17 shows that’s rny = y/r, where r = 2x2 + y2.

EVALUATE  We’re now ready to set up the integral in Equation 20.7. 
As described in Chapter 9’s integral strategy, we need to relate dq to a 
geometric variable so we can do the integral. Here our wire has charge 
density l C/m, so if a charge element has length dx, then its charge is 
dq = l dx. Putting all this together gives the y-component of the field 
from an arbitrary dq anywhere on the wire:

dEy =
k dq

r2  rny =
kl dx

r2  
y

r
=

kly

1x2 + y223/2  dx

where we used r = 2x2 + y2. Since the x-components cancel, we 
can sum—that is, integrate—the y-components to get the net field:

 E = Ey = L
+∞

-∞

kly dx

1x2 + y223/2 = klyL
+∞

-∞

dx

1x2 + y223/2

 = kly c x

y22x2 + y2
d

-∞

+∞
= kly c 1

y2 - a-
1

y2 b d =
2kl

y

Here we used the integral table in Appendix A and applied the limits 
x = {∞ . Our result is the field’s magnitude; the direction is away 
from the line for positive l and toward the line for negative l.

ASSESS  Make sense? For an infinite line there’s nothing to favor 
one direction along the line over another, so the only way the field 
can point is radially, away from or toward the line (Fig. 20.18). And 
because the line is infinite, it never resembles a point no matter how 
far away we are. As a result the field falls more slowly than the field 
of a point charge—in this case, as 1/y. If we let r designate the ra-
dial distance from the line rather than the diagonal in Fig. 20.17, then 
the field decreases as 1/r. An infinite line is impossible, but our result 
holds approximately for finite lines of charge as long as we’re much 
closer to the line than its length, and not near an end. Far from a finite 
line, on the other hand, its field will resemble that of a point charge. 
You can explore the finite charged line in Problem 72.

Line Charge: A Power Line’s Field
Worked Example with Variation Problems

EXAMPLE 20.7

This is the y-
component of the
displacement r
from dq to P c

cso the y-
component of
the unit vector r
is y>r.

n

u

FIGURE 20.17  The field of a charged line is the vector sum of the 
fields dE

S
 from all the individual charge elements dq along the line.

FIGURE 20.18  Field vectors for an infinite line of pos-
itive charge point radially outward, with magnitude 
decreasing inversely with distance.

20.5  Matter in Electric Fields
LO 20.8	 Determine the motion of charged particles in electric fields.

LO 20.9	 Determine forces and torques on electric dipoles in electric fields.

Electric fields give rise to forces on charged particles. Because matter consists of such 
particles, much of the behavior of matter is fundamentally determined by electric fields.

Point Charges in Electric Fields
The motion of a single charge in an electric field is governed by the definition of the elec-
tric field, F

S
= qE

S
, and Newton’s law, F

S
= ma

!
. Combining these equations gives the 

acceleration of a particle with charge q and mass m in an electric field E
S

:

	 a
!

=
q
m

E
S

	 (20.8)
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20.5  Matter in Electric Fields  397

This equation shows that it’s the charge-to-mass ratio, q/m, that determines a particle’s re-
sponse to an electric field. Electrons, nearly 2000 times less massive than protons but car-
rying the same charge, are readily accelerated by electric fields. Many practical devices, 
from X-ray machines to fluorescent lights, use electrons accelerated in electric fields.

When the electric field is uniform, problems involving the motion of charged particles 
reduce to the constant-acceleration problems of Chapter 2. An ink-jet printer is one appli-
cation; a pair of oppositely charged plates creates a uniform field that “steers” charged ink 
droplets to the right place on the page (Fig. 20.19).

When the field isn’t uniform, it’s generally more difficult to calculate particle trajecto-
ries. An important exception is a particle moving perpendicular to a field that points radi-
ally. Under appropriate conditions, the result is uniform circular motion (see Section 5.3), 
as shown in the next example.

+ + + + + + + +

- - - - - - - -q

FIGURE 20.19  A pair of parallel charged 
plates creates a uniform electric field that 
deflects a charged particle. Can you tell 
the sign of the charge q?

Two oppositely charged curved metal plates establish an electric 
field given by E = E01b/r2, where E0 and b are constants with the 
units of electric field and length, respectively. The field points to-
ward the center of curvature, and r is the distance from the center. 
Find an expression for the speed v with which a proton entering 
vertically from below in Fig. 20.20 will leave the device moving 
horizontally.

INTERPRET  This problem is about charged-particle motion in 
an electric field that points radially. We’re asked for the condition 
that will have a proton exiting the field region moving horizontally. 
Figure 20.20 shows that this requires its trajectory to be a circular arc.

DEVELOP  Equation 20.8, a
!

= 1q/m2 E
S

, determines the accelera-
tion of a charged particle in an electric field. Here we want uniform 
circular motion, so our plan is to write this equation with the given 
field and the acceleration v2/r that we know applies in circular motion. 
Then we’ll solve for v.

EVALUATE  Under these conditions, Equation 20.8 becomes

a =
v2

r
=

eE
m

=
e
m

 E0 

b
r

We then solve to get v = 1eE0b/m.

ASSESS  Make sense? Strengthen the field by increasing E0 or b, and 
the electric force becomes greater. For a given speed, that would result 
in more bending of the trajectory; to maintain the desired trajectory, 
we must therefore increase the speed. Note that the radius r canceled 
from our equations, showing that it doesn’t matter where the protons 
enter the device. That’s because the 1/r decrease in field strength 
matches the 1/r dependence of the acceleration. This device is called 
an electrostatic analyzer because it can sort charged particles by speed 
and charge-to-mass ratio. Spacecraft use such analyzers to character-
ize charged particles in interplanetary space.

Particle Motion: An Electrostatic AnalyzerEXAMPLE 20.8

E
S

Too fast, and 
protons hit the
outer wall.

Just right, and 
protons emerge
horizontally.

Too slow, and
protons hit the
inner wall.

Analyzer

Proton beam

FIGURE 20.20  An electrostatic analyzer.

20.5 An electron, a proton, a deuteron (a neutron combined with a proton), a 
helium-3 nucleus (2 protons, 1 neutron), a helium-4 nucleus (2 protons, 2 neutrons), 
a carbon-13 nucleus (6 protons, 7 neutrons), and an oxygen-16 nucleus (8 protons,  
8 neutrons) all find themselves in the same electric field. Rank in order their accel-
erations from lowest to highest under the assumption (only approximately correct) 
that the neutron and proton have the same mass and that the mass of a composite 
particle is the sum of the masses of its constituent neutrons and protons. Note any 
that have the same acceleration.

G
O

T 
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?

Dipoles in Electric Fields
Earlier in this chapter we calculated the field of an electric dipole, which consists of two op-
posite charges of equal magnitude. Here we study a dipole’s response to electric fields. Since 
the dipole provides a model for many molecules, our results help explain molecular behavior.

M20_WOLF1186_04_GE_C20.indd   397 19/05/20   1:02 AM

Sam
ple

 pa
ge

s



Figure 20.21 shows a dipole with charges {q separated a distance d, located in a uni-
form electric field. The dipole moment vector p

!
 has magnitude qd and points from the 

negative to the positive charge (recall Fig. 20.14). Since the field is uniform, it’s the same 
at both ends of the dipole. Since the dipole charges are equal in magnitude but opposite in 
sign, they experience equal but opposite forces {qE

S
—and therefore there’s no net force 

on the dipole.
However, Fig. 20.21 shows that the dipole does experience a torque that tends to align 

it with the field. In Chapter 11 we described torque as the cross product of the position 
vector with the force: t

!
= r

!
* F

S
, where the magnitude of the torque vector is rF sin u 

and its direction is given by the right-hand rule. Figure 20.21 thus shows that the torque 
about the center of the dipole due to the force on the positive charge has magnitude 
t+ = rF sin u = 11

2 d21qE2 sin u. The torque associated with the negative charge has the 
same magnitude, and both torques are in the same direction since both tend to rotate the 
dipole clockwise. Thus the net torque has magnitude t = qdE sin u. Applying the right-
hand rule shows that this torque is into the page. But qd is the magnitude of the dipole 
moment p

!
, and Fig. 20.21 shows that u is the angle between the dipole moment vector and 

the electric field E
S

; therefore, we can write the torque vectorially as

	 t
!

= p
!

* E
S
  1torque on a dipole2	 (20.9)

Because of this torque, the electric field does work on a dipole as it rotates. The electric 
force is conservative, so that work results in a change in potential energy. In Chapter 7  
we defined potential-energy change as the negative of the work done by a conservative 
force: ∆U = -W. Here we’re dealing with rotational motion, and Equation 10.19 shows 
that the work done in a rotation from angular position u1 to u2 is given by W = 1u2

u1
t du.  

Figure 20.21 shows that we’re taking u = 0 when the dipole is aligned with the field. The 
figure also shows that the direction of increasing u is counterclockwise or, in terms of ro-
tational vectors, out of the page. The torque, in contrast, is clockwise or, vectorially, into 
the page. Thus the sign of the torque is opposite the angular change, so we need to write 
t = -pE sin u in the integral for the work. Let’s now consider a dipole that’s initially per-
pendicular to the field, so u1 = p/2. Then the work done by the electric force as the dipole 
rotates to an arbitrary angle u becomes

W = L
u

p/2
t du = L

u

p/2
1-pE sin u2 du = -pE3-  cos u4 up/2 = pE cos u

The potential-energy change is the negative of this work, and we note that pE cos u can 
be expressed as the dot product p

!
  # E

S
, so we can write the potential energy as

	 U = -p
!
  # E

S
	 (20.10)

where U = 0 corresponds to the dipole at right angles to the field.
When the electric field isn’t uniform, the charges at opposite ends of the dipole expe-

rience forces that differ in magnitude and/or aren’t exactly opposite in direction. Then the 
dipole experiences a net force as well as a torque (Fig. 20.22). An important instance of 
this effect is the force on a dipole in the field of another dipole (Fig. 20.23). Because the 
dipole field falls off rapidly with distance and because the dipole responding to the field 
has closely spaced charges of equal magnitude but opposite sign, the dipole–dipole force 
is quite weak and falls extremely rapidly with distance. This weak force, which Fig. 20.23 
shows to be attractive, is partly responsible for the van der Waals interaction between gas 
molecules that we mentioned in Chapter 17.

Conductors, Insulators, and Dielectrics
Bulk matter contains vast numbers of point charges—namely, electrons and protons. In 
some matter—notably metals, ionic solutions, and ionized gases—individual charges are 
free to move throughout the material. In these conductors, the application of an electric 
field results in the ordered motion of electric charge that we call electric current. We’ll 
consider conductors and current in later chapters.

E2
S

E1
S

F2
S

Fnet
SF1

S

-

+

FIGURE 20.22  When the electric field dif-
fers in magnitude or direction at the two 
ends of the dipole, the dipole experiences 
a nonzero net force as well as a torque.

p
u

E
S

F-
S

F+
S

-

+
u

Torque rotates
dipole clockwise.

d

FIGURE 20.21  A dipole in a uniform electric 
field experiences a torque but no net force.

E+
S

F+
S

E-
S

F-
S

- -+ +

Force on negative end 
of B is stronger;  hence
net force is toward A.

A B

FIGURE 20.23  Dipole B aligns with the field 
of dipole A and then experiences a net 
force toward A.
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20.5  Matter in Electric Fields  399

Materials in which charge is not free to move are insulators, since they can’t carry elec-
tric current. Insulators still contain charges—it’s just that their charges are bound into neutral 
molecules. Some molecules, like water, have intrinsic dipole moments and therefore rotate 
in response to an applied electric field. Even if they don’t have dipole moments, molecules 
may respond to an electric field by stretching and acquiring induced dipole moments 
(Fig. 20.24). In either case, the application of an electric field results in the alignment of mo-
lecular dipoles with the field (Fig. 20.25). The fields of the dipoles, pointing from their posi-
tive to their negative charges, then reduce the applied electric field within the material. We’ll 
explore the consequences of this effect further in Chapter 23. Materials in which molecules 
either have intrinsic dipole moments or acquire induced moments are called dielectrics.

If the electric field applied to a dielectric becomes too great, individual charges are 
ripped free, and the material then acts like a conductor. Such dielectric breakdown can 
cause severe damage in materials and in electric equipment (Fig. 20.26). On a larger scale, 
lightning results from dielectric breakdown in air.

p
u

E
S

FIGURE 20.24  A molecule stretches in response to an electric field, acquiring a dipole moment.

The torque on dipoles in electric fields forms the basis of two widespread 
contemporary technologies: the microwave oven and the liquid-crystal 
display (LCD).

A microwave oven works by generating an electric field whose direction 
changes several billion times per second. Water molecules, whose dipole mo-
ment is much greater than most others, attempt to align with the field. But the 
field is changing, so the molecules swing rapidly back and forth. As they jostle 
against each other, the energy they gain from the field is dissipated as heat that 
cooks the food.

E
S

Liquid crystals consist of
dipole-like molecules that
all align in the same 
direction.

Applying an
electric field
changes that
orientation.

Normal
liquid

Liquid
crystal

Aligned by
external field

Computer displays, TVs, cameras, cell phones, watches, and many other 
devices display visual images using liquid crystals. These unique materials 
combine the fluidity of a liquid with the order of a solid. The liquid crystal 
consists of long molecules whose chemical structure results in a dipole-like 
charge separation. In response to each others’ electric fields, the molecules 
tend to align. As the figure shows, an external electric field can rotate the the 
dipoles that comprise the liquid crystal, thus, altering the material’s optical 

properties. With optical components we’ll study in Chapter 29, different sec-
tions of a liquid-crystal display can then be made to appear visible or invis-
ible. Liquid-crystal displays consume very little power, but they generate no 
light of their own and therefore most have a built-in light source. This photo 
of an iPhone shows its high-resolution display; also shown is a microphoto 
of the liquid crystals.

APPLICATION Microwave Cooking and Liquid Crystals
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Internal field
from dipoles

Net field in dielectric

FIGURE 20.25  Alignment of molecular 
dipoles in a dielectric reduces the electric 
field within the dielectric.

FIGURE 20.26  Dielectric breakdown in 
a solid piece of Plexiglas produced this 
striking fractal pattern that marks perma-
nent changes in the material.
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Key Concepts and Equations

Chapter 20 Summary

Big Idea
This chapter introduces several big ideas. First is electric charge, a fundamental property of matter that comes in positive and negative forms. Like 
charges repel and opposites attract; this is the electric force. It’s convenient to define the electric field as the force per unit charge that a charge 
would experience if placed in the vicinity of other charges. Both force and field obey the superposition principle, meaning that the effects of sev-
eral charges add vectorially.

The electric field is the force per unit 
charge, E

S
= F

S
/q, and therefore the 

force a given charge q experiences in a 
field is F

S
= qE

S
.

Applications
A dipole consists of equal but opposite charges {q a distance d apart. For 
distances large compared with d, the dipole field drops as 1/r3, and the di-
pole is completely characterized by its dipole moment p = qd.

p
u

- +
d

+q-q

Point charges respond to 
electric fields with accel-
eration proportional to the 
charge-to-mass ratio q/m.

E
S Analyzer

Electrostatic analyzer

E
S

F
S

Electric field
at P P

q
Put a charge q at P, and 
the force on q is F = qE.

SS

Coulomb’s law describes the electric force between point 
charges:

rn

rn

kq1q2

r2

F12
S

F12 = 

r

q1 q2

S

The field of a point charge follows from Coulomb’s law:

E
S

=
kq

r2  rn

Field is stronger closer
to the charge.

Field weakens with
increasing distance from
the charge.

Fields of charge distributions are found by summing fields of individual point 
charges, or by integrating in the case of continuously distributed charge:

k dq
r2

kq
ri

2a
i

E1

E2

E3

r1q1

q2

q3

r2 r3
dE

dE

dE

P

P

dq

dq
dq

r
r

r

E1P2 = E1 + E2 + E3 = ri E1P2 =  dE = rL L

r1n

r2n

r3n

n n

rn

rn
rn

S
S

S

S S S S

S

S

S

S S

The field of an in-
finite line drops 
as 1/r: E = 2kl/r, 
with l the charge 
per unit length. 
This is a good ap-
proximation to the 
field near an elon-
gated structure like 
a wire.

A dipole in an electric field experiences a torque that tends to align it 
with the field: t

!
= p

!
* E

S
.

p
u

E
S

Torque rotates
dipole clockwise.

-

+
F+
S

F-
S

If the field is nonuniform, there’s also a net force on the dipole.

Dielectrics are insulating materi-
als whose molecules act like electric 
dipoles.

-

+

-

+

-

+

-

+

-

+

-
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Exercises and Problems  401

Exercises and Problems

Exercises

Section 20.1  Electric Charge
11.	 Suppose the electron and proton charges differed by one part in 

one billion. Estimate the net charge on your body, assuming it 
contains equal numbers of electrons and protons.

12.	 A typical lightning flash delivers about 25 C of negative charge 
from cloud to ground. How many electrons are involved?

13.	 Protons and neutrons are made from combinations of the two 
most common quarks, the u quark (charge +2

3 e) and the d quark 
(charge -1

3 e). How could three of these quarks combine to make 
(a) a proton and (b) a neutron?

14.	 Earth carries a net charge of about -5 * 105 C. How many more 
electrons are there than protons on Earth?

15.	 As they fly, honeybees may acquire electric charges of about 
180 pC. Electric forces between charged honeybees and spider 
webs can make the bees more vulnerable to capture by spiders. 
How many electrons would a honeybee have to lose to acquire a 
charge of +180 pC?

Section 20.2  Coulomb’s Law
16.	 The electron and proton in a hydrogen atom are 52.9 pm apart. 

Find the magnitude of the electric force between them.
17.	 An electron at Earth’s surface experiences a gravitational force 

meg. How far away can a proton be and still produce the same 
force on the electron? (Your answer should show why gravity is 
unimportant on the molecular scale!)

18.	 You break a piece of Styrofoam packing material, and it releases 
lots of little spheres whose electric charge makes them stick an-
noyingly to you. If two of the spheres carry equal charges and 
repel with a force of 20 mN when they’re 17 mm apart, what’s 
the magnitude of the charge on each?

19.	 A charge q is at the point x = 5 m, y = 0 m. Write expressions 
for the unit vectors you would use in Coulomb’s law if you 
were finding the force that q exerts on other charges located at  
(a) x = 5 m, y = 2.5 m; (b) the origin; and (c) x = 7 m, y = 3.5 m. 
You’re not given the sign of q. Why doesn’t this matter?

BIO

For Thought and Discussion

1.	 Conceptual Example 20.1 shows that the gravitational force 
between an electron and a proton is about 10-40 times weaker 
than the electric force between them. Since matter consists 
largely of electrons and protons, why is the gravitational force 
important at all?

2.	 A free neutron is unstable and soon decays to other particles, one 
of them a proton. Must there be others? If so, what electric prop-
erties must it or they have?

3.	 Where in Fig. 20.5 could you put a third charge so it would 
experience no net force? Would it be in stable or unstable 
equilibrium?

4.	 Equation 20.3 gives the electric field of a point charge. Does the 
direction of (a) rn or (b) E

S
depend on whether the charge is posi-

tive or negative?
5.	 Is the electric force on a charged particle always in the direction 

of the field? Explain.
6.	 Why does a dipole, which has no net charge, produce an electric field?
7.	 The ring in Example 20.6 carries total charge Q, and the point P 

is the same distance r = 2x2 + a2 from all parts of the ring. So 
why isn’t the electric field of the ring just kQ/r2?

8.	 A spherical balloon is initially uncharged. If you spread positive 
charge uniformly over the balloon’s surface, would it expand or con-
tract? What would happen if you spread negative charge instead?

9.	 Why should there be a force between two dipoles, which each 
have zero net charge?

10.	 Dipoles A and B are both located in the field of a point charge 
Q, as shown in Fig. 20.27. Does either experience a net torque? 
A net force? If each dipole is released from rest, qualitatively 
describe its subsequent motion.

Mastering Physics

BIO Biology and/or medicine-related problems  DATA Data problems  ENV Environmental problems  CH Challenge problems  COMP Computer problems

Go to www.masteringphysics.com to access assigned homework and self-study tools such as 
Dynamic Study Modules, practice quizzes, video solutions to problems, and a whole lot more!

Learning Outcomes  After finishing this chapter you should be able to:

LO 20.1	 Describe electric charge as a fundamental property of matter.
For Thought and Discussion Questions 20.1, 20.2, 20.8; 
Exercises 20.11, 20.12, 20.13, 20.14, 20.15

LO 20.2	 Use Coulomb’s law to calculate the forces between charges.
Exercises 20.16, 20.17, 20.18, 20.19, 20.20; Problems 
20.44, 20.57, 20.58

LO 20.3	 Use the superposition principle to calculate forces involving 
multiple charges.
For Thought and Discussion Question 20.3; Problems 
20.46, 20.47, 20.48, 20.49, 20.52

LO 20.4	 Describe the concept of electric field.
For Thought and Discussion Questions 20.4, 20.5; Exercises 
20.21, 20.22, 20.23, 20.24, 20.25, 20.26; Problem 20.50

LO 20.5	 Determine the fields of electric charge distributions using 
superposition.

For Thought and Discussion Question 20.7; Exercises 
20.27, 20.28; Problems 20.51, 20.56, 20.59

LO 20.6	 Describe the electric dipole and the field it produces.
For Thought and Discussion Questions 20.6, 20.9; Problems 
20.53, 20.54, 20.55, 20.67, 20.69, 20.70, 20.72

LO 20.7	 Determine the fields of continuous charge distributions by 
integration.
Exercises 20.29, 20.30, 20.31; Problems 20.61, 20.64, 
20.68, 20.71, 20.73, 20.74, 20.75, 20.76, 20.77, 20.78

LO 20.8	 Determine the motion of charged particles in electric fields.
Exercises 20.32, 20.33, 20.34, 20.35; Problems 20.60, 20.63

LO 20.9	 Determine forces and torques on electric dipoles in electric 
fields.
For Thought and Discussion Questions 20.9, 20.10; 
Problems 20.62, 20.65, 20.66

- +

- +

A

-q +q

+Q B

-q +q

FIGURE 20.27  For Thought and Discussion 10
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402  Chapter 20  Electric Charge, Force, and Field

20.	 A proton is at the origin and an electron is at the point 
x = 0.41 nm, y = 0.36 nm. Find the electric force on the proton.

Section 20.3  The Electric Field
21.	 An electron experiences an electric force of 0.61 nN. What’s the 

field strength at its location?
22.	 Find the magnitude of the electric force on a 6.0@mC charge in a 

50-N/C electric field.
23.	 A 75-nC charge experiences a 144-mN force in a certain electric 

field. Find (a) the field strength and (b) the force that a 35@mC 
charge would experience in the same field.

24.	 The electric field inside a cell membrane is 8.0 MN/C. What’s 
the force on a singly charged ion in this field?

25.	 A -3.0@mC charge experiences a 9.0in@N electric force in a certain 
electric field. What force would a proton experience in the same field?

26.	 The electron in a hydrogen atom is 52.9 pm from the proton. At this 
distance, what’s the strength of the electric field due to the proton?

Section 20.4  Fields of Charge Distributions
27.	 In Fig. 20.28, point P is midway  

between the two charges. Find the 
electric field in the plane of the page 
(a) 5.0 cm to the left of P, (b) 5.0 cm 
directly above P, and (c) at P.

28.	 The water molecule’s dipole moment 
is 6.17 * 10-30 C #m. What would be the separation distance if 
the molecule consisted of charges {e? (The effective charge is 
actually less because H and O atoms share the electrons.)

29.	 The electric field 22 cm from a long wire carrying a uniform line charge 
density is 1.9 kN/C. What’s the field strength 38 cm from the wire?

30.	 Find the line charge density on a long wire if the electric field 39 cm 
from the wire has magnitude 210 kN/C and points toward the wire.

31.	 Find the magnitude of the electric field due to a charged ring of radius a 
and total charge Q on the ring axis at distance a from the ring’s center.

Section 20.5  Matter in Electric Fields
32.	 In his famous 1909 experiment that demonstrated quantization 

of electric charge, R. A. Millikan suspended small oil drops in an 
electric field. With field strength 20 MN/C, what mass drop can 
be suspended when the drop carries 10 elementary charges?

33.	 How strong an electric field is needed to accelerate electrons in 
an X-ray tube from rest to one-tenth the speed of light in a dis-
tance of 4.7 cm?

34.	 A proton moving to the right at 3.3 * 105 m/s enters a region where 
a 60-kN/C electric field points to the left. (a) How far will the proton 
get before it momentarily stops? (b) Describe its subsequent motion.

35.	 An electrostatic analyzer like that of Example 20.8 has 
b = 7.5 cm. What value of E0 will enable the device to select 
protons moving at 84 m/s?

Example Variations
The following problems are based on two examples from the text. Each 
set of four problems is designed to help you make connections that 
enhance your understanding of physics and to build your confidence 
in solving problems that differ from ones you’ve seen before. The first 
problem in each set is essentially the example problem but with differ-
ent numbers. The second problem presents the same scenario as the 
example but asks a different question. The third and fourth problems 
repeat this pattern but with entirely different scenarios.

36.	 Example 20.2:	Charges on raindrops vary widely in both magni-
tude and sign. Consider a case where the two drops on the x-axis 
in Example 20.2 are 2.18 mm apart and have charge q = 645 nC, 
while the third drop is 12.3 mm up the y-axis and has charge 
Q = -1.87 mC. Find the electric force on the upper drop.

BIO

5.0 cm

P+ 2.0 oC - 2.0 oC

FIGURE 20.28  Exercise 27

37.	 Example 20.2:	Suppose that all three raindrops in Example 20.2 
have equal charges and that their positions form an equilateral tri-
angle with side 3.36 mm. If the electric force on the upper charge 
is 96.2 jnN, (a) what’s the magnitude of the charge? (b) Can you 
determine the sign of the charge from the information given?

38.	 Example 20.2:	(a) Repeat Example 20.2 to find the force on Q, now 
taking the right-hand charge on the x-axis to be -q . (b) For y W a, 
how does the force you found in (a) depend on the distance y?

39.	 Example 20.2:	(a) Use calculus to show that the maximum force 
in the situation of Example 20.2 occurs when y = a>22, and 
(b) find the magnitude of that maximum force.

40.	 Example 20.7:	A 1.00-km length of power line carries a total 
charge of 264 mC distributed uniformly over its length. Find the 
magnitude of the electric field 54.3 cm from the axis of the power 
line, and not near either end (staying away from the ends means 
you can approximate the field as that of an infinitely long wire).

41.	 Example 20.7:	A uniformly charged wire is 2.18 m long and 
0.15 mm in diameter. You measure the electric field 1.20 cm from 
the wire’s axis, not near either end, and you find it to be 455 
kN/C, pointing toward the wire. Find the total charge on the wire.

42.	 Example 20.7:	A thin rod 
of length L lies on the x-axis 
with its center at the origin, 
as shown in Fig. 20.29. The 
rod carries charge Q dis-
tributed uniformly over its 
length. (a) Modify the cal-
culation of Example 20.7 
to find an expression for 
the electric field at point A in Fig. 20.29, located on the positive 
y-axis an arbitrary distance y from the origin (but with y large 
enough to put point A outside the thin rod). (b) Show that your 
result reduces to the field of a point charge Q when y W L.

43.	 Example 20.7:	A thin rod of length L lies on the x-axis with 
its center at the origin, as shown in Fig. 20.29. The rod carries 
charge Q distributed uniformly over its length. (a) Find an ex-
pression for the electric field at point B in Fig. 20.29, located on 
the positive x-axis a distance x from the origin, where x 7 L>2, 
so that point B is beyond the right end of the rod. (b) Show that 
your result reduces to the field of a point charge Q when x W L .

Problems
44.	 Two charges, of which one has a  magnitude three times as large 

as the other’s, are located 14.5 cm apart and experience an attrac-
tive force of 156 N. (a) What’s the magnitude of the larger 
charge? (b) Can you determine the sign of the larger charge?

45.	 A proton is on the x-axis at x = 1.3 nm. An electron is on the  
y-axis at y = 0.86 nm. Find the net force the two exert on a  
helium nucleus (charge +2e) at the origin.

46.	 A charge 3q is at the origin, and a charge -2q is on the posi-
tive x-axis at x = a. Where would you place a third charge so it 
would experience no net electric force?

47.	 A negative charge -q lies midway between two positive charges 
+Q. What must Q be such that the electric force on all three 
charges is zero?

48.	 In Fig. 20.30, take q1 = 68 mC, q2 =   
-34 mC, and q3 = 15 mC. Find the 
electric force on q3.

49.	 In Fig. 20.30, take q1 = 21 mC and 
q2 = 18 mC. If the force on q1 points 
in the -x-direction, find (a) q3 and 
(b) the magnitude of the force on q1.

x

y

A 

B 

L

FIGURE 20.29  Problems 42 and 43

x (m)

y (m)

2

1

1 2 3

q1

q3

q2

FIGURE 20.30  Problems 
48 and 49
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50.	 DNA fragments introduced into an electrophoresis apparatus (see 
Application, page 390) generally carry negative charges equiv-
alent to two extra electrons per base pair of nucleotides in the 
fragment. The table below shows the forces on several DNA 
fragments in an electrophoresis apparatus, as a function of the 
number of base pairs. Plot these data, establish a best-fit line, and 
use the resulting slope to determine the strength of the electric 
field in the electrophoresis apparatus.

Base pairs 400 800 1200 2000 3000 5000

Force (pN) 0.235 0.472 0.724 1.15 1.65 2.87

51.	 A proton is at the origin and an ion at x = 8.0 nm. If the electric 
field is zero at x = -4.0 nm, what’s the ion’s charge?

52.	 Four equal charges Q are at the corners of a square of side a. Find 
an expression for the magnitude of the force on each charge.

53.	 A dipole lies on the y-axis and consists of an electron at y = 0.60 nm 
and a proton at y = -0.60 nm. Find the electric field (a) midway 
between the two charges; (b) at the point x = 2.0 nm, y = 0 nm; 
and (c) at the point x = -20 nm, y = 0 nm.

54.	 Show that the field on the x-axis for the dipole of Example 20.5 
is given by Equation 20.6b, for � x � W a.

55.	 You’re 1.44 m from a charge distribution that is well under 1 cm 
in size. You measure an electric field strength of 296 N/C due 
to this distribution. You then move to a distance of 2.16 m from 
the distribution, where you measure a field strength of 87.7 N/C. 
What’s the net charge of the distribution? Hint: Don’t try to cal-
culate the charge. Determine instead how the field decreases with 
distance, and from that infer the charge.

56.	 Three identical charges q form an equilateral triangle of side a, 
with two charges on the x-axis and one on the positive y-axis. (a) 
Find an expression for the electric field at points on the y-axis 
above the uppermost charge. (b) Show that your result reduces to 
the field of a point charge 3q for y W a.

57.	 Two identical small metal spheres initially carry charges q1  
and q2. When they’re 1.0 m apart, they experience a 2.5-N attrac-
tive force. Then they’re brought together so charge moves from 
one to the other until they have the same net charge. They’re 
again placed 1.0 m apart, and now they repel with a 2.5-N force. 
What were the original charges q1 and q2?

58.	 Two 32.0@mC charges are attached to opposite ends of a spring 
with spring constant k = 135 N/m and equilibrium length  
49.3 cm. By how much does the spring stretch? Hint: You’ll need 
to use a computer or advanced calculator to solve the cubic equa-
tion that arises in this problem.

59.	 A positive charge Q is located at the origin, and another charge q 
is at x = a, where a 7 0. Given that the electric field is zero at 
x = 2a, find an expression for q in terms of Q.

60.	 An electron is moving in a circular path around a long, uniformly 
charged wire carrying 1.4 nC/m. What’s the electron’s speed?

61.	 Find the line charge density on a long wire if a 6.5@mg particle 
carrying 2.2 nC describes a circular orbit about the wire with 
speed 270 m/s.

62.	 A dipole with dipole moment 
1.6 nC # m is oriented at 30° to 
a 5.0-MN/C electric field. Find 
(a) the magnitude of the torque 
on the dipole and (b) the work 
required to rotate the dipole un-
til it’s antiparallel to the field.

63.	 You have a job examining patent 
applications. You’re presented 
with the device in Fig. 20.31, 
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which its inventor claims will separate isotopes of a particular ele-
ment. Atoms are first stripped completely of their electrons, then ac-
celerated from rest through an electric field chosen to give the desired 
isotope exactly the right speed to pass through the electrostatic ana-
lyzer (see Example 20.8). Will the device work?

64.	 A 5.0@mm strand of DNA carries charge +e per nm of length. 
Treating it as a charged line, what’s the electric field strength  
21 nm from the DNA, not near either end?

65.	 Heating in a microwave oven occurs as water molecules ro-
tate back and forth to align their dipole moments with a rap-
idly changing electric field. Given water’s dipole moment of 
6.17 * 1030 C·m, what’s the energy change when a water mole-
cule, with its dipole moment initially opposite a 2.95-kN/C elec-
tric field, swings to align with the field?

66.	 A d ipole  wi th 
charges {q and 
separation 2a is 
located a distance 
x  from a point 
charge +Q, ori-
ented as shown in 
Fig. 20.32. Find 
expressions for the magnitude of (a) the net torque and (b) the 
net force on the dipole, both in the limit x W a. (c) What’s the 
direction of the net force?

67.	 You’re taking physical chemistry, and your professor is discussing 
molecular dipole moments. Water, he says, has a dipole moment 
of “1.85 debyes,” while carbon monoxide’s dipole moment is only 
“0.12 debye.” Your physics professor wants these moments ex-
pressed in SI. She tells you that the atomic separation in these two 
covalent compounds is about the same, and asks what that indicates 
about the way shared charge is distributed. What do you tell her?

68.	 The electric field on the axis of a uniformly charged ring has magni-
tude 340 kN/C at a point 10 cm from the ring center. The magnitude 
25 cm from the center is 110 kN/C; in both cases the field points 
away from the ring. Find (a) the ring’s radius and (b) its charge.

69.	 An e lec tr ic  quadrupole 
consists of two oppositely 
directed dipoles in close 
proximity. (a) Calculate the 
field of the quadrupole shown 
in Fig. 20.33 for points to the 
right of x = a and (b) show that for x W a the quadrupole field 
falls off as 1/x4.

70.	 Four charges lie at the corners of a square of side a, with the cen-
ter of the square at the origin. The two charges with y = a>2 have 
magnitude Q and are positive. The two charges with y = -a>2 
also have magnitude Q but are negative. (a) Find an expression 
for the magnitude of the electric field for points on the y-axis 
with y 7 a>2. (b) Show that, for y W a, your result exhibits the 
1>y3 falloff you would expect for an electric dipole. (c) Compare 
the result of (b) with Equation 20.6b and write an expression for 
the magnitude of the dipole moment of this four-charge distribu-
tion. Hint: Be careful with your approximation in (b)! If you get 
0 for your answer, then you’ve gone too far. You can neglect a2 
when compared with y2, but you can’t neglect a when compared 
with y or you’ll be throwing out the charge separation that makes 
this distribution resemble a dipole at large distances.

71.	 A straight wire 12 m long carries 28 mC distributed uniformly 
over its length. (a) What’s the line charge density on the wire? 
Find the electric field strength (b) 20 cm from the wire axis, not 
near either end, and (c) 450 m from the wire. Make suitable ap-
proximations in both cases.
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