
Contents
FOREWORD xiii

PREFACE xvii

1 A PRAGMATIC PHILOSOPHY 1

1. The Cat Ate My Source Code 2

2. Software Entropy . 4

3. Stone Soup and Boiled Frogs 7

4. Good-Enough Software . 9

5. Your Knowledge Portfolio 12

6. Communicate! . 18

2 A PRAGMATIC APPROACH 25

7. The Evils of Duplication . 26

8. Orthogonality . 34

9. Reversibility . 44

10. Tracer Bullets . 48

11. Prototypes and Post-it Notes 53

12. Domain Languages . 57

13. Estimating . 64

3 THE BASIC TOOLS 71

14. The Power of Plain Text . 73

15. Shell Games . 77

16. Power Editing . 82

17. Source Code Control . 86

18. Debugging . 90

19. Text Manipulation . 99

20. Code Generators . 102

ix

Sam
ple

 pa
ge

s

x CONTENTS

4 PRAGMATIC PARANOIA 107

21. Design by Contract . 109

22. Dead Programs Tell No Lies 120

23. Assertive Programming . 122

24. When to Use Exceptions 125

25. How to Balance Resources 129

5 BEND, OR BREAK 137

26. Decoupling and the Law of Demeter 138

27. Metaprogramming . 144

28. Temporal Coupling . 150

29. It’s Just a View . 157

30. Blackboards . 165

6 WHILE YOU ARE CODING 171

31. Programming by Coincidence 172

32. Algorithm Speed . 177

33. Refactoring . 184

34. Code That’s Easy to Test 189

35. Evil Wizards . 198

7 BEFORE THE PROJECT 201

36. The Requirements Pit . 202

37. Solving Impossible Puzzles 212

38. Not Until You’re Ready . 215

39. The Specification Trap . 217

40. Circles and Arrows . 220

8 PRAGMATIC PROJECTS 223

41. Pragmatic Teams . 224

42. Ubiquitous Automation . 230

43. Ruthless Testing . 237

44. It’s All Writing . 248

45. Great Expectations . 255

46. Pride and Prejudice . 258

Sam
ple

 pa
ge

s

CONTENTS xi

Appendices

A RESOURCES 261

Professional Societies . 262

Building a Library . 262

Internet Resources . 266

Bibliography . 275

B ANSWERS TO EXERCISES 279

INDEX 309

Sam
ple

 pa
ge

s

Foreword
As a reviewer I got an early opportunity to read the book you are hold-
ing. It was great, even in draft form. Dave Thomas and Andy Hunt have
something to say, and they know how to say it. I saw what they were
doing and I knew it would work. I asked to write this foreword so that I
could explain why.

Simply put, this book tells you how to program in a way that you can
follow. You wouldn’t think that that would be a hard thing to do, but it
is. Why? For one thing, not all programming books are written by pro-
grammers. Many are compiled by language designers, or the journalists
who work with them to promote their creations. Those books tell you
how to talk in a programming language—which is certainly important,
but that is only a small part of what a programmer does.

What does a programmer do besides talk in programming language?
Well, that is a deeper issue. Most programmers would have trouble
explaining what they do. Programming is a job filled with details, and
keeping track of those details requires focus. Hours drift by and the
code appears. You look up and there are all of those statements. If you
don’t think carefully, you might think that programming is just typing
statements in a programming language. You would be wrong, of course,
but you wouldn’t be able to tell by looking around the programming
section of the bookstore.

In The Pragmatic Programmer Dave and Andy tell us how to program in
a way that we can follow. How did they get so smart? Aren’t they just
as focused on details as other programmers? The answer is that they
paid attention to what they were doing while they were doing it—and
then they tried to do it better.

Imagine that you are sitting in a meeting. Maybe you are thinking
that the meeting could go on forever and that you would rather be
programming. Dave and Andy would be thinking about why they were

xiii

Sam
ple

 pa
ge

s

xiv FOREWORD

having the meeting, and wondering if there is something else they could
do that would take the place of the meeting, and deciding if that some-
thing could be automated so that the work of the meeting just happens
in the future. Then they would do it.

That is just the way Dave and Andy think. That meeting wasn’t some-
thing keeping them from programming. It was programming. And it
was programming that could be improved. I know they think this way
because it is tip number two: Think About Your Work.

So imagine that these guys are thinking this way for a few years.
Pretty soon they would have a collection of solutions. Now imagine
them using their solutions in their work for a few more years, and
discarding the ones that are too hard or don’t always produce results.
Well, that approach just about defines pragmatic. Now imagine them
taking a year or two more to write their solutions down. You might
think, That information would be a gold mine. And you would be right.

The authors tell us how they program. And they tell us in a way that we
can follow. But there is more to this second statement than you might
think. Let me explain.

The authors have been careful to avoid proposing a theory of software
development. This is fortunate, because if they had they would be
obliged to warp each chapter to defend their theory. Such warping is
the tradition in, say, the physical sciences, where theories eventually
become laws or are quietly discarded. Programming on the other hand
has few (if any) laws. So programming advice shaped around wanna-be
laws may sound good in writing, but it fails to satisfy in practice. This
is what goes wrong with so many methodology books.

I’ve studied this problem for a dozen years and found the most promise
in a device called a pattern language. In short, a pattern is a solution,
and a pattern language is a system of solutions that reinforce each
other. A whole community has formed around the search for these
systems.

This book is more than a collection of tips. It is a pattern language
in sheep’s clothing. I say that because each tip is drawn from experi-
ence, told as concrete advice, and related to others to form a system.
These are the characteristics that allow us to learn and follow a pattern
language. They work the same way here.

Sam
ple

 pa
ge

s

FOREWORD xv

You can follow the advice in this book because it is concrete. You won’t
find vague abstractions. Dave and Andy write directly for you, as if each
tip was a vital strategy for energizing your programming career. They
make it simple, they tell a story, they use a light touch, and then they
follow that up with answers to questions that will come up when you
try.

And there is more. After you read ten or fifteen tips you will begin to see
an extra dimension to the work. We sometimes call it QWAN, short for
the quality without a name. The book has a philosophy that will ooze
into your consciousness and mix with your own. It doesn’t preach. It
just tells what works. But in the telling more comes through. That’s the
beauty of the book: It embodies its philosophy, and it does so unpre-
tentiously.

So here it is: an easy to read—and use—book about the whole practice
of programming. I’ve gone on and on about why it works. You probably
only care that it does work. It does. You will see.

—Ward Cunningham

Sam
ple

 pa
ge

s

Preface
This book will help you become a better programmer.

It doesn’t matter whether you are a lone developer, a member of a large
project team, or a consultant working with many clients at once. This
book will help you, as an individual, to do better work. This book isn’t
theoretical—we concentrate on practical topics, on using your experi-
ence to make more informed decisions. The word pragmatic comes from
the Latin pragmaticus—“skilled in business”—which itself is derived
from the Greek , meaning “to do.” This is a book about doing.

Programming is a craft. At its simplest, it comes down to getting a
computer to do what you want it to do (or what your user wants it to do).
As a programmer, you are part listener, part advisor, part interpreter,
and part dictator. You try to capture elusive requirements and find a
way of expressing them so that a mere machine can do them justice.
You try to document your work so that others can understand it, and
you try to engineer your work so that others can build on it. What’s
more, you try to do all this against the relentless ticking of the project
clock. You work small miracles every day.

It’s a difficult job.

There are many people offering you help. Tool vendors tout the mir-
acles their products perform. Methodology gurus promise that their
techniques guarantee results. Everyone claims that their programming
language is the best, and every operating system is the answer to all
conceivable ills.

Of course, none of this is true. There are no easy answers. There is no
such thing as a best solution, be it a tool, a language, or an operat-
ing system. There can only be systems that are more appropriate in a
particular set of circumstances.

xvii

Sam
ple

 pa
ge

s

xviii PREFACE

This is where pragmatism comes in. You shouldn’t be wedded to any
particular technology, but have a broad enough background and expe-
rience base to allow you to choose good solutions in particular situ-
ations. Your background stems from an understanding of the basic
principles of computer science, and your experience comes from a wide
range of practical projects. Theory and practice combine to make you
strong.

You adjust your approach to suit the current circumstances and envi-
ronment. You judge the relative importance of all the factors affecting a
project and use your experience to produce appropriate solutions. And
you do this continuously as the work progresses. Pragmatic Program-
mers get the job done, and do it well.

Who Should Read This Book?
This book is aimed at people who want to become more effective and
more productive programmers. Perhaps you feel frustrated that you
don’t seem to be achieving your potential. Perhaps you look at col-
leagues who seem to be using tools to make themselves more produc-
tive than you. Maybe your current job uses older technologies, and you
want to know how newer ideas can be applied to what you do.

We don’t pretend to have all (or even most) of the answers, nor are
all of our ideas applicable in all situations. All we can say is that if
you follow our approach, you’ll gain experience rapidly, your produc-
tivity will increase, and you’ll have a better understanding of the entire
development process. And you’ll write better software.

What Makes a Pragmatic Programmer?
Each developer is unique, with individual strengths and weaknesses,
preferences and dislikes. Over time, each will craft his or her own
personal environment. That environment will reflect the programmer’s
individuality just as forcefully as his or her hobbies, clothing, or hair-
cut. However, if you’re a Pragmatic Programmer, you’ll share many of
the following characteristics:

Early adopter/fast adapter. You have an instinct for technologies
and techniques, and you love trying things out. When given some-

Sam
ple

 pa
ge

s

PREFACE xix

thing new, you can grasp it quickly and integrate it with the rest of
your knowledge. Your confidence is born of experience.

Inquisitive. You tend to ask questions. That’s neat—how did you
do that? Did you have problems with that library? What’s this BeOS

I’ve heard about? How are symbolic links implemented? You are a
pack rat for little facts, each of which may affect some decision
years from now.

Critical thinker. You rarely take things as given without first get-
ting the facts. When colleagues say “because that’s the way it’s
done,” or a vendor promises the solution to all your problems, you
smell a challenge.

Realistic. You try to understand the underlying nature of each
problem you face. This realism gives you a good feel for how diffi-
cult things are, and how long things will take. Understanding for
yourself that a process should be difficult or will take a while to
complete gives you the stamina to keep at it.

Jack of all trades. You try hard to be familiar with a broad range
of technologies and environments, and you work to keep abreast of
new developments. Although your current job may require you to
be a specialist, you will always be able to move on to new areas and
new challenges.

We’ve left the most basic characteristics until last. All Pragmatic Pro-
grammers share them. They’re basic enough to state as tips:

TIP 1

Care About Your Craft

We feel that there is no point in developing software unless you care
about doing it well.

TIP 2

Think! About Your Work

In order to be a Pragmatic Programmer, we’re challenging you to think
about what you’re doing while you’re doing it. This isn’t a one-time
audit of current practices—it’s an ongoing critical appraisal of every

Sam
ple

 pa
ge

s

xx PREFACE

decision you make, every day, and on every development. Never run on
auto-pilot. Constantly be thinking, critiquing your work in real time.
The old IBM corporate motto, THINK!, is the Pragmatic Programmer’s
mantra.

If this sounds like hard work to you, then you’re exhibiting the realistic
characteristic. This is going to take up some of your valuable time—time
that is probably already under tremendous pressure. The reward is a
more active involvement with a job you love, a feeling of mastery over
an increasing range of subjects, and pleasure in a feeling of continuous
improvement. Over the long term, your time investment will be repaid
as you and your team become more efficient, write code that’s easier to
maintain, and spend less time in meetings.

Individual Pragmatists, Large Teams
Some people feel that there is no room for individuality on large teams
or complex projects. “Software construction is an engineering disci-
pline,” they say, “that breaks down if individual team members make
decisions for themselves.”

We disagree.

The construction of software should be an engineering discipline. How-
ever, this doesn’t preclude individual craftsmanship. Think about the
large cathedrals built in Europe during the Middle Ages. Each took
thousands of person-years of effort, spread over many decades. Lessons
learned were passed down to the next set of builders, who advanced
the state of structural engineering with their accomplishments. But the
carpenters, stonecutters, carvers, and glass workers were all craftspeo-
ple, interpreting the engineering requirements to produce a whole that
transcended the purely mechanical side of the construction. It was their
belief in their individual contributions that sustained the projects:

We who cut mere stones must always be envisioning cathedrals.
— Quarry worker’s creed

Within the overall structure of a project there is always room for in-
dividuality and craftsmanship. This is particularly true given the cur-
rent state of software engineering. One hundred years from now, our
engineering may seem as archaic as the techniques used by medieval

Sam
ple

 pa
ge

s

PREFACE xxi

cathedral builders seem to today’s civil engineers, while our craftsman-
ship will still be honored.

It’s a Continuous Process
A tourist visiting England’s Eton College asked the gardener how he got
the lawns so perfect. “That’s easy,” he replied, “You just brush off the
dew every morning, mow them every other day, and roll them once a
week.”

“Is that all?” asked the tourist.

“Absolutely,” replied the gardener. “Do that for 500 years and you’ll
have a nice lawn, too.”

Great lawns need small amounts of daily care, and so do great pro-
grammers. Management consultants like to drop the word kaizen in
conversations. “Kaizen” is a Japanese term that captures the concept
of continuously making many small improvements. It was considered
to be one of the main reasons for the dramatic gains in productivity and
quality in Japanese manufacturing and was widely copied throughout
the world. Kaizen applies to individuals, too. Every day, work to refine
the skills you have and to add new tools to your repertoire. Unlike the
Eton lawns, you’ll start seeing results in a matter of days. Over the
years, you’ll be amazed at how your experience has blossomed and
your skills have grown.

How the Book Is Organized
This book is written as a collection of short sections. Each section is
self-contained, and addresses a particular topic. You’ll find numerous
cross references, which help put each topic in context. Feel free to read
the sections in any order—this isn’t a book you need to read front-to-
back.

Occasionally you’ll come across a box labeled Tip nn (such as Tip 1,
“Care About Your Craft” on page xix). As well as emphasizing points in
the text, we feel the tips have a life of their own—we live by them daily.
You’ll find a summary of all the tips on a pull-out card inside the back
cover.

Sam
ple

 pa
ge

s

xxii PREFACE

Appendix A contains a set of resources: the book’s bibliography, a list of
URLs to Web resources, and a list of recommended periodicals, books,
and professional organizations. Throughout the book you’ll find refer-
ences to the bibliography and to the list of URLs—such as [KP99] and
[URL 18], respectively.

We’ve included exercises and challenges where appropriate. Exercises
normally have relatively straightforward answers, while the challenges
are more open-ended. To give you an idea of our thinking, we’ve in-
cluded our answers to the exercises in Appendix B, but very few have
a single correct solution. The challenges might form the basis of group
discussions or essay work in advanced programming courses.

What’s in a Name?
“When I use a word,” Humpty Dumpty said, in rather a scornful tone, “it means
just what I choose it to mean—neither more nor less.”

Lewis Carroll, Through the Looking-Glass

Scattered throughout the book you’ll find various bits of jargon—either
perfectly good English words that have been corrupted to mean some-
thing technical, or horrendous made-up words that have been assigned
meanings by computer scientists with a grudge against the language.
The first time we use each of these jargon words, we try to define it,
or at least give a hint to its meaning. However, we’re sure that some
have fallen through the cracks, and others, such as object and rela-
tional database, are in common enough usage that adding a definition
would be boring. If you do come across a term you haven’t seen be-
fore, please don’t just skip over it. Take time to look it up, perhaps on
the Web, or maybe in a computer science textbook. And, if you get a
chance, drop us an e-mail and complain, so we can add a definition to
the next edition.

Having said all this, we decided to get revenge against the computer sci-
entists. Sometimes, there are perfectly good jargon words for concepts,
words that we’ve decided to ignore. Why? Because the existing jargon
is normally restricted to a particular problem domain, or to a partic-
ular phase of development. However, one of the basic philosophies of
this book is that most of the techniques we’re recommending are uni-
versal: modularity applies to code, designs, documentation, and team

Sam
ple

 pa
ge

s

PREFACE xxiii

organization, for instance. When we wanted to use the conventional
jargon word in a broader context, it got confusing—we couldn’t seem
to overcome the baggage the original term brought with it. When this
happened, we contributed to the decline of the language by inventing
our own terms.

Source Code and Other Resources
Most of the code shown in this book is extracted from compilable source
files, available for download from our Web site:

www.pragmaticprogrammer.com

There you’ll also find links to resources we find useful, along with
updates to the book and news of other Pragmatic Programmer devel-
opments.

Send Us Feedback
We’d appreciate hearing from you. Comments, suggestions, errors in
the text, and problems in the examples are all welcome. E-mail us at

ppbook@pragmaticprogrammer.com

Acknowledgments
When we started writing this book, we had no idea how much of a team
effort it would end up being.

Addison-Wesley has been brilliant, taking a couple of wet-behind-the-
ears hackers and walking us through the whole book-production pro-
cess, from idea to camera-ready copy. Many thanks to John Wait
and Meera Ravindiran for their initial support, Mike Hendrickson, our
enthusiastic editor (and a mean cover designer!), Lorraine Ferrier and
John Fuller for their help with production, and the indefatigable Julie
DeBaggis for keeping us all together.

Then there were the reviewers: Greg Andress, Mark Cheers, Chris Clee-
land, Alistair Cockburn, Ward Cunningham, Martin Fowler, Thanh
T. Giang, Robert L. Glass, Scott Henninger, Michael Hunter, Brian

Sam
ple

 pa
ge

s

http://www.pragmaticprogrammer.com

xxiv PREFACE

Kirby, John Lakos, Pete McBreen, Carey P. Morris, Jared Richardson,
Kevin Ruland, Eric Starr, Eric Vought, Chris Van Wyk, and Deborra
Zukowski. Without their careful comments and valuable insights, this
book would be less readable, less accurate, and twice as long. Thank
you all for your time and wisdom.

The second printing of this book benefited greatly from the eagle eyes
of our readers. Many thanks to Brian Blank, Paul Boal, Tom Ekberg,
Brent Fulgham, Louis Paul Hebert, Henk-Jan Olde Loohuis, Alan Lund,
Gareth McCaughan, Yoshiki Shibata, and Volker Wurst, both for find-
ing the mistakes and for having the grace to point them out gently.

Over the years, we have worked with a large number of progressive
clients, where we gained and refined the experience we write about
here. Recently, we’ve been fortunate to work with Peter Gehrke on sev-
eral large projects. His support and enthusiasm for our techniques are
much appreciated.

This book was produced using LATEX, pic, Perl, dvips, ghostview, ispell,
GNU make, CVS, Emacs, XEmacs, EGCS, GCC, Java, iContract, and
SmallEiffel, using the Bash and zsh shells under Linux. The stagger-
ing thing is that all of this tremendous software is freely available. We
owe a huge “thank you” to the thousands of Pragmatic Programmers
worldwide who have contributed these and other works to us all. We’d
particularly like to thank Reto Kramer for his help with iContract.

Last, but in no way least, we owe a huge debt to our families. Not only
have they put up with late night typing, huge telephone bills, and our
permanent air of distraction, but they’ve had the grace to read what
we’ve written, time after time. Thank you for letting us dream.

Andy Hunt
Dave Thomas

Sam
ple

 pa
ge

s

Chapter 3

The Basic Tools
Every craftsman starts his or her journey with a basic set of good-
quality tools. A woodworker might need rules, gauges, a couple of saws,
some good planes, fine chisels, drills and braces, mallets, and clamps.
These tools will be lovingly chosen, will be built to last, will perform
specific jobs with little overlap with other tools, and, perhaps most im-
portantly, will feel right in the budding woodworker’s hands.

Then begins a process of learning and adaptation. Each tool will have
its own personality and quirks, and will need its own special handling.
Each must be sharpened in a unique way, or held just so. Over time,
each will wear according to use, until the grip looks like a mold of the
woodworker’s hands and the cutting surface aligns perfectly with the
angle at which the tool is held. At this point, the tools become conduits
from the craftsman’s brain to the finished product—they have become
extensions of his or her hands. Over time, the woodworker will add new
tools, such as biscuit cutters, laser-guided miter saws, dovetail jigs—
all wonderful pieces of technology. But you can bet that he or she will
be happiest with one of those original tools in hand, feeling the plane
sing as it slides through the wood.

Tools amplify your talent. The better your tools, and the better you
know how to use them, the more productive you can be. Start with a
basic set of generally applicable tools. As you gain experience, and as
you come across special requirements, you’ll add to this basic set. Like
the craftsman, expect to add to your toolbox regularly. Always be on the
lookout for better ways of doing things. If you come across a situation
where you feel your current tools can’t cut it, make a note to look for

71

Sam
ple

 pa
ge

s

72 CHAPTER 3 THE BASIC TOOLS

something different or more powerful that would have helped. Let need
drive your acquisitions.

Many new programmers make the mistake of adopting a single power
tool, such as a particular integrated development environment (IDE),
and never leave its cozy interface. This really is a mistake. We need to
be comfortable beyond the limits imposed by an IDE. The only way to
do this is to keep the basic tool set sharp and ready to use.

In this chapter we’ll talk about investing in your own basic toolbox.
As with any good discussion on tools, we’ll start (in The Power of Plain
Text) by looking at your raw materials, the stuff you’ll be shaping. From
there we’ll move to the workbench, or in our case the computer. How
can you use your computer to get the most out of the tools you use?
We’ll discuss this in Shell Games. Now that we have material and a
bench to work on, we’ll turn to the tool you’ll probably use more than
any other, your editor. In Power Editing, we’ll suggest ways of making
you more efficient.

To ensure that we never lose any of our precious work, we should al-
ways use a Source Code Control system—even for things such as our
personal address book! And, since Mr. Murphy was really an optimist
after all, you can’t be a great programmer until you become highly
skilled at Debugging.

You’ll need some glue to bind much of the magic together. We discuss
some possibilities, such as awk, Perl, and Python, in Text Manipulation.

Just as woodworkers sometimes build jigs to guide the construction of
complex pieces, programmers can write code that itself writes code. We
discuss this in Code Generators.

Spend time learning to use these tools, and at some point you’ll be sur-
prised to discover your fingers moving over the keyboard, manipulating
text without conscious thought. The tools will have become extensions
of your hands.

Sam
ple

 pa
ge

s

THE POWER OF PLAIN TEXT 73

14 The Power of Plain Text
As Pragmatic Programmers, our base material isn’t wood or iron, it’s
knowledge. We gather requirements as knowledge, and then express
that knowledge in our designs, implementations, tests, and documents.
And we believe that the best format for storing knowledge persistently
is plain text. With plain text, we give ourselves the ability to manipulate
knowledge, both manually and programmatically, using virtually every
tool at our disposal.

What Is Plain Text?
Plain text is made up of printable characters in a form that can be read
and understood directly by people. For example, although the following
snippet is made up of printable characters, it is meaningless.

Field19=467abe

The reader has no idea what the significance of 467abe may be. A better
choice would be to make it understandable to humans.

DrawingType=UMLActivityDrawing

Plain text doesn’t mean that the text is unstructured; XML, SGML, and
HTML are great examples of plain text that has a well-defined structure.
You can do everything with plain text that you could do with some
binary format, including versioning.

Plain text tends to be at a higher level than a straight binary encoding,
which is usually derived directly from the implementation. Suppose you
wanted to store a property called uses_menus that can be either TRUE
or FALSE. Using text, you might write this as

myprop.uses_menus=FALSE

Contrast this with 0010010101110101.

The problem with most binary formats is that the context necessary to
understand the data is separate from the data itself. You are artificially
divorcing the data from its meaning. The data may as well be encrypted;
it is absolutely meaningless without the application logic to parse it.
With plain text, however, you can achieve a self-describing data stream
that is independent of the application that created it.

Sam
ple

 pa
ge

s

74 CHAPTER 3 THE BASIC TOOLS

TIP 20

Keep Knowledge in Plain Text

Drawbacks
There are two major drawbacks to using plain text: (1) It may take
more space to store than a compressed binary format, and (2) it may
be computationally more expensive to interpret and process a plain text
file.

Depending on your application, either or both of these situations may
be unacceptable—for example, when storing satellite telemetry data, or
as the internal format of a relational database.

But even in these situations, it may be acceptable to store metadata
about the raw data in plain text (see Metaprogramming, page 144).

Some developers may worry that by putting metadata in plain text,
they’re exposing it to the system’s users. This fear is misplaced. Binary
data may be more obscure than plain text, but it is no more secure.
If you worry about users seeing passwords, encrypt them. If you don’t
want them changing configuration parameters, include a secure hash1

of all the parameter values in the file as a checksum.

The Power of Text
Since larger and slower aren’t the most frequently requested features
from users, why bother with plain text? What are the benefits?

Insurance against obsolescence
Leverage
Easier testing

Insurance Against Obsolescence
Human-readable forms of data, and self-describing data, will outlive
all other forms of data and the applications that created them. Period.

1. MD5 is often used for this purpose. For an excellent introduction to the wonderful
world of cryptography, see [Sch95].

Sam
ple

 pa
ge

s

THE POWER OF PLAIN TEXT 75

As long as the data survives, you will have a chance to be able to use
it—potentially long after the original application that wrote it is defunct.

You can parse such a file with only partial knowledge of its format; with
most binary files, you must know all the details of the entire format in
order to parse it successfully.

Consider a data file from some legacy system2 that you are given. You
know little about the original application; all that’s important to you is
that it maintained a list of clients’ Social Security numbers, which you
need to find and extract. Among the data, you see

<FIELD10>123-45-6789</FIELD10>
...
<FIELD10>567-89-0123</FIELD10>
...
<FIELD10>901-23-4567</FIELD10>

Recognizing the format of a Social Security number, you can quickly
write a small program to extract that data—even if you have no infor-
mation on anything else in the file.

But imagine if the file had been formatted this way instead:

AC27123456789B11P...
XY43567890123QTYL
...
6T2190123456788AM

You may not have recognized the significance of the numbers quite
as easily. This is the difference between human readable and human
understandable.

While we’re at it, FIELD10 doesn’t help much either. Something like

<SSNO>123-45-6789</SSNO>

makes the exercise a no-brainer—and ensures that the data will outlive
any project that created it.

Leverage
Virtually every tool in the computing universe, from source code man-
agement systems to compiler environments to editors and stand-alone
filters, can operate on plain text.

2. All software becomes legacy as soon as it’s written.

Sam
ple

 pa
ge

s

76 CHAPTER 3 THE BASIC TOOLS

The Unix Philosophy

Unix is famous for being designed around the philosophy of small,
sharp tools, each intended to do one thing well. This philosophy is
enabled by using a common underlying format—the line-oriented,
plain text file. Databases used for system administration (users and
passwords, networking configuration, and so on) are all kept as plain
text files. (Some systems, such as Solaris, also maintain a binary
form of certain databases as a performance optimization. The plain
text version is kept as an interface to the binary version.)

When a system crashes, you may be faced with only a minimal envi-
ronment to restore it (you may not be able to access graphics drivers,
for instance). Situations such as this can really make you appreciate
the simplicity of plain text.

For instance, suppose you have a production deployment of a large
application with a complex site-specific configuration file (sendmail
comes to mind). If this file is in plain text, you could place it under a
source code control system (see Source Code Control, page 86), so that
you automatically keep a history of all changes. File comparison tools
such as diff and fc allow you to see at a glance what changes have
been made, while sum allows you to generate a checksum to monitor
the file for accidental (or malicious) modification.

Easier Testing
If you use plain text to create synthetic data to drive system tests, then
it is a simple matter to add, update, or modify the test data without
having to create any special tools to do so. Similarly, plain text output
from regression tests can be trivially analyzed (with diff, for instance)
or subjected to more thorough scrutiny with Perl, Python, or some other
scripting tool.

Lowest Common Denominator
Even in the future of XML-based intelligent agents that travel the wild
and dangerous Internet autonomously, negotiating data interchange
among themselves, the ubiquitous text file will still be there. In fact, in

Sam
ple

 pa
ge

s

SHELL GAMES 77

heterogeneous environments the advantages of plain text can outweigh
all of the drawbacks. You need to ensure that all parties can communi-
cate using a common standard. Plain text is that standard.

Related sections include:
Source Code Control, page 86
Code Generators, page 102
Metaprogramming, page 144
Blackboards, page 165
Ubiquitous Automation, page 230
It’s All Writing, page 248

Challenges
Design a small address book database (name, phone number, and so on)
using a straightforward binary representation in your language of choice.
Do this before reading the rest of this challenge.

1. Translate that format into a plain text format using XML.

2. For each version, add a new, variable-length field called directions in
which you might enter directions to each person’s house.

What issues come up regarding versioning and extensibility? Which form
was easier to modify? What about converting existing data?

15 Shell Games
Every woodworker needs a good, solid, reliable workbench, somewhere
to hold work pieces at a convenient height while he or she works them.
The workbench becomes the center of the wood shop, the craftsman
returning to it time and time again as a piece takes shape.

For a programmer manipulating files of text, that workbench is the
command shell. From the shell prompt, you can invoke your full reper-
toire of tools, using pipes to combine them in ways never dreamt of by
their original developers. From the shell, you can launch applications,
debuggers, browsers, editors, and utilities. You can search for files,

Sam
ple

 pa
ge

s

78 CHAPTER 3 THE BASIC TOOLS

query the status of the system, and filter output. And by programming
the shell, you can build complex macro commands for activities you
perform often.

For programmers raised on GUI interfaces and integrated development
environments (IDEs), this might seem an extreme position. After all,
can’t you do everything equally well by pointing and clicking?

The simple answer is “no.” GUI interfaces are wonderful, and they can
be faster and more convenient for some simple operations. Moving files,
reading MIME-encoded e-mail, and typing letters are all things that
you might want to do in a graphical environment. But if you do all
your work using GUIs, you are missing out on the full capabilities of
your environment. You won’t be able to automate common tasks, or
use the full power of the tools available to you. And you won’t be able
to combine your tools to create customized macro tools. A benefit of
GUIs is WYSIWYG—what you see is what you get. The disadvantage is
WYSIAYG—what you see is all you get.

GUI environments are normally limited to the capabilities that their
designers intended. If you need to go beyond the model the designer
provided, you are usually out of luck—and more often than not, you
do need to go beyond the model. Pragmatic Programmers don’t just cut
code, or develop object models, or write documentation, or automate
the build process—we do all of these things. The scope of any one tool
is usually limited to the tasks that the tool is expected to perform.
For instance, suppose you need to integrate a code preprocessor (to
implement design-by-contract, or multi-processing pragmas, or some
such) into your IDE. Unless the designer of the IDE explicitly provided
hooks for this capability, you can’t do it.

You may already be comfortable working from the command prompt, in
which case you can safely skip this section. Otherwise, you may need
to be convinced that the shell is your friend.

As a Pragmatic Programmer, you will constantly want to perform ad hoc
operations—things that the GUI may not support. The command line is
better suited when you want to quickly combine a couple of commands
to perform a query or some other task. Here are a few examples.

Sam
ple

 pa
ge

s

SHELL GAMES 79

Find all .c files modified more recently than your Makefile.

Shell . . . find . -name ’*.c’ -newer Makefile -print

GUI Open the Explorer, navigate to the correct directory,
click on the Makefile, and note the modification time.
Then bring up Tools/Find, and enter *.c for the file
specification. Select the date tab, and enter the date you
noted for the Makefile in the first date field. Then hit OK.

Construct a zip/tar archive of my source.

Shell . . . zip archive.zip *.h *.c – or –
tar cvf archive.tar *.h *.c

GUI Bring up a ZIP utility (such as the shareware WinZip
[URL 41]), select “Create New Archive,” enter its name,
select the source directory in the add dialog, set the filter
to “*.c”, click “Add,” set the filter to “*.h”, click “Add,”
then close the archive.

Which Java files have not been changed in the last week?

Shell . . . find . -name ’*.java’ -mtime +7 -print

GUI Click and navigate to “Find files,” click the “Named” field
and type in “*.java”, select the “Date Modified” tab. Then
select “Between.” Click on the starting date and type in
the starting date of the beginning of the project. Click on
the ending date and type in the date of a week ago today
(be sure to have a calendar handy). Click on “Find Now.”

Of those files, which use the awt libraries?

Shell . . . find . -name ’*.java’ -mtime +7 -print |

xargs grep ’java.awt’

GUI Load each file in the list from the previous example
into an editor and search for the string “java.awt”. Write
down the name of each file containing a match.

Clearly the list could go on. The shell commands may be obscure or
terse, but they are powerful and concise. And, because shell commands
can be combined into script files (or command files under Windows

Sam
ple

 pa
ge

s

80 CHAPTER 3 THE BASIC TOOLS

systems), you can build sequences of commands to automate things
you do often.

TIP 21

Use the Power of Command Shells

Gain familiarity with the shell, and you’ll find your productivity soaring.
Need to create a list of all the unique package names explicitly imported
by your Java code? The following stores it in a file called “list.”

grep ’^import ’ *.java |
sed -e’s/.*import *//’ -e’s/;.*$//’ |
sort -u >list

If you haven’t spent much time exploring the capabilities of the com-
mand shell on the systems you use, this might appear daunting. How-
ever, invest some energy in becoming familiar with your shell and things
will soon start falling into place. Play around with your command shell,
and you’ll be surprised at how much more productive it makes you.

Shell Utilities and Windows Systems
Although the command shells provided with Windows systems are im-
proving gradually, Windows command-line utilities are still inferior to
their Unix counterparts. However, all is not lost.

Cygnus Solutions has a package called Cygwin [URL 31]. As well as
providing a Unix compatibility layer for Windows, Cygwin comes with a
collection of more than 120 Unix utilities, including such favorites as
ls, grep, and find. The utilities and libraries may be downloaded and
used for free, but be sure to read their license.3 The Cygwin distribution
comes with the Bash shell.

3. The GNU General Public License [URL 57] is a kind of legal virus that Open Source
developers use to protect their (and your) rights. You should spend some time reading
it. In essence, it says that you can use and modify GPL’d software, but if you distribute
any modifications they must be licensed according to the GPL (and marked as such), and
you must make source available. That’s the virus part—whenever you derive a work from
a GPL’d work, your derived work must also be GPL’d. However, it does not limit you in
any way when simply using the tools—the ownership and licensing of software developed
using the tools are up to you.

Sam
ple

 pa
ge

s

SHELL GAMES 81

Using Unix Tools Under Windows

We love the availability of high-quality Unix tools under Windows, and
use them daily. However, be aware that there are integration issues.
Unlike their MS-DOS counterparts, these utilities are sensitive to the
case of filenames, so ls a*.bat won’t find AUTOEXEC.BAT. You
may also come across problems with filenames containing spaces,
and with differences in path separators. Finally, there are interesting
problems when running MS-DOS programs that expect MS-DOS–style
arguments under the Unix shells. For example, the Java utilities from
JavaSoft use a colon as their CLASSPATH separator under Unix, but
use a semicolon under MS-DOS. As a result, a Bash or ksh script
that runs on a Unix box will run identically under Windows, but the
command line it passes to Java will be interpreted incorrectly.

Alternatively, David Korn (of Korn shell fame) has put together a pack-
age called UWIN. This has the same aims as the Cygwin distribution—it
is a Unix development environment under Windows. UWIN comes with
a version of the Korn shell. Commercial versions are available from
Global Technologies, Ltd. [URL 30]. In addition, AT&T allows free down-
loading of the package for evaluation and academic use. Again, read
their license before using.

Finally, Tom Christiansen is (at the time of writing) putting together
Perl Power Tools, an attempt to implement all the familiar Unix utilities
portably, in Perl [URL 32].

Related sections include:
Ubiquitous Automation, page 230

Challenges
Are there things that you’re currently doing manually in a GUI? Do you
ever pass instructions to colleagues that involve a number of individual
“click this button,” “select this item” steps? Could these be automated?

Whenever you move to a new environment, make a point of finding out
what shells are available. See if you can bring your current shell with you.

Investigate alternatives to your current shell. If you come across a problem
your shell can’t address, see if an alternative shell would cope better.

Sam
ple

 pa
ge

s

82 CHAPTER 3 THE BASIC TOOLS

16 Power Editing
We’ve talked before about tools being an extension of your hand. Well,
this applies to editors more than to any other software tool. You need
to be able to manipulate text as effortlessly as possible, because text
is the basic raw material of programming. Let’s look at some common
features and functions that help you get the most from your editing
environment.

One Editor
We think it is better to know one editor very well, and use it for all edit-
ing tasks: code, documentation, memos, system administration, and so
on. Without a single editor, you face a potential modern day Babel of
confusion. You may have to use the built-in editor in each language’s
IDE for coding, and an all-in-one office product for documentation, and
maybe a different built-in editor for sending e-mail. Even the keystrokes
you use to edit command lines in the shell may be different.4 It is diffi-
cult to be proficient in any of these environments if you have a different
set of editing conventions and commands in each.

You need to be proficient. Simply typing linearly and using a mouse
to cut and paste is not enough. You just can’t be as effective that way
as you can with a powerful editor under your fingers. Typing or
BACKSPACE ten times to move the cursor left to the beginning of a line
isn’t as efficient as typing a single key such as ^A , Home , or 0 .

TIP 22

Use a Single Editor Well

Choose an editor, know it thoroughly, and use it for all editing tasks.
If you use a single editor (or set of keybindings) across all text editing
activities, you don’t have to stop and think to accomplish text manip-
ulation: the necessary keystrokes will be a reflex. The editor will be

4. Ideally, the shell you use should have keybindings that match the ones used by
your editor. Bash, for instance, supports both vi and emacs keybindings.

Sam
ple

 pa
ge

s

POWER EDITING 83

an extension of your hand; the keys will sing as they slice their way
through text and thought. That’s our goal.

Make sure that the editor you choose is available on all platforms you
use. Emacs, vi, CRiSP, Brief, and others are available across multiple
platforms, often in both GUI and non-GUI (text screen) versions.

Editor Features
Beyond whatever features you find particularly useful and comfortable,
here are some basic abilities that we think every decent editor should
have. If your editor falls short in any of these areas, then this may be
the time to consider moving on to a more advanced one.

Configurable. All aspects of the editor should be configurable to
your preferences, including fonts, colors, window sizes, and key-
stroke bindings (which keys perform what commands). Using only
keystrokes for common editing operations is more efficient than
mouse or menu-driven commands, because your hands never leave
the keyboard.

Extensible. An editor shouldn’t be obsolete just because a new
programming language comes out. It should be able to integrate
with whatever compiler environment you are using. You should be
able to “teach” it the nuances of any new language or text format
(XML, HTML version 9, and so on).

Programmable. You should be able to program the editor to per-
form complex, multistep tasks. This can be done with macros or
with a built-in scripting programming language (Emacs uses a vari-
ant of Lisp, for instance).

In addition, many editors support features that are specific to a partic-
ular programming language, such as:

Syntax highlighting
Auto-completion
Auto-indentation
Initial code or document boilerplate
Tie-in to help systems
IDE-like features (compile, debug, and so on)

Sam
ple

 pa
ge

s

84 CHAPTER 3 THE BASIC TOOLS

Figure 3.1. Sorting lines in an editor

import java.util.Vector; import java.awt.*;
import java.util.Stack; import java.net.URL;
import java.net.URL; import java.util.Stack;
import java.awt.*; import java.util.Vector;

emacs: M-xsort-lines

vi: :.,+3!sort

A feature such as syntax highlighting may sound like a frivolous extra,
but in reality it can be very useful and enhance your productivity. Once
you get used to seeing keywords appear in a different color or font, a
mistyped keyword that doesn’t appear that way jumps out at you long
before you fire up the compiler.

Having the ability to compile and navigate directly to errors within the
editor environment is very handy on big projects. Emacs in particular
is adept at this style of interaction.

Productivity
A surprising number of people we’ve met use the Windows notepad

utility to edit their source code. This is like using a teaspoon as a
shovel—simply typing and using basic mouse-based cut and paste is
not enough.

What sort of things will you need to do that can’t be done in this way?

Well, there’s cursor movement, to start with. Single keystrokes that
move you in units of words, lines, blocks, or functions are far more
efficient than repeatedly typing a keystroke that moves you character
by character or line by line.

Or suppose you are writing Java code. You like to keep your import

statements in alphabetical order, and someone else has checked in a
few files that don’t adhere to this standard (this may sound extreme,
but on a large project it can save you a lot of time scanning through a
long list of import statements). You’d like to go quickly through a few
files and sort a small section of them. In editors such as vi and Emacs
you can do this easily (see Figure 3.1). Try that in notepad.

Some editors can help streamline common operations. For instance,
when you create a new file in a particular language, the editor can
supply a template for you. It might include:

Sam
ple

 pa
ge

s

POWER EDITING 85

Name of the class or module filled in (derived from the filename)

Your name and/or copyright statements

Skeletons for constructs in that language (constructor and destruc-
tor declarations, for example)

Another useful feature is auto-indenting. Rather than having to indent
manually (by using space or tab), the editor automatically indents for
you at the appropriate time (after typing an open brace, for example).
The nice part about this feature is that you can use the editor to provide
a consistent indentation style for your project.5

Where to Go from Here
This sort of advice is particularly hard to write because virtually every
reader is at a different level of comfort and expertise with the editor(s)
they are currently using. So, to summarize, and to provide some guid-
ance on where to go next, find yourself in the left-hand column of the
chart, and look at the right-hand column to see what we think you
should do.

If this sounds like you Then think about

I use only basic features of
many different editors.

Pick a powerful editor and learn it
well.

I have a favorite editor, but I
don’t use all of its features.

Learn them. Cut down the number of
keystrokes you need to type.

I have a favorite editor and
use it where possible.

Try to expand and use it for more
tasks than you do already.

I think you are nuts. Notepad
is the best editor ever made.

As long as you are happy and produc-
tive, go for it! But if you find yourself
subject to “editor envy,” you may need
to reevaluate your position.

5. The Linux kernel is developed this way. Here you have geographically dispersed
developers, many working on the same pieces of code. There is a published list of settings
(in this case, for Emacs) that describes the required indentation style.

Sam
ple

 pa
ge

s

86 CHAPTER 3 THE BASIC TOOLS

What Editors Are Available?
Having recommended that you master a decent editor, which one do
we recommend? Well, we’re going to duck that question; your choice of
editor is a personal one (some would even say a religious one!). However,
in Appendix A, page 266, we list a number of popular editors and where
to get them.

Challenges
Some editors use full-blown languages for customization and scripting.
Emacs, for example, uses Lisp. As one of the new languages you are going
to learn this year, learn the language your editor uses. For anything you
find yourself doing repeatedly, develop a set of macros (or equivalent) to
handle it.

Do you know everything your editor is capable of doing? Try to stump your
colleagues who use the same editor. Try to accomplish any given editing
task in as few keystrokes as possible.

17 Source Code Control
Progress, far from consisting in change, depends on retentiveness. Those who
cannot remember the past are condemned to repeat it.

George Santayana, Life of Reason

One of the important things we look for in a user interface is the UNDO

key—a single button that forgives us our mistakes. It’s even better if the
environment supports multiple levels of undo and redo, so you can go
back and recover from something that happened a couple of minutes
ago. But what if the mistake happened last week, and you’ve turned
your computer on and off ten times since then? Well, that’s one of the
many benefits of using a source code control system: it’s a giant UNDO

key—a project-wide time machine that can return you to those halcyon
days of last week, when the code actually compiled and ran.

Source code control systems, or the more widely scoped configuration
management systems, keep track of every change you make in your
source code and documentation. The better ones can keep track of

Sam
ple

 pa
ge

s

	CONTENTS
	FOREWORD
	PREFACE
	3 THE BASIC TOOLS
	14. The Power of Plain Text
	15. Shell Games
	16. Power Editing
	17. Source Code Control
	18. Debugging
	19. Text Manipulation
	20. Code Generators

	INDEX
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

