
A Correlation of

Campbell BIOLOGY in Focus 4th Edition, AP[®] Edition ©2025

To the

AP® Biology Curriculum Framework Effective Fall 2020

College Board AP® Biology Curriculum Framework, Fall 2020

AP® is a trademark registered and/or owned by the College Board, which was not involved in the production of, and does not endorse this product.

Table of Contents

Unit 1: Chemistry of Life (6 Topics)4
Unit 2: Cell Structure and Function (11 topics)
Unit 3: Cellular Energetics (7 Topics)7
Unit 4: Cell Communication and Cell Cycle (7 Topics)
Unit 5: Heredity (6 Topics)10
Unit 6: Gene Expression and Regulation (8 Topics)11
Unit 7 Natural Selection (13 Topics)13
Unit 8: Ecology (7 Topics)

A Correlation of Campbell Biology in Focus, 4th Edition, AP® Edition ©2025 to the College Board AP® Biology Curriculum Framework, Fall 2020

MYLAB®, MYMATHLAB®, MASTERING®, MATHXL®, STATCRUNCH®, REVEL® and the PEARSON® Logo are trad emarks owned and/or registered by Pearson PLC and/or its affiliates. All other third party marks associated with these products are the property of their respective owners. Copyright in the works referenced herein is owned by Pearson Education, Inc. Pearson Education has control over the editorial content in these instructional materials.

Big Idea Summary

Big Idea 1: Evolution (EVO)

The process of evolution drives the diversity and unity of life.

Evolution is a change in the genetic makeup of a population over time, with natural selection as its major driving mechanism. Darwin's theory, which is supported by evidence from many scientific disciplines, states that inheritable variations occur in individuals in a population. Due to competition for limited resources, individuals with more favorable genetic variations are more likely to survive and produce more offspring, thus passing traits to future generations. A diverse gene pool is vital for the survival of species because environmental conditions change. The process of evolution explains the diversity and unity of lif e, but an explanation about the origin of life is less clear.

In addition to the process of natural selection, naturally occurring catastrophic and human-induced events, as well as random environmental changes can result in alteration in the gene pools of populations. Scientific evidence supports that speciation and extinction have occurred throughout Earth's history and that life continues to evolve within a changing environment, thus explaining the diversity of life.

Big Idea 2: Energetics (ENE)

Biological systems use energy and molecular building blocks to grow, to reproduce, and maintain dynamic homeostasis.

Cells and organisms must exchange matter with the environment. Organisms respond to changes in their environment at the molecular, cellular, physiological, and behavioral levels. Living systems require energy and matter to maintain order, to grow, and to reproduce. Organisms employ various strategies to capture, use, and store energy and other vital resources. Energy deficiencies are not only detrimental to individual organisms; they also can cause disruptions at the population and ecosystem levels. Homeostatic mechanisms that are conserved or divergent across related organisms reflect either continuity due to common ancestry or evolutionary change in response to distinct selective pressures.

Big Idea 3: Information Storage and Transmission (IST)

Living systems store, retrieve, transmit, and respond to information essential to life processes. Genetic information provides for continuity of life and, in most cases, this information is passed from parent to offspring via DNA. Nonheritable information transmission influences behavior within and between cells, organisms, and populations. These behaviors are directed by underlying genetic information, and responses to information are vital to natural selection and evolution. Genetic information is a repository of instructions necessary for the survival, growth, and reproduction of the organism. Genetic variation can be advantageous for the long-term survival and evolution of a species.

Big Idea 4: Systems Interactions (SYI)

Biological systems interact, and these systems and their interactions exhibit complex properties. All biological systems comprise parts that interact with one another. These interactions

College Board AP® Biology Curriculum Framework, Fall 2020

result in characteristics and emergent properties not found in the individual parts alone. All biological systems from the molecular level to the ecosystem level exhibit properties of biocomplexity and diversity. These two properties provide robustness to biological systems, enabling greater resiliency and flexibility to tolerate and respond to changes in the environment.

AP® Biology Topics	Big Ideas: Enduring Understandings	Campbell Biology in Focus 4th Edition, AP Edition, ©2025 Chapters and Key Concepts
Unit 1: Chemistry of Life (6 Topics)	
1.1 Structure of Water and Hydrogen Bonding	- 1	Chapter 2: The Chemical Context of Life Concept 2.3: The f ormation and function of molecules depend on chemical bonding between atoms Concept 2.5: Hydrogen bonding gives water properties that help make life possible on Earth
1.2 Elements of Life	ENE-1: The highly complex organization of living systems requires constant input of energy and the exchange of macromolecules.	Chapter 3: Carbon and the Molecular Diversity of Life Concept 3.1: Carbon atoms can form diverse molecules by bonding to four other atoms
1.3 Introduction to Biological Macromolecules	SYI-1: Living systems are organized in a hierarchy of structural levels that interact.	Chapter 3: Carbon and the Molecular Diversity of Life Concept 3.2: Macromolecules are polymers, built f rom monomers
1.4 Properties of Biological Macromolecules	SYI-1: Living systems are organized in a hierarchy of structural levels that interact.	Chapter 3: Carbon and the Molecular Diversity of Life Concept 3.3: Carbohydrates serve as fuel and building material Concept 3.4: Lipids are a diverse group of hydrophobic molecules Concept 3.5: Proteins include a diversity of structures, resulting in a wide range of f unctions Concept 3.6: Nucleic acids store, transmit, and help express heredity information
1.5 Structure and Function of Biological Macromolecules	SYI-1: Living systems are organized in a hierarchy of structural levels that interact.	Chapter 3: Carbon and the Molecular Diversity of Life Concept 3.3: Carbohydrates serve as fuel and building material Concept 3.5: Proteins include a diversity of structures, resulting in a wide range of f unctions Concept 3.6: Nucleic acids store, transmit, and help express heredity information

1.6 Nucleic Acids	IST-1: Heritable inf	Chapter 3: Carbon and the Molecular
	ormation provides for	Diversity of Life
	continuity of life.	Concept 3.6: Nucleic acids store, transmit,
	·	and help express hereditary information

AP® Biology Topics	Big Ideas: Enduring Understandings	Campbell Biology in Focus 4th Edition, AP Edition, © 2025 Chapters and Key Concepts
Unit 2: Cell Structure and	Function (11 topics)	
2.1 Cell Structure Subcellular Components		Chapter 4: A Tour of the Cell Concept 4.2: Eukaryotic cells have internal membranes that compartmentalize their f unctions
2.2 Cell Structure and Function	SYI-1: Living systems are organized in a hierarchy of structure of levels that interact	Chapter 4: A Tour of the Cell Concept 4.3: The eukaryotic cell's genetic instructions are housed in the nucleus and carried out by the ribosomes Concept 4.4: The endomembrane system regulates protein traffic and performs metabolic functions Concept 4.5: Mitochondria and chloroplasts change energy from one form to another Concept 4.6: The cytoskeleton is a network of fibers that organizes structures and activities in the cell
2.3 Cell Size	ENE-1: The highly complex organization of living systems requires constant input of energy and the exchange of macromolecules.	Chapter 4: A Tour of the Cell Concept 4.2: Eukaryotic cells have internal membranes that compartmentalize their f unctions Figure 4.6: Geometric relationships between surf ace area and volume. Concept 4.8: A cell is greater than the sum of its parts. Appendix C: The Metric System
2.4 Plasma Membranes	ENE-2: Cells have membranes that allow them to establish and maintain internal environments that are different from their external environments.	Chapter 4: A Tour of the Cell Concept 4.2: Eukaryotic cells have internal membranes that compartmentalize their f unctions Chapter 5: Membrane Transport and Cell Signaling Concept 5.1: Cellular membranes are f luid mosaics of lipids and proteins

2.5 Membrane	ENE-2: Cells have	Chapter 5: Membrane Transport and Cell
Permeability	membranes that allow them to establish and maintain internal environments that are different from their external environments.	Signaling Concept 5.2: Membrane structure results in selective permeability Chapter 4: A tour of the Cell Concept 4.7: Extracellular components and connections between cells help coordinate cellular activities

AP® Biology Topics	Big Ideas: Enduring Understandings	Campbell Biology in Focus 4th Edition, AP Edition, © 2025 Chapters and Key Concepts
2.6 Membrane Transport	ENE-2: Cells have membranes that allow them to establish and maintain internal environments that are different from their external environments.	Chapter 5: Membrane Transport and Cell Signaling Concept 5.3: Passive transport is diffusion of a substance across a membrane with no energy investment Concept 5.4: Active transport uses energy to move solutes against their gradients Concept 5.5: Bulk transport across the plasma membrane occurs by exocytosis and endocytosis
2.7 Facilitated Diffusion	ENE-2: Cells have membranes that allow them to establish and maintain internal environments that are different from their external environments.	Chapter 5: Membrane Transport and Cell Signaling Concept 5.3: Passive transport is diffusion of a substance across a membrane with no energy investment Concept 5.4: Active transport uses energy to move solutes against their gradients
2.8 Tonicity and Osmoregulation	ENE-2: Cells have membranes that allow them to establish and maintain internal environments that are different from their external environments.	Chapter 5: Membrane Transport and Cell Signaling Concept 5.3: Passive transport is diffusion of a substance across a membrane with no energy investment Chapter 29: Resource Acquisition, Nutrition and Transport in Vascular Plants Concept 29.5: Transpiration drives the transport of water and minerals from roots to shoots via the xylem

2.9 Mechanisms of	ENE-2: Cells have	Chapter 5: Membrane Transport and Cell
Transport	membranes that allow them to establish and maintain internal environments that are different from their external environments.	Signaling Concept 5.3: Passive transport is diffusion of a substance across a membrane with no energy investment Concept 5.4: Active transport uses energy to move solutes against their gradients Concept 5.5: Bulk transport across the plasma membrane occurs by exocytosis and endocytosis

AP® Biology Topics	Big Ideas: Enduring Understandings	Campbell Biology in Focus 4th Edition, AP Edition, © 2025 Chapters and Key Concepts
2.10 Compartmentalization	ENE-2: Cells have membranes that allow them to establish and maintain internal environments that are different from their external environments.	Chapter 4: A Tour of the Cell Concept 4.2: Eukaryotic cells have internal membranes that compartmentalize their f unctions Concept 4.4: The endomembrane system regulates protein traffic and performs metabolic functions Concept 4.5: Mitochondria and chloroplasts change energy from one form to another
2.11 Origins of Cell Compartmentalization	EVO-1: Evolution is characterized by a change in the genetic makeup of population over time and is supported by multiple lines of evidence.	Chapter 25: The Origin and Diversification of Eukaryotes Concept 25.1: Eukaryotes arose by endosymbiosis more than 1.8 billion years ago Chaapter 24: Early Life and the Diversification of Prokaryotes Concept 24.2: Diverse structural and metabolic adaptations have evolved in porkaryotes
Unit 3: Cellular Energetics (7 Topics)		

3.1 Enzyme Structure	ENE-1: The highly complex organization of living systems requires constant input of energy and the exchange of macromolecules.	Chapter 3: Carbon and the Molecular Diversity of Life Chapter 6: An Introduction to Metabolism Concept 6.1: An organism's metabolism transforms matter and energy Concept 6.4: Enzymes speed up metabolic reactions by lowering energy barriers
3.2 Enzyme Catalysis	ENE-1: The highly complex organization of living systems requires constant input of energy and the exchange of macromolecules.	Chapter 6: An introduction to Metabolism Concept 6.1: An organism's metabolism transforms matter and energy Concept 6.4: Enzymes speed up metabolic reactions by lowering energy barriers
3.3 Environmental Impacts on Enzyme Function	ENE-1: The highly complex organization of living systems requires constant input of energy and the exchange of macromolecules.	Chapter 6: An Introduction to Metabolism Concept 6.4: Enzymes speed up metabolic reactions by lowering energy barriers Concept 6.5: Regulation of enzyme activity helps control metabolism

AP® Biology Topics	Big Ideas: Enduring Understandings	Campbell Biology in Focus 4th Edition, AP Edition, © 2025 Chapters and Key Concepts
3.4 Cellular Energy	ENE-1: The highly complex organization of living systems requires constant input of energy and the exchange of macromolecules.	Chapter 6: An introduction to Metabolism Concept 6.1: An organism's metabolism transforms matter and energy Chapter 7: Cellular Respiration and Fermentation Concept 7.1: Catabolic pathways yield energy by oxidizing organic fuels

3.5 Photosynthesis	ENE-1: The highly complex organization of living systems requires constant input of energy and the exchange of macromolecules.	Chapter 8: Photosynthesis
3.6 Cellular Respiration	ENE-1: The highly complex organization of living systems requires constant input of energy and the exchange of macromolecules.	Chapter 7: Cellular Respiration and Fermentation
3.7 Fitness	SYI-1: Naturally occurring diversity among and between components within biological systems af f ects interactions with the environment.	Chapter 34: Circulation and Gas Exchange Concept 34.7: Adaptations for gas exchange include pigments that bind and transport gases Chapter 8: Photosynthesis Concept 8.3: The light reactions convert solar energy to the chemical energy of ATP and NADPH

	AP® Biology Topics	Big Ideas: Enduring Understandings	Campbell Biology in Focus 4th Edition, AP Edition, © Chapters and Key Concepts	2025
Unit 4: Cell Communication and Cell Cycle (7 Topics)				

	ard AP® Biology Curricul	•
4.1 Cell Communication	IST-3: Cells	•
	communicate by	Signaling
	generating, transmitting,	Concept 5.6: The plasma membrane plays
	receiving, and	а
	responding to chemical	key role in most cell signaling
	signals.	
4.2 Introduction to Signal	IST-3: Cells	Chapter 5: Membrane Transport and Cell
Transduction	communicate by	Signaling
	generating, transmitting,	Concept 5.6: The plasma membrane plays
	receiving, and	a key role in most cell signaling
	responding to chemical	
	signals.	
4.3 Signal Transduction	IST-3: Cells	Chapter 5: Membrane Transport and Cell
	communicate by	Signaling
	generating, transmitting,	Concept 5.6: The plasma membrane plays
	receiving, and	a key role in most cell signaling
	responding to chemical	
	signals.	
4.4 Changes in Signal	IST-3: Cells	Chapter 5: Membrane Transport and Cell
Transduction Pathways	communicate by	Signaling
	generating, transmitting,	Concept 5.6: The plasma membrane plays
	receiving, and	a key role in most cell signaling
	responding to chemical	
	signals.	
4.5 Feedback	ENE-3: The highly	Chapter 6: An introduction to Metabolism
	complex organization	Concept 6.5: Regulation of enzyme
	of living systems	activity helps control metabolism
	requires constant input	Chapter 32: The Internal Environment of
	of energy and the	Animals: Organization and Regulation
	exchange of	Concept 32.2: The endocrine and nervous systems act individually and
	macromolecules.	together in regulating animal physiology
		Concept 32.3: Feedback control
		maintains the internal environment in
		many animals Chapter 33: Animal
		Nutrition
		Concept 33.5: Feedback circuits regulate
		digestion, energy allocation, and appetite

AP® Biology Topics	Big Ideas: Enduring Understandings	Campbell Biology in Focus 4th Edition, AP Edition, © 2025 Chapters and Key Concepts
--------------------	---------------------------------------	--

		Color of Transport
4.6 Cell Cycle	IST-1: Heritable inf ormation provides for continuity of life	Chapter 9: The cell cycle Overview: The Key Roles of Cell Division Concept 9.1 Most cell division results in genetically identical daughter cells Concept 9.2: The mitotic phase alternates with interphase in the cell cycle
4.7 Regulation of Cell	IST-1: Heritable inf	Chapter 9: The Cell Cycle
Cycle	ormation provides for continuity of life.	Concept 9.3: The eukaryotic cell cycle is regulated by a molecular control system Chapter 16: Development, Stem Cells, and Cancer Concept 16.3: Abnormal regulation of genes that af fect the cell cycle can lead to cancer
Unit 5: Heredity (6 Topics))	
5.1 Meiosis	IST-1: Heritable inf ormation provides for continuity of life	Chapter 10: Meiosis and Sexual Life Cycles Concept 10.1: Offspring acquire genes from parents by inheriting chromosomes Concept 10.2: Fertilization and meiosis alternate in sexual life cycles Concept 10.3: Meiosis reduces the number of chromosomes sets from diploid to haploid
5.2 Meiosis and Genetic Diversity	IST-1: Heritable inf ormation provides for continuity of life.	Chapter 10: Meiosis and Sexual Life Cycles Concept 10.3: Meiosis reduces the number of chromosomes sets from diploid to haploid Concept 10.4: Genetic variation produced in sexual lif e cycles contributes to evolution
5.3 Mendelian Genetics	EVO-2: Organisms are linked by lines of descent from common ancestry. IST-1: Heritable inf ormation provides for continuity of life.	Chapter 11: Mendel and the Gene Idea
5.4 Non-Mendelian Genetics	IST-1: Heritable inf ormation provides for continuity of life.	Chapter 12: The Chromosomal Basis of Inheritance

		Campbell Biology in Focus
AP® Biology Topics	Big Ideas: Enduring Understandings	

	ard APW biology Curricul	· · · · · · · · · · · · · · · · · · ·
		4th Edition, AP Edition, ©
		2025 Chapters and Key
		Concepts
5.5 Environmental Effects	SYI-3: Naturally	Chapter 11: Mendel and the Gene Idea
on Phenotype	occurring diversity	Concept 11.3: Inheritance patterns are
on i nonetype	among and between	often more complex than predicted by
	components	simple
	within biological	Mendelian genetics
	systems af f ects	3
	interactions with the	
	environment.	
5.6 Chromosomal	SYI-3: Naturally	Chapter 11: Mendel and the Gene Idea
Inheritance	,	Concept 11.4: Many human traits follow
Inneritance	occurring diversity	Mendelian patterns of inheritance
	among and between	Worldonan pattorno or innontanto
	components within	
	biological systems af f	
	ects interactions with the	
	environment.	
Unit 6: Gene Expression a		
6.1 DNA and RNA	IST-1: Heritable inf	Chapter 3: Carbon and the Molecular
Structure	ormation provides for	Diversity of Life
	continuity of life	Concept 3.6: Nucleic acids store, transmit,
	-	and help express hereditary information
		Chapter 13: The Molecular Basis of
		Inheritance
		Concept 13.1: DNA is the genetic material
6.2 Replication	IST-1: Heritable inf	Chapter 13: The Molecular Basis of
	ormation provides for	Inheritance
	continuity of life.	Concept 13.2: Many proteins work together
	continuity of inc.	in DNA replication and repair
		in Bra tropiloation and ropali
6.3 Transcription and	IST-1: Heritable inf	Chapter 14: Gene Expression: From Gene
RNA Processing	ormation provides for	to Protein
	continuity of life.	Concept 14.1: Genes specify proteins via
		transcription and translation Concept 14.2: Transcription is the DNA-
		directed synthesis of RNA: A Closer Look
		Concept 14.3: Eukaryotic cells modify
		RNA af ter transcription
6.4 Translation	IST-1: Heritable inf	Chapter 14: Gene Expression: From Gene
	ormation provides for	to Protein
	continuity of life.	Concept 14.4: Translation is the RNA-
		directed synthesis of a polypeptide: A
		Closer Look

AP® Biology Topics	Big Ideas: Enduring Understandings	Campbell Biology in Focus 4th Edition, AP Edition, © 2025 Chapters and Key Concepts
6.5 Regulation of Gene Expression	IST-2: Differences in the expression of genes account for some of the phenotypic differences between organisms	Chapter 15: Regulation of Gene Expression Chapter 15.1: Bacteria often respond to environmental change by regulating transcription Concept 15.2: Eukaryotic gene expression is regulated at many stages
6.6 Gene Expression and Cell Specialization	IST-2: Differences in the expression of genes account for some of the phenotypic differences between organisms	Chapter 15: Regulation of Gene Expression Concept 15.3: Noncoding RNAs play multiple roles in controlling gene expression Concept 15.4: Researchers can monitor expression of specific genes
6.7 Mutations	IST-2: Differences in the expression of genes account for some of the phenotypic differences between organisms. IST-4: The processing of genetic information is imperf ect and is a source of genetic variation.	Chapter 14: Gene Expression: From Gene to Protein Concept 14.5: Mutations of one or a f ew nucleotides can affect protein structure and f unction Chapter 11: Mendel and the Gene Idea Concept 11.4: Many human traits follow Mendelian patterns of inheritance

	1		
6.8 Biotechnology		inf	Chapter 3: Carbon and the Molecular
	ormation provides	for	Diversity of life:
	continuity of life.		Concept 3.7: Genomics and proteomics
	1		have transformed biological inquiry and
			applications
			Chapter 13: The Molecular Basis of
			Inheritance
			Concept 13.4: Understanding DNA
			structure and replication makes genetic
			engineering possible
			Chapter 15: Regulation of Gene
			Expession Concept 15.4: Researchers
			can monitor expression of specific genes
			Chapter 16: Development, Stem Cells, and
			Cancer
			Concept 16.2: Cloning of organisms
			showed that differentiated cells could be
			"reprogrammed" and ultimately led to the
			production of stem cells
			Chapter 18: Genomes and Their Evolution
			Chapter 24: Early Life and the
			Diversification of Prokaryotes
			Concept 24.5: Prokaryotes play crucial
			roles in the biosphere
			Chapter 30: Reproduction and
			Domestication of Flowering Plants
	<u> </u>		
			Concept 30.3: People modify crops
			Concept 30.3: People modify crops
			Concept 30.3: People modify crops
			Concept 30.3: People modify crops
			Concept 30.3: People modify crops
			Concept 30.3: People modify crops
			Concept 30.3: People modify crops
			Concept 30.3: People modify crops
			Concept 30.3: People modify crops
			Concept 30.3: People modify crops
			Concept 30.3: People modify crops
			Concept 30.3: People modify crops
			Concept 30.3: People modify crops
			Concept 30.3: People modify crops
			Concept 30.3: People modify crops
			Concept 30.3: People modify crops
			Concept 30.3: People modify crops
			Concept 30.3: People modify crops
			Concept 30.3: People modify crops
			Concept 30.3: People modify crops
			Concept 30.3: People modify crops

A Correlation of Campbell Biology in Focus, 4th Edition, AP® Edition ©2025 to the College Board AP® Biology Curriculum Framework, Fall 2020

AP® Biology Topics	Big Ideas: Enduring Understandings	Campbell Biology in Focus 4th Edition, AP Edition, © 2025 Chapters and Key Concepts
Unit 7 Natural Selection (1	3 Topics)	
7.1 Introduction to Natural Selection	EVO-1: Evolution is characterized by a change in the genetic makeup of a population over time and is supported by multiple lines of evidence.	Chapter 19: Decent with Modification Concept 19.1: The Darwinian revolution challenged traditional views of a young Earth inhabited by unchanging species Concept 19.2: Descent with modifications by natural selection explains the adaptations of organisms and the unity and diversity of life Concept 19.3: Evolution is supported by an overwhelming amount of scientific evidence
7.2 Natural Selection	EVO-1: Evolution is characterized by a change in the genetic makeup of a population over time and is supported by multiple lines of evidence.	Chapter 21: The Evolution of Populations Overview: The Smallest Unit of Evolution Concept 21.1: Genetic variation makes evolution possible Concept 21.4: Natural selection is the only mechanism that consistently causes adaptive evolution Figure 21.15: The Sickle-Cell Allele
7.3 Artificial Selection	EVO-1: Evolution is characterized by a change in the genetic makeup of a population over time and is supported by multiple lines of evidence.	Chapter 19: Descent with Modification Concept 19.2: Descent with modification by natural selection explains the adaptations of organisms and the unity and diversity of life Concept 19.3: Evolution is supported by an overwhelming amount of scientific evidence
7.4 Population Genetics	EVO-1: Evolution is characterized by a change in the genetic makeup of a population over time and is supported by multiple lines of evidence.	Chapter 21: The Evolution of Populations Overview: The Smallest Unit of Evolution Concept 21.1: Genetic variation makes evolution possible Concept 21.3: Natural selection genetic drif t, and gene flow can alter allele f requencies in a population

7.5 Hardy-Weinberg	EVO-1: Evolution is	Chapter 21: The Evolution of Populations
Equilibrium	characterized by a change in the genetic makeup of a population over time and is supported by multiple lines of evidence.	Concept 21.2: The Hardy-Weinberg equation

AP® Biology Topics	Big Ideas: Enduring Understandings	Campbell Biology in Focus 4th Edition, AP Edition, © 2025 Chapters and Key Concepts
7.6 Evidence of Evolution	EVO-1: Evolution is characterized by a change in the genetic makeup of a population over time and is supported by multiple lines of evidence. EVO-2: Organisms are linked by lines of descent from common ancestry	Chapter 1: Introduction: Evolution and the Foundations of Biology Concept 1.1: The study of life reveals unifying themes Concept 1.2: The Core Theme: Evolution accounts for the unity and diversity of life Chapter 3: Carbon And The Molecular Diversity of Life Concept 3.7: Genomics and proteomics have transformed biological inquiry and applications Chapter 19: Descent with Modification Concept 19.3: Evolution is supported by an overwhelming amount of scientific evidence Chapter 17: Viruses Concept 17.3: Viruses and prions are formidable pathogens in animals and plants Chapter 23: Broad Patterns of Evolution Scientific Skills Exercise: Analyzing a Sequence-Based Phylogenetic Tree to Understand Viral Evolution
7.7 Common Ancestry	EVO-2: Organisms are linked by lines of descent f rom common ancestry	Chapter 4: A Tour of the Cell Concept 4.2: Eukaryotic cells have internal membranes that compartmentalize their f unctions Concept 4.5: Mitochondria and chloroplasts change energy from one form to another Chapter 24: Early life and the Diversification of Prokaryotes Concept 24.2: Diverse structural and metabolic adaptations have evolved in prokaryotes Chapter 25: The Origin and Diversification of Eukaryotes Concept 25.1: Eukaryotes arose by endosymbiosis more than 1.8 billion years ago

	College Board Ar & Biology Curriculant Framework, Fair 2020		
7.8 Continuing Evolution	evolve within a changing environment.	Concept 19.2: Descent with modification by natural selection explains the adaptations of organisms and the unity and diversity of life Concept 19.3: Evolution is supported by an overwhelming amount of scientific evidence	
7.9 Phylogeny	EVO-3: Life continues to evolve within a changing environment	Chapter 20: Phylogeny	
7.10 Speciation	EVO-3: Life continues to evolve within a changing environment	Chapter 22: The Origin of Species	

A Correlation of Campbell Biology in Focus, 4th Edition, AP® Edition ©2025 to the College Board AP® Biology Curriculum Framework, Fall 2020

AP® Biology Topics	Big Ideas: Enduring Understandings	Campbell Biology in Focus 4th Edition, AP Edition, © 2025 Chapters and Key Concepts
7.11 Extinction	EVO-3: Life continues to evolve within a changing environment	Chapter 19: Descent with Modification Concept 19.3: Evolution is supported by an overwhelming amount of scientific evidence Chapter 23: Broad Patterns of Evolution Concept 23.2: The rise and fall of groups of organisms reflect differences in speciation and extinction rates Chapter 43: Conservation Biology and Global Change
7.12 Variations in	SYI-3: Naturally	Chapter 43: Conservation Biology and
Populations	occurring diversity	Global Change
	among and between	Concept 43.1: Human activities threaten
	components within	Earth's biodiversity
	biological systems	Concept 43.2: Population
	affects interactions with	conservation focuses on population
	the environment	size, genetic diversity, and critical habitat

7.13 Origins of Life on	SYI-3: Naturally	Chapter 24: Early Life and the
Earth	occurring diversity	Diversification of Prokaryotes
	among and between	Overview: The First Cells
	components within	Concept 24.1: Conditions on early Earth
	biological systems af	made the origin of life possible
	fects interactions with	made the origin of the possible
	the environment	
<u> </u>		

AP® Biology Topics	Big Ideas: Enduring Understandings	Campbell Biology in Focus 4th Edition, AP Edition, © 2025 Chapters and Key Concepts	
Unit 8: Ecology (7 Topics)			

	1	Chanter 31: Plant Despenses to Internal
8.1 Responses to the	ENV-3: Timing and coordination of	Chapter 31: Plant Responses to Internal and External Signals
Environment	biological mechanisms	Chapter 32: The internal Environment of
	involved in growth,	Animals: Organization and Regulation
	reproduction, and	Concept 32.2: The endocrine and
	homeostasis depend on	nervous systems act individually and
	organisms responding to	together in regulating animal physiology
	environmental cues.	Concept 32.3: Feedback control maintains
		the internal environment in many animals
	IST-5: Transmission	Chapter 39: Motor Mechanisms and
	of information results	Behavior
	in changes within and	Concept 39.3: Discrete sensory inputs
	between biological	can stimulate both simple and complex
	systems.	behaviors
	*	Concept 39.5: Selection for
	IST-3: Cells	individual survival and reproductive
	communicate by	success can explain diverse
	generating, transmitting,	behaviors
	receiving, and	DOTIGNIOIS
	responding to chemical	
0.2 5-2	signals.	Chapter 41: Foological Communities
8.2 Energy Flow	ENE-1: The highly	Chapter 41: Ecological Communities Concept 41.2: Biological communities
Through	complex organization	can be characterized by their diversity
Ecosystems	of living systems	and trophic structure
	requires constant input	
		L Chabler 47° Ecosysiems and Energy — T
	of energy and the	Chapter 42: Ecosystems and Energy Concept 42: Physical laws govern
	exchange of	Concept 42.1: Physical laws govern
	0,	Concept 42.1: Physical laws govern energy f low and chemical cycling in
	exchange of	Concept 42.1: Physical laws govern
	exchange of	Concept 42.1: Physical laws govern energy f low and chemical cycling in ecosystems Concept 42.2: Energy and
	exchange of	Concept 42.1: Physical laws govern energy f low and chemical cycling in ecosystems Concept 42.2: Energy and other limiting
	exchange of	Concept 42.1: Physical laws govern energy f low and chemical cycling in ecosystems Concept 42.2: Energy and other limiting f actors control primary production in ecosystems Concept 42.3: Energy transfer between
	exchange of	Concept 42.1: Physical laws govern energy f low and chemical cycling in ecosystems Concept 42.2: Energy and other limiting f actors control primary production in ecosystems Concept 42.3: Energy transfer between trophic levels is typically on 10% efficient
	exchange of	Concept 42.1: Physical laws govern energy f low and chemical cycling in ecosystems Concept 42.2: Energy and other limiting f actors control primary production in ecosystems Concept 42.3: Energy transfer between
	exchange of	Concept 42.1: Physical laws govern energy f low and chemical cycling in ecosystems Concept 42.2: Energy and other limiting f actors control primary production in ecosystems Concept 42.3: Energy transfer between trophic levels is typically on 10% efficient
	exchange of	Concept 42.1: Physical laws govern energy f low and chemical cycling in ecosystems Concept 42.2: Energy and other limiting f actors control primary production in ecosystems Concept 42.3: Energy transfer between trophic levels is typically on 10% efficient Chapter 40: Population Ecology and the
	exchange of	Concept 42.1: Physical laws govern energy f low and chemical cycling in ecosystems Concept 42.2: Energy and other limiting f actors control primary production in ecosystems Concept 42.3: Energy transfer between trophic levels is typically on 10% efficient Chapter 40: Population Ecology and the Distribution of Organisms
	exchange of	Concept 42.1: Physical laws govern energy f low and chemical cycling in ecosystems Concept 42.2: Energy and other limiting f actors control primary production in ecosystems Concept 42.3: Energy transfer between trophic levels is typically on 10% efficient Chapter 40: Population Ecology and the Distribution of Organisms Concept 40.6: Population dynamics are inf luenced strongly by life history traits and population density
	exchange of	Concept 42.1: Physical laws govern energy f low and chemical cycling in ecosystems Concept 42.2: Energy and other limiting f actors control primary production in ecosystems Concept 42.3: Energy transfer between trophic levels is typically on 10% efficient Chapter 40: Population Ecology and the Distribution of Organisms Concept 40.6: Population dynamics are inf luenced strongly by life history traits and population density Chapter 33: Animal Nutrition
	exchange of	Concept 42.1: Physical laws govern energy f low and chemical cycling in ecosystems Concept 42.2: Energy and other limiting f actors control primary production in ecosystems Concept 42.3: Energy transfer between trophic levels is typically on 10% efficient Chapter 40: Population Ecology and the Distribution of Organisms Concept 40.6: Population dynamics are inf luenced strongly by life history traits and population density
	exchange of	Concept 42.1: Physical laws govern energy f low and chemical cycling in ecosystems Concept 42.2: Energy and other limiting f actors control primary production in ecosystems Concept 42.3: Energy transfer between trophic levels is typically on 10% efficient Chapter 40: Population Ecology and the Distribution of Organisms Concept 40.6: Population dynamics are inf luenced strongly by life history traits and population density Chapter 33: Animal Nutrition
	exchange of	Concept 42.1: Physical laws govern energy f low and chemical cycling in ecosystems Concept 42.2: Energy and other limiting f actors control primary production in ecosystems Concept 42.3: Energy transfer between trophic levels is typically on 10% efficient Chapter 40: Population Ecology and the Distribution of Organisms Concept 40.6: Population dynamics are influenced strongly by life history traits and population density Chapter 33: Animal Nutrition Concept 33.5: Feedback circuits regulate
	exchange of	Concept 42.1: Physical laws govern energy f low and chemical cycling in ecosystems Concept 42.2: Energy and other limiting f actors control primary production in ecosystems Concept 42.3: Energy transfer between trophic levels is typically on 10% efficient Chapter 40: Population Ecology and the Distribution of Organisms Concept 40.6: Population dynamics are influenced strongly by life history traits and population density Chapter 33: Animal Nutrition Concept 33.5: Feedback circuits regulate
	exchange of	Concept 42.1: Physical laws govern energy f low and chemical cycling in ecosystems Concept 42.2: Energy and other limiting f actors control primary production in ecosystems Concept 42.3: Energy transfer between trophic levels is typically on 10% efficient Chapter 40: Population Ecology and the Distribution of Organisms Concept 40.6: Population dynamics are influenced strongly by life history traits and population density Chapter 33: Animal Nutrition Concept 33.5: Feedback circuits regulate
	exchange of	Concept 42.1: Physical laws govern energy f low and chemical cycling in ecosystems Concept 42.2: Energy and other limiting f actors control primary production in ecosystems Concept 42.3: Energy transfer between trophic levels is typically on 10% efficient Chapter 40: Population Ecology and the Distribution of Organisms Concept 40.6: Population dynamics are influenced strongly by life history traits and population density Chapter 33: Animal Nutrition Concept 33.5: Feedback circuits regulate
	exchange of	Concept 42.1: Physical laws govern energy f low and chemical cycling in ecosystems Concept 42.2: Energy and other limiting f actors control primary production in ecosystems Concept 42.3: Energy transfer between trophic levels is typically on 10% efficient Chapter 40: Population Ecology and the Distribution of Organisms Concept 40.6: Population dynamics are influenced strongly by life history traits and population density Chapter 33: Animal Nutrition Concept 33.5: Feedback circuits regulate

		Campbell Biology in Focus
AP® Biology Topics	Big Ideas: Enduring	4th Edition, AP Edition, ©
	Understandings	2025 Chapters and Key
	Ŭ	Concepts

	SVI 1: Living systems	
8.3 Population Ecology	SYI-1: Living systems are organized in a hierarchy of structural levels that interact.	Chapter 40: Population Ecology and the Distribution of Organisms Concept 40.4: Biotic and abiotic factors af fect population density, dispersion, and demographics Concept 40.5: The exponential and logistic models describe the growth of populations
8.4 Effect of Density of Populations	SYI-1: Living systems are organized in a hierarchy of structural levels that interact IST-1: Heritable inf ormation provides for continuity of life.	Chapter 40: Population Ecology and the Distribution of Organisms Concept 40.4: Biotic and abiotic factors af fect population density, dispersion, and demographics Concept 40.5: The exponential and logistic models describe the growth of populations Concept 40.6: Population dynamics are Influenced strongly by life history traits and population density
8.5 Community Ecology	ENE-4: Communities and ecosystems change on the basis of interactions among populations and disruptions to the environment	Chapter 41: Ecological Communities Concept 41.4: Interactions between species may help, harm, or have no effect on the individuals involved Concept 41.2: Biological communities can be characterized by their diversity and trophic structure (includes Shannon diversity index)
8.6 Biodiversity	SYI-3: Naturally occurring diversity among and between components within biological systems affects interactions with the environment.	Chapter 41: Ecological Communities Concept 41.2: Biological communities can be characterized by their diversity and trophic structure (includes Shannon diversity index
8.7 Disruptions to Ecosystems	EVO-1: Evolution is characterized by change in the genetic make-up of a population over time and is supported by multiple lines of evidence	Chapter 41: Ecological Communities Concept 41.3: Disturbance influences species diversity and composition Concept 41.4: Biogeographic factors affect community diversity Concept 41.5: Pathogens alter community structure locally and globally Chapter 17: Viruses Concept 17.3: Viruses and prions are formidable pathogens in animals and plants Chapter 21: The Evolution of Populations Concept 21.1: Genetic variation makes evolution possible

A Correlation of Campbell Biology in Focus, 4th Edition, AP® Edition ©2025 to the College Board AP® Biology Curriculum Framework, Fall 2020