

Correlation of Calculus, 2nd Edition, AP[®] Edition © 2018

to the AP[®] Calculus AB – AP[®] Students | College Board

Unit 1: Limits and Continuity

Торіс	ENDURING	LEARNING	ESSENTIAL	Calculus AP
	UNDERSTANDING	OBJECTIVE	KNOWLEDGE	Edition 2e
TOPIC 1.1 Introducing Calculus: Can Change Occur at an Instant?	UNDERSTANDING CHA-1: Calculus allows us to generalize knowledge about motion to diverse problems involving change.	OBJECTIVE CHA-1.A: Interpret the rate of change at an instant in terms of average rates of change over intervals containing that instant.	KNOWLEDGE CHA-1.A.1: Calculus uses limits to understand and model dynamic change. CHA-1.A.2: Because an average rate of change divides the change in one variable by the change in another, the average rate of change is undefined at a point where the change in the independent variable would be zero. CHA-1.A.3: The limit concept allows us to define instantaneous rate of change in terms of average rates of change.	Edition 2e Sect. 2.1 Sect. 2.2 Sect. 2.3 Sect. 2.4 Sect. 2.6 Sect. 2.1 Sect. 2.2 Sect. 2.3 Sect. 2.4 Sect. 2.4 Sect. 2.6 Sect. 2.1 Sect. 2.2 Sect. 2.3 Sect. 2.3 Sect. 2.4 Sect. 2.4 Sect. 2.4 Sect. 2.4 Sect. 2.4 Sect. 2.4
TOPIC 1.2 Defining Limits and Using Limit Notation	LIM-1: Reasoning with definitions, theorems, and properties can be used to justify claims about limits.	LIM-1.A: Represent limits analytically using correct notation. LIM-1.B: Interpret limits expressed in analytic notation.	LIM-1.A.1 Given a function f, the limit of f (x) as x approaches c is a real number R if f (x) can be made arbitrarily close to R by taking x sufficiently close to c (but not equal to c). If the limit exists and is a real number, then the common notation is f x R lim x c ()= \rightarrow .	Sect. 2.1 Sect. 2.2

			LIM-1.B.1	Sect. 2.1
			A limit can be expressed	Sect 22
			in multiple ways	
			including graphically	
			numerically and	
			analytically	
	LIM_1		$1 M_{-1} C 1$	Sect 23
Estimating Limit	Reasoning with	Estimate limits of	The concept of a limit	Ject. 2.5
Values from Graphs	definitions	functions	includes one sided limits	
	theorems and		LIM 1 C 2	Soct 22
	proportios can bo		Graphical information	Sect. 2.5
	properties can be		shout a function can be	
	about limits		about a function can be	
				Cost 22
			LIIVI-I.C.3	Sect. 2.3
			Because of Issues of	
			scale, graphical	
			representations of	
			functions may miss	
			behavior.	
			LIM-1.C.4	Sect. 2.3
			A limit might not exist	
			for some functions at	
			particular values of x.	
			Some ways that the limit	
			might not exist are if the	
			function is unbounded, if	
			the function is oscillating	
			near this value, or if the	
			limit from the left does	
			not equal the limit from	
			the right.	
TOPIC 1.4	LIM-1: Reasoning	LIM-1.C	LIM-1.C.5	Sect. 2.3
Estimating Limit	with definitions,	Estimate limits of	Numerical information	
Values from Tables	theorems, and	functions.	can be used to estimate	
	properties can be		limits.	
	used to justify claims			
	about limits.			
TOPIC 1.5	LIM-1: Reasoning	LIM-1.D	LIM-1.D.1	Sect. 2.3
Determining Limits	with definitions,	Determine the limits	One-sided limits can be	
Using Algebraic	theorems, and	of functions using	determined analytically	

Properties of Limits	properties can be	limit theorems.	or graphically.	
	about limits.		LIM.1.D.2 Limits of sums, differences, products, quotients, and composite functions can be found using limit theorems.	Sect. 2.3
TOPIC 1.6 Determining Limits Using Algebraic Manipulation	LIM-1: Reasoning with definitions, theorems, and properties can be used to justify claims about limits.	LIM-1.E Determine the limits of functions using equivalent expressions for the function or squeeze theorem.	LIM-1.E.1 It may be necessary or helpful to rearrange expressions into equivalent forms before evaluating limits.	Sect. 2.3
TOPIC 1.7 Selecting Procedures for Determining Limits				Sect. 2.3
TOPIC 1.8 Determining Limits Using the Squeeze Theorem	LIM-1 Reasoning with definitions, theorems, and properties can be used to justify claims about limits.	LIM-1.E Determine the limits of functions using equivalent expressions for the function or squeeze theorem.	LIM-1.E.2 The limit of a function may be found by using the squeeze theorem.	Sect. 2.3
TOPIC 1.9 Connecting Multiple Representations of Limits				Sect. 2.3
TOPIC 1.10 Exploring Types of Discontinuities	LIM-2 Reasoning with definitions, theorems, and properties can be used to justify claims about continuity.	LIM-2.A Justify conclusions about continuity at a point using the definition	LIM-2.A.1 Types of discontinuities include removable discontinuities, jump discontinuities, and discontinuities due to vertical asymptotes.	Sect. 2.6

TOPIC 1.11 Defining Continuity at a Point	LIM-2 Reasoning with definitions, theorems, and properties can be used to justify claims about continuity.	LIM-2.A Justify conclusions about continuity at a point using the definition	LIM-2.A.2 A function f is continuous at x = c provided that f(c) exists, lim f x () exists, and lim \rightarrow f (x)= f (c).	Sect. 2.6
TOPIC 1.12 Confirming Continuity over an Interval	LIM-2 Reasoning with definitions, theorems, and properties can be used to justify claims about continuity.	LIM-2.B Determine intervals over which a function is continuous.	LIM-2.B.1 A function is continuous on an interval if the function is continuous at each point in the interval.	Sect. 2.6
			LIM-2.B.2 Polynomial, rational, power, exponential, logarithmic, and trigonometric functions are continuous on all points in their domains.	Sect. 2.6
TOPIC 1.13 Removing Discontinuities	LIM-2 Reasoning with definitions, theorems, and properties can be used to justify claims about continuity.	LIM-2.C Determine values of x or solve for parameters that make discontinuous functions continuous, if possible.	LIM-2.C.1 If the limit of a function exists at a discontinuity in its graph, then it is possible to remove the discontinuity by defining or redefining the value of the function at that point, so it equals the value of the limit of the function as x approaches that point.	Sect. 2.6
			LIM-2.C.2 In order for a piecewise-defined function to be continuous at a boundary to the partition of its domain, the value of the expression defining the function on one side of the boundary must equal the value of	Sect. 2.6

			the expression defining	
			the other side of the	
			boundary, as well as the	
			value of the function at	
			the boundary	
	LIM-2 Reasoning	IIM-2 D Interpret the	LIM-2 D 1 The concept of	Sect 21
Connecting Infinite	with definitions	behavior of functions	a limit can be extended	Jeet. 2.4
Limits and Vertical	theorems and	using limits involving	to include infinite limits	
	proportios can bo	infinity	LINA 2 D 2 Asymptotic	Sact 24
Asymptotes	properties can be	mmmuy.	LIM-2.D.2 Asymptotic	Sect. 2.4
			and unbounded behavior	
	about continuity.		described and soulaires d	
			described and explained	
			using limits.	C
	LIM-2 Reasoning	LIM-2.D Interpret the	LIM-2.D.3 The concept of	Sect. 2.5
Connecting Limits at	with definitions,	behavior of functions	a limit can be extended	
Infinity and	theorems, and	using limits involving	to include limits at	
Horizontal	properties can be	infinity.	infinity	
Asymptotes	used to justify claims		LIM-2.D.4 Limits at	Sect. 2.5
	about continuity.		infinity describe end	
			behavior.	
			LIM-2.D.5	Sect. 2.5
			Relative magnitudes of	
			functions and their rates	
			of change can be	
			compared using limits.	
TOPIC 1.16	FUN-1 Existence	FUN-1.A Explain the	FUN-1.A .1 If f is a	Sect. 2.6
Working with the	theorems allow us to	behavior of a	continuous function on	
Intermediate Value	draw conclusions	function on an	the closed interval [a, b]	
Theorem (IVT)	about a function's	interval using the	and d is a number	
	behavior on an	Intermediate Value	between f (a) and f (b),	
	interval without	Theorem.	then the Intermediate	
	precisely locating		Value Theorem	
	that behavior.		guarantees that there is	
			at least one number c	
			between a and b, such	
			that $f(c) = d$.	
				<u> </u>
Unit 2: Differentiatio	n: Definition and Fund	amental Properties		
	CHA-2 Derivatives	CHA-2.A Determine	CHA-2.A.1 The difference	Sect. 3.1
Defining Average	allow us to	average rates of	quotients t (a+h)-t(a)/h	
and Instantaneous	determine rates of	change using	and t (x)-t(a)/x-a express	
Rates of Change at a	change at an instant	difference quotients.	the average rate of	
Point	by applying limits to		change of a function	

	knowledge about rates of change over intervals		over an interval.	
		CHA-2.B Represent the derivative of a function as the limit of a difference quotient.	The instantaneous rate of change of a function at x = a can be expressed by + - $\lim \rightarrow f(a + h)$ - f(a)/h or $\lim \rightarrow f(x) - f$ (a)/x-a provided the limit exists. These are equivalent forms of the definition of the derivative and are denoted f'(a).	Sect. 3.1
TOPIC 2.2 Defining the Derivative of a Function and Using Derivative Notation	CHA-2 Derivatives allow us to determine rates of change at an instant by applying limits to	CHA-2.B Represent the derivative of a function as the limit of a difference quotient.	The derivative of f is the function whose value at x is $+ - \lim f(x+h)-f(x)/h$, provided this limit exists.	Sect. 3.1 Sect. 3.2
	knowledge about rates of change over intervals.	CHA-2.C Determine the equation of a line tangent to a curve at a given	CHA-2.B.3 For y = f(x), notations for the derivative include dy/dx, f'(x), and y'.	Sect. 3.1 Sect. 3.2
		point.	CHA-2.8.4 The derivative can be represented graphically, numerically, analytically, and verbally.	Sect. 3.1 Sect. 3.2
			CHA-2.C.1 The derivative of a function at a point is the slope of the line tangent to a graph of the function at that point	Sect. 3.1 Sect. 3.2
TOPIC 2.3 Estimating Derivatives of a Function at a Point	CHA-2 Derivatives allow us to determine rates of change at an instant by applying limits to	CHA-2.D Estimate derivatives.	CHA-2.D.1 The derivative at a point can be estimated from information given in tables or graphs.	Sect. 3.2
	knowledge about rates of change over intervals.		CHA-2.D.2 Technology can be used to calculate or estimate the value of a derivative of a function	Sect. 3.2

			at a point.	
TOPIC 2.4 Connecting Differentiability and Continuity: Determining When Derivatives Do and Do Not Exist	FUN-2 Recognizing that a function's derivative may also be a function allows us to develop knowledge about the related behaviors of both.	FUN-2.A Explain the relationship between differentiability and continuity.	FUN-2.A.1 If a function is differentiable at a point, then it is continuous at that point. In particular, if a point is not in the domain of f, then it is not in the domain of f '. FUN-2.A.2 A continuous function may fail to be differentiable at a point in its domain	Sect. 3.1 Sect. 3.2 Sect. 3.1 Sect. 3.2
TOPIC 2.5 Applying the Power Rule	FUN-3 Recognizing opportunities to apply derivative rules can simplify differentiation.	FUN-3.A Calculate derivatives of familiar functions.	FUN-3.A.1 Direct application of the definition of the derivative and specific rules can be used to calculate the derivative for functions of the form f (x)=x^r	Sect. 3.3
TOPIC 2.6 Derivative Rules: Constant, Sum, Difference, and Constant Multiple	FUN-3 Recognizing opportunities to apply derivative rules can simplify differentiation.	FUN-3.A Calculate derivatives of familiar functions.	FUN-3.A.2 Sums, differences, and constant multiples of functions can be differentiated using derivative rules. FUN-3.A.3 The power rule combined with sum, difference, and constant multiple properties can be used to find the derivatives for	Sect. 3.3 Sect. 3.3
TOPIC 2.7 Derivatives of cos x, sin x, ex, and ln x	FUN-3 Recognizing opportunities to apply derivative rules can simplify differentiation.	FUN-3.A Calculate derivatives of familiar functions.	FUN-3.A.4 Specific rules can be used to find the derivatives for sine, cosine, exponential, and logarithmic functions.	Sect. 3.5 Sect. 3.9
	LIM-3 Reasoning with definitions, theorems, and properties can be used to determine a limit.	LIM-3.A Interpret a limit as a definition of a derivative.	LIM-3.A.1 In some cases, recognizing an expression for the definition of the derivative of a function whose derivative is known offers a strategy	Sect. 3.5 Sect. 3.9

			for determining a limit.	
TOPIC 2.8 The Product Rule	FUN-3 Recognizing opportunities to apply derivative rules can simplify differentiation.	FUN-3.B Calculate derivatives of products and quotients of differentiable functions.	FUN-3.B.1 Derivatives of products of differentiable functions can be found using the product rule.	Sect. 3.4
TOPIC 2.9 The Quotient Rule	FUN-3 Recognizing opportunities to apply derivative rules can simplify differentiation.	FUN-3.B Calculate derivatives of products and quotients of differentiable functions.	FUN-3.B.2 Derivatives of quotients of differentiable functions can be found using the quotient rule.	Sect. 3.4
TOPIC 2.10 Finding the Derivatives of Tangent, Cotangent, Secant, and/or Cosecant Functions	FUN-3 Recognizing opportunities to apply derivative rules can simplify differentiation.	FUN-3.B Calculate derivatives of products and quotients of differentiable functions.	FUN-3.B.3 Rearranging tangent, cotangent, secant, and cosecant functions using identities allows differentiation using derivative rules.	Sect. 3.5
TOPIC 3.1 The Chain Rule	FUN-3 Recognizing opportunities to apply derivative rules can simplify differentiation.	FUN-3.C Calculate derivatives of compositions of differentiable functions.	FUN-3.C.1 The chain rule provides a way to differentiate composite functions.	Sect. 3.7 Sect. 3.8
TOPIC 3.2 Implicit Differentiation	FUN-3 Recognizing opportunities to apply derivative rules can simplify differentiation.	FUN-3.D Calculate derivatives of implicit implicitly defined functions.	FUN-3.D.1 The chain rule is the basis for implicit differentiation.	Sect. 3.8
TOPIC 3.3 Differentiating Inverse Functions	FUN-3 Recognizing opportunities to apply derivative rules can simplify differentiation.	FUN-3.E Calculate derivatives of inverse and inverse trigonometric functions.	FUN-3.E.1 The chain rule and definition of an inverse function can be used to find the derivative of an inverse function, provided the derivative exists.	Sect. 3.10
TOPIC 3.4 Differentiating Inverse Trigonometric Functions	FUN-3 Recognizing opportunities to apply derivative rules can simplify differentiation.	FUN-3.E Calculate derivatives of inverse and inverse trigonometric functions.	FUN-3.E.2 The chain rule applied with the definition of an inverse function, or the formula for the derivative of an inverse function, can be used to find the derivatives of inverse	Sect. 3.8

			trigonometric functions.	
TOPIC 3.5				Sect. 3.2
Selecting Procedures				Sect. 3.3
for Calculating				Sect. 3.4
Derivatives				
TOPIC 3.6	FUN-3 Recognizing	FUN-3.F Determine	FUN-3.F.1 Differentiating	Sect. 3.6
Calculating Higher-	opportunities to	higher order	f' produces the second	
Order Derivatives	apply derivative rules	derivatives of a	derivative f ", provided	
	can simplify	function.	the derivative of f ' exists;	
	differentiation.		repeating this process	
			produces higher order	
			derivatives of f.	
			FUN-3.F.2 n Higher-order	Sect. 3.6
			derivatives are	
			represented with a	
			variety of notations. For y	
			= $f(x)$, notations for the	
			second derivative include	
			d2y/dx2, f "(x), and y ".	
			Higher-order derivatives	
			can be denoted dy/dx or	
			f^(n)(x)	
Unit 4: Contextual Ap	plications of Different	tiation		
TOPIC 4.1	CHA-3 Derivatives	CHA-3.A Interpret	CHA-3.A.1 The derivative	Sect. 3.6
Interpreting the	allow us to solve	the meaning of a	of a function can be	
Meaning of the	real-world problems	derivative in context.	interpreted as the	
Derivative in Context	involving rates of		instantaneous rate of	
	change.		change with respect to	
			its independent variable.	
			CHA-3.A.2	Sect. 3.6
			The derivative can be	
			used to express	
			information about rates	
			of change in applied	
			contexts.	
			CHA-3.A.3	Sect. 3.6
			The unit for f'(x) is the	
			unit for f divided by the	
			unit for x.	
TOPIC 4.2	CHA-3 Derivatives	CHA-3.B Calculate	CHA-3.B.1 The derivative	Sect. 3.6
Straight-Line Motion:	allow us to solve	rates of change in	can be used to solve	
Connecting Position,	real-world problems	applied contexts.	rectilinear motion	
Velocity, and	involving rates of		problems involving	
Acceleration	change.		position, speed, velocity,	
			and acceleration.	
	CHA-3 Derivatives	CHA-3.C Interpret	CHA-3.C.1 The derivative	Sect. 3.6
Rates of Change in	allow us to solve	rates of change in	can be used to solve	

Applied Contexts Other Than Motion	real-world problems involving rates of	applied contexts.	problems involving rates of change in applied	
	change.		contexts.	
TOPIC 4.4 Introduction to Related Rates	CHA-3 Derivatives allow us to solve real-world problems involving rates of change.	CHA-3.D Calculate related rates in applied contexts.	CHA-3.D.1 The chain rule is the basis for differentiating variables in a related rates problem with respect to the same independent variable.	Sect. 3.11
			CHA-3.D.2 Other differentiation rules, such as the product rule and the quotient rule, may also be necessary to differentiate all variables with respect to the same independent variable.	Sect. 3.11
TOPIC 4.5 Solving Related Rates Problems	CHA-3 Derivatives allow us to solve real-world problems involving rates of change.	CHA-3.E Interpret related rates in applied contexts.	CHA-3.E.1 The derivative can be used to solve related rates problems; that is, finding a rate at which one quantity is changing by relating it to other quantities whose rates of change are known.	Sect. 3.11
TOPIC 4.6 Approximating Values of a Function Using Local Linearity and Linearization	CHA-3 Derivatives allow us to solve real-world problems involving rates of change	CHA-3.F Approximate a value on a curve using the equation of a tangent line.	CHA-3.F.1 The tangent line is the graph of a locally linear approximation of the function near the point of tangency. CHA-3.F.2 For a tangent line approximation, the function's behavior near the point of tangency may determine whether a tangent line value is an underestimate or an overestimate of the corresponding function value.	Sect. 4.5 Sect. 4.5
TOPIC 4.7 Using L'Hospital's Rule for Determining Limits of Indeterminate Forms	LIM-4 L'Hospital's Rule allows us to determine the limits of some indeterminate forms.	LIM-4.A Determine limits of functions that result in indeterminate forms.	LIM-4.A.1 When the ratio of two functions tends to $0/0$ or ∞/∞ in the limit, such forms are said to be indeterminate.	Sect. 4.7

			LIM-4.A.2 Limits of the indeterminate forms 0 0 or ∞/∞ may be evaluated using L'Hospital's Rule	Sect. 4.7
Unit 5: Analytical Apr	lications of Differenti	ation		
TOPIC 5.1 Using the Mean Value Theorem	FUN-1 Existence theorems allow us to draw conclusions about a function's behavior on an interval without precisely locating that behavior.	FUN-1.B Justify conclusions about functions by applying the Mean Value Theorem over an interval.	FUN-1.B.1 If a function f is continuous over the interval [a, b] and differentiable over the interval (a, b), then the Mean Value Theorem guarantees a point within that open interval where the instantaneous rate of change equals the average rate of change over the interval.	Sect. 4.6
TOPIC 5.2 Extreme Value Theorem, Global Versus Local Extrema, and Critical Points	FUN-1 Existence theorems allow us to draw conclusions about a function's behavior on an interval without precisely locating that behavior.	FUN-1.C Justify conclusions about functions by applying the Extreme Value Theorem.	FUN-1.C.1 If a function f is continuous over the interval (a, b), then the Extreme Value Theorem guarantees that f has at least one minimum value and at least one maximum value on [a, b]. FUN-1.C.2 A point on a function where the first derivative equals zero or fails to exist is a critical point of the function. FUN-1.C.3 All local (relative) extrema occur at critical points of a	Sect. 4.1 Sect. 4.1 Sect. 4.1
TOPIC 5.3 Determining Intervals on Which a Function Is Increasing or Decreasing	FUN-4 A function's derivative can be used to understand some behaviors of the function.	FUN-4.A Justify conclusions about the behavior of a function based on the behavior of its derivatives.	FUN-4.A.1 The first derivative of a function can provide information about the function and its graph, including intervals where the function is increasing or	Sect. 4.2

			decreasing.	
TOPIC 5.4	FUN-4 A function's	FUN-4.A Justify	FUN-4.A.2 The first	Sect. 4.2
Using the First	derivative can be	conclusions about	derivative of a function	
Derivative Test to	used to understand	the behavior of a	can determine the	
Determine Relative	some behaviors of	function based on	location of relative (local)	
(Local) Extrema	the function.	the behavior of its	extrema of the function.	
		derivatives.		
TOPIC 5.5	FUN-4 A function's	FUN-4.A Justify	FUN-4.A.3 Absolute	Sect. 4.1
Using the Candidates	derivative can be	conclusions about	(global) extrema of a	
Test to Determine	used to understand	the behavior of a	function on a closed	
Absolute (Global)	some behaviors of	function based on	interval can only occur at	
Extrema	the function.	the behavior of its	critical points or at	
		derivatives	endpoints.	
TOPIC 5.6	FUN-4 A function's	FUN-4.A Justify	FUN-4.A.4 The graph of a	Sect. 4.2
Determining	derivative can be	conclusions about	function is concave up	
Concavity of	used to understand	the behavior of a	(down) on an open	
Functions over Their	some behaviors of	function based on	interval if the function's	
Domains	the function.	the behavior of its	derivative is increasing	
		derivatives.	(decreasing) on that	
			interval.	
			FUN-4.A.5	Sect. 4.2
			The second derivative of	
			a function provides	
			information about the	
			function and its graph.	
			including intervals of	
			upward or downward	
			concavity.	
			FUN-4.A.6	Sect. 4.2
			The second derivative of	
			a function may be used	
			to locate points of	
			inflection for the graph	
			of the original function.	
TOPIC 5.7	FUN-4 A function's	FUN-4.A Justifv	FUN-4.A.7 The second	Sect. 4.2
Using the Second	derivative can be	conclusions about	derivative of a function	
Derivative Test to	used to understand	the behavior of a	may determine whether	
Determine Extrema	some behaviors of	function based on	a critical point is the	
	the function.	the behavior of its	location of a relative	
		derivatives.	(local) maximum or	
			minimum.	
			FUN-4.A.8 When a	Sect. 4.2
			continuous function has	
			only one critical point on	
			an interval on its domain	
			and the critical point	
			corresponds to a relative	

			(local) extremum of the	
			function on the interval,	
			then that critical point	
			also corresponds to the	
			absolute (global)	
			extremum of the	
			function on the interval	
	ELIN_4 A function's	ELINI_4 A Justify	ELIN_4 A 9 Kov footuros	Soct 13
Skatching Craphs of	derivative can be	conclusions about	of functions and their	Ject. 4.5
Sketching Graphs Of	uenvalive can be			
		the behavior of a		
Derivatives	some benaviors of	function based on	Identified and related to	
	the function.	the behavior of its	their graphical,	
		derivatives.	numerical, and analytical	
			representations.	
			FUN-4.A.10 Graphical,	Sect. 4.3:
			numerical, and analytical	
			information from f' and	
			f" can be used to predict	
			and explain the behavior	
			of f.	
TOPIC 5.9	FUN-4 A function's	FUN-4.A Justify	FUN-4.A.11 Key features	Sect. 4.3:
Connecting a	derivative can be	conclusions about	of the graphs of f, f', and	
Function, Its First	used to understand	the behavior of a	f" are related to one	
Derivative, and Its	some behaviors of	function based on	another	
Second Derivative	the function.	the behavior of its		
		derivatives.		
TOPIC 5.10	FUN-4 A function's	Calculate minimum	FUN-4.B.1 The derivative	Sect. 4.4
Introduction to	derivative can be	and maximum values	can be used to solve	
Ontimization	used to understand	in applied contexts	optimization problems:	
Problems	some behaviors of	or analysis of	that is finding a	
TTODIETTIS	the function	functions	minimum or maximum	
	the function.	Turictions.	value of a function on a	
			aiven interval	
	ELINI A A function's	ELINI A C Interaret	ELINIA C.1 Minimum and	Soct 11
Coluing Ontimination	FUIN-4 A function s	FUN-4.C Interpret	FUN-4.C. I Minimum and	Sect. 4.4
Solving Optimization	derivative can be	minimum and	maximum values of a	
Problems	used to understand			
	some behaviors of	calculated in applied	meanings in applied	
	the function.	contexts.	contexts.	
TOPIC 5.12	FUN-4 A function's	FUN-4.D Determine	FUN-4.D.1 A point on an	Sect. 4.2
Exploring Behaviors	derivative can be	critical points of	implicit relation where	
of Implicit Relations	used to understand	implicit relations.	the first derivative equals	
	some behaviors of		zero or does not exist is	
	the function.		a critical point of the	
			function.	
		FUN-4.E Justify	FUN-4.E.1 Applications of	Sect. 4.2
		conclusions about	derivatives can be	
		the behavior of an	extended to implicitly	

		implicitly defined function based on evidence from its	defined functions.	
		derivatives.	FUN-4.E.2 Second derivatives involving implicit differentiation may be relations of x, y, and dy/dx.	Sect. 4.2
Unit 6: Integration ar	d Accumulation of Ch	ange		
	CHA-4 Definite	CHA-4 A Interpret	CHA-4 A 1 The area of	Sect 5.1
Exploring Accumulations of Change	integrals allow us to solve problems involving the accumulation of	the meaning of areas associated with the graph of a rate of change in context.	the region between the graph of a rate of change function and the x axis gives the accumulation	Sect. 6.1
	interval.		CHA-4.A.2 In some cases, accumulation of change can be evaluated by using geometry.	Sect. 5.1 Sect. 6.1
			CHA-4.A.3 positive (negative). If a rate of change is positive (negative) over an interval, then the	Sect. 5.1 Sect. 6.1
				Sect 51
			The unit for the area of a region defined by rate of change is the unit for the rate of change multiplied by the unit for the independent variable.	Sect. 6.1
TOPIC 6.2 Approximating Areas with Riemann Sums	LIM-5 Definite integrals can be approximated using geometric and numerical methods.	LIM-5.A Approximate a definite integral using geometric and numerical methods	LIM-5.A.1 Definite integrals can be approximated for functions that are represented graphically, numerically, analytically, and verbally.	Sect. 5.2
			LIM-5.A.2 Definite integrals can be approximated using a left Riemann sum, a right Riemann sum, a midpoint Riemann sum,	Sect. 5.2

TOPIC 6.3 Riemann Sums, Summation Notation, and Definite Integral Notation	LIM-5 Definite integrals can be approximated using geometric and numerical methods.	LIM-5.B Interpret the limiting case of the Riemann sum as a definite integral. LIM-5.C Represent the limiting case of the Riemann sum as a definite integral.	or a trapezoidal sum; approximations can be computed using either uniform or nonuniform partitions. LIM-5.A.3 Definite integrals can be approximated using numerical methods, with or without technology LIM-5.A.4 Depending on the behavior of a function, it may be possible to determine whether an approximation for a definite integral is an underestimate or overestimate for the value of the definite integral. LIM-5.B.1 The limit of an approximating Riemann sum can be interpreted as a definite integral. LIM-5.B.2 A Riemann sum, which requires a partition of an interval I, is the sum of products, each of which is the value of the function at a point in a subinterval multiplied by the length of that subinterval of the partition. LIM-5.C.1 The definite integral of a continuous function. LIM-5.C.2 A definite integral of a related Riemann sum, and the limit of a Riemann sum	Sect. 5.2 Sect. 5.2 Sect. 5.2 Sect. 5.3 Sect. 5.3 Sect. 5.2 Sect. 5.3 Sect. 5.2 Sect. 5.3 Sect. 5.2 Sect. 5.3
	FUN-5 The	FLIN-5 & Represent	can be written as a definite integral.	Sect 54
The Fundamental	Fundamental	accumulation	integral can be used to	0000. 5.7

Theorem of Calculus and Accumulation	Theorem of Calculus connects	functions using definite integrals.	define new functions.	
Functions	differentiation and integration.		FUN-5.A.2 If f is a continuous function on an interval.	Sect. 5.4
TOPIC 6.5 Interpreting the Behavior of Accumulation Functions Involving Area	FUN-5 The Fundamental Theorem of Calculus connects differentiation and integration.	FUN-5.A Represent accumulation functions using definite integrals.	FUN-5.A.3 = Graphical, numerical, analytical, and verbal representations of a function f provide information about the function g defined as g $(x) = \int xa f(t)dt.$	Sect. 5.4
TOPIC 6.6 Applying Properties of Definite Integrals	FUN-6 Recognizing opportunities to apply knowledge of geometry and mathematical rules can simplify integration.	FUN-6.A Calculate a definite integral using areas and properties of definite integrals.	FUN-6.A.1 In some cases, a definite integral can be evaluated by using geometry and the connection between the definite integral and area.	Sect. 5.5
			FUN-6.A.2 Properties of definite integrals include the integral of a constant times a function, the integral of the sum of two functions, reversal of limits of integration, and the integral of a function over adjacent intervals.	Sect. 5.5
			FUN-6.A.3 The definition of the definite integral may be extended to functions with removable or jump discontinuities.	Sect. 5.5
TOPIC 6.7 The Fundamental Theorem of Calculus and Definite Integrals	FUN-6 Recognizing opportunities to apply knowledge of geometry and	FUN-6.B Evaluate definite integrals analytically using the Fundamental	FUN-6.B.1 An antiderivative of a function f is a function g whose derivative is f.	Sect. 5.4
	mathematical rules can simplify integration.	Theorem of Calculus.	FUN-6.B.2 If a function f is continuous on an interval containing a, the function defined by = Fx f t dt ()() \int a x in the interval. is an antiderivative of f for x FUN-6.B.3	Sect. 5.4 Sect. 5.4

			interval [a, b] and F is an	
			antiderivative of f, then ∫	
			AP Calculus AB and BC	
			Course and Exam	
			Description a b f xdx () =	
			Fb Fa - ()().	
TOPIC 6.8	FUN-6 Recognizing	FUN-6.C Determine	FUN-6.C.1 $\int f x dx$ () is an	Sect. 5.1
Finding	opportunities to	antiderivatives of	indefinite integral of the	
Antiderivatives and	apply knowledge of	functions and	function f and can be	
Indefinite Integrals:	geometry and	indefinite integrals,	expressed as f xdx Fx C	
Basic Rules and	mathematical rules	using knowledge	where $F x f x () () \int ' =$	
Notation	can simplify	of derivatives.	and C is any constant.	
	integration.		FUN-6.C.2	Sect. 5.1
			Differentiation rules	
			provide the foundation	
			for f inding	
			antiderivatives.	
			FUN-6.C.3	Sect. 5.1
			Many functions do not	
			have closed-form	
			antiderivatives.	
TOPIC 6.9	FUN-6 Recognizing	FUN-6.D For	FUN-6.D.1 Substitution	Sect. 5.6
Integrating Using	opportunities to	integrands requiring	of variables is a	
Substitution	apply knowledge of	substitution or	technique for finding	
	geometry and	rearrangements into	antiderivatives.	
	mathematical rules	equivalent forms: (a)	FUN-6 D 2 integration	Sect 5.6
	can simplify	Determine indefinite	For a definite integral.	00000 0.00
	integration.	integrals. (b)	substitution of variables	
		Evaluate definite	requires corresponding	
		integrals.	changes to the limits of	
TOPIC 6.10	FUN-6 Recognizing	FUN-6.D For	FUN-6.D.3 Techniques	Sect. 7.1
Integrating Functions	opportunities to	integrands requiring	for finding	
Using Long Division	apply knowledge of	substitution or	antiderivatives include	
and Completing the	geometry and	rearrangements into	rearrangements into	
Square	mathematical rules	equivalent forms: (a)	equivalent forms, such as	
	can simplify	Determine indefinite	long division and	
	integration.	integrals. (b)	completing the square.	
		Evaluate definite		
		integrals.		
TOPIC 6.14				Sect. 7.1
Selecting Techniques				Sect. 7.2
for				
Antidifferentiation				
Unit 7: Differential Ed	quations	Γ		
TOPIC 7.1	LIM-6.A.2 Improper	FUN-7.A Interpret	FUN-7.A.1 Differential	Sect. 8.1
Modeling Situations	integrals can be	verbal statements of	equations relate a	
with Differential	determined using	problems as	function of an	

Equations	limits of definite	differential equations	independent variable	
	integrals. bc only	involving a derivative	and the function's	
		expression.	derivatives.	
TOPIC 7.2	FUN-7 Solving	FUN-7.B Verify	FUN-7.B.1 Derivatives	Sect. 8.1
Verifying Solutions	differential equations	solutions to	can be used to verify that	
for Differential	allows us to	differential	a function is a solution to	
Equations	determine functions	equations.	a given differential	
	and develop models.		equation.	
			FUN-7.B.2 There may be	Sect. 8.1
			infinitely many general	
			solutions to a differential	
			equation.	
TOPIC 7.3	FUN-7 Solving	FUN-7.C Estimate	FUN-7.C.1 A slope field is	Sect. 8.2
Sketching Slope	differential equations	solutions to	a graphical	
Fields	allows us to	differential	representation of a	
	determine functions	equations.	differential equation on a	
	and develop models.		finite set of points in the	
			plane.	
			FUN-7.C.2 Slope fields	Sect. 8.2
			provide information	
			about the behavior of	
			solutions to first-order	
			differential equations.	
TOPIC 7.4	FUN-7 Solving	FUN-7.C Estimate	FUN-7.C.3	Sect. 8.2
Reasoning Using	differential equations	solutions to	Solutions to differential	
Slope Fields	allows us to	differential	equations are functions	
	determine functions	equations.	or families of functions.	
	and develop models.			
TOPIC 7.6	FUN-7 Solving	FUN-7.D Determine	FUN-7.D.1 Some	Sect. 8.3
Finding General	differential equations	general solutions to	differential equations can	
Solutions Using	allows us to	differential	be solved by separation	
Separation of	determine functions	equations.	of variables.	
Variables	and develop models.			
			FUN-7.D.2	Sect. 8.3
			Antidifferentiation can be	
			used to find general	
			solutions to differential	
			equations.	
TOPIC 7.7	FUN-7 Solving	FUN-7.E Determine	FUN-7.E.1 A general	Sect. 8.3
Finding Particular	differential equations	particular solutions	solution may describe	
Solutions Using	allows us to	to differential	infinitely many solutions	
Initial Conditions and	determine functions	equations.	to a differential equation.	
Separation of	and develop models.		There is only one	
Variables			particular solution	
			passing through a given	
			point.	
			FUN-7.E.2 The function F	Sect. 8.3

TOPIC 7.8 Exponential Models with Differential Equations	FUN-7 Solving differential equations allows us to determine functions and develop models.	FUN-7.F Interpret the meaning of a differential equation and its variables in context. FUN-7.G Determine general and particular solutions for problems involving differential equations in context.	defined by $F(x) = y0 \int x a$ f(t) dt is a particular solution to the differential equation dy/dx = f (x), satisfying F(a) = y0. FUN-7.E.3 Solutions to differential equations may be subject to domain restrictions. FUN-7.F.1 Specific applications of finding general and particular solutions to differential equations include motion along a line and exponential growth and decay. FUN-7.F.2 The model for exponential growth and decay that arises from the statement "The rate of change of a quantity is proportional to the size of the quantity" is dy/dt = ky. FUN-7.G.1 The exponential growth and decay model, ky dy dt = , with initial condition y = y0 when t = 0, has solutions of the form y y = 0 ekt .	Sect. 8.4 Sect. 8.4 Sect. 8.4
	£ Intonuction			
Unit 8: Applications of				C
TOPIC 8.1 Finding the Average Value of a Function on an Interval	CHA-4 Definite integrals allow us to solve problems involving the accumulation of change over an interval.	CHA-4.B Determine the average value of a function using definite integrals.	CHA-4.B.1 The average value of a continuous function f over an interval [a, b] is 1/b-a ∫ b a f (x)dx.	Sect. 5.5
TOPIC 8.2	CHA-4 Definite	CHA-4.C Determine	CHA-4.C.1 For a particle	Sect. 6.1

Connectina Position.	integrals allow us to	values for positions	in rectilinear motion over	
Velocity. and	solve problems	and rates of change	an interval of time, the	
Acceleration of	involving the	using definite	definite integral of	
Functions Using	accumulation of	integrals in problems	velocity represents the	
Integrals	change over an	involvina	particle's displacement	
	interval.	rectilinear motion.	over the interval of time.	
			and the definite integral	
			of speed represents the	
			particle's total distance	
			traveled over the interval	
			of time.	
TOPIC 8 3	CHA-4 Definite	CHA-4 D Interpret	CHA-4 D 1 A function	Sect 5.4
Using Accumulation	integrals allow us to	the meaning of a	defined as an integral	5000. 5.1
Functions and	solve problems	definite integral in	represents an	
Definite Integrals in	involving the	accumulation	accumulation of a rate of	
Applied Contexts	accumulation of	problems	change	
	change over an		CHA-4 D 2 The definite	Sect 5.4
	interval.		integral of the rate of	
			change of a quantity	
			over an interval gives the	
			net change of that	
			quantity over that	
			interval.	
		CHA-4.E Determine	CHA-4.E.1 The definite	Sect. 5.4
		net change using	integral can be used to	
		definite integrals in	express information	
		applied contexts.	about accumulation and	
			net change in many	
			applied contexts.	
TOPIC 8.4	CHA-5 Definite	CHA-5.A Calculate	CHA-5.A.1 Areas of	Sect. 6.2
Finding the Area	integrals allow us to	areas in the plane	regions in the plane can	
Between Curves	solve problems	using the definite	be calculated with	
Expressed as	involving the	integral.	definite integrals.	
Functions of x	accumulation of			
	change in area or			
	volume over an			
	interval.			
TOPIC 8.5	CHA-5 Definite	CHA-5.A Calculate	CHA-5.A.2 Areas of	Sect. 6.2
Finding the Area	integrals allow us to	areas in the plane	regions in the plane can	
Between Curves	solve problems	using the definite	be calculated using	
Expressed as	involving the	integral.	functions of either x or y	
Functions of y	accumulation of			
,	change in area or			
	volume over an			
	interval.			
TOPIC 8.6	CHA-5 Definite	CHA-5.A Calculate	CHA-5.A.3 Areas of	Sect. 6.2
Finding the Area	integrals allow us to	areas in the plane	certain regions in the	
Between Curves That	solve problems	using the definite	plane may be calculated	

Intersect at More Than Two Points TOPIC 8.7 Volumes with Cross Sections: Squares and Rectangles	involving the accumulation of change in area or volume over an interval. CHA-5 Definite integrals allow us to solve problems involving the accumulation of change in area or	integral. CHA-5.B Calculate volumes of solids with known cross sections using definite integrals.	using a sum of two or more definite integrals or by evaluating a definite integral of the absolute value of the difference of two functions. CHA-5.B.1 Volumes of solids with square and rectangular cross sections can be found using definite integrals and the area formulas for	Sect. 6.3
TOPIC 8.8 Volumes with Cross Sections: Triangles and Semicircles	volume over an interval. CHA-5 Definite integrals allow us to solve problems involving the accumulation of	CHA-5.B Calculate volumes of solids with known cross sections using definite integrals.	CHA-5.B.2 Volumes of solids with triangular cross sections can be found using definite integrals and the area	Sect. 6.3
	change in area or volume over an interval.		formulas for these shapes. CHA-5.B.3 Volumes of solids with semicircular and other geometrically defined cross sections can be found using definite integrals and the area formulas for these shapes.	Sect. 6.3
TOPIC 8.9 Volume with Disc Method: Revolving Around the x- or y- Axis	CHA-5 Definite integrals allow us to solve problems involving the accumulation of change in area or volume over an interval	CHA-5.C Calculate volumes of solids of revolution using definite integrals.	CHA-5.C.1 Volumes of solids of revolution around the x- or y-axis may be found by using definite integrals with the disc method.	Sect. 6.4
TOPIC 8.10 Volume with Disc Method: Revolving Around Other Axes	CHA-5 Definite integrals allow us to solve problems involving the accumulation of change in area or volume over an interval.	CHA-5 Definite integrals allow us to solve problems involving the accumulation of change in area or volume over an interval.	CHA-5.C.2 Volumes of solids of revolution around any horizontal or vertical line in the plane may be found by using definite integrals with the disc method.	Sect. 6.4
TOPIC 8.11 Volume with Washer Method: Revolving	CHA-5 Definite integrals allow us to solve problems	CHA-5.C Calculate volumes of solids of revolution using	CHA-5.C.3 Volumes of solids of revolution around the x- or y-axis	Sect. 6.3

Around the x- or y-	involving the	definite integrals.	whose cross sections are	
Axis	accumulation of		ring shaped may be	
	change in area or		found using definite	
	volume over an		integrals with the washer	
	interval.		method.	
TOPIC 8.12	CHA-5 Definite	CHA-5.C Calculate	CHA-5.C.4 Volumes of	Sect. 6.3
Volume with Washer	integrals allow us to	volumes of solids of	solids of revolution	
Method: Revolving	solve problems	revolution using	around any horizontal or	
Around Other Axes	involving the	definite integrals.	vertical line whose cross	
	accumulation of		sections are ring shaped	
	change in area or		may be found using	
	volume over an		definite integrals with	
	interval.		the washer method.	