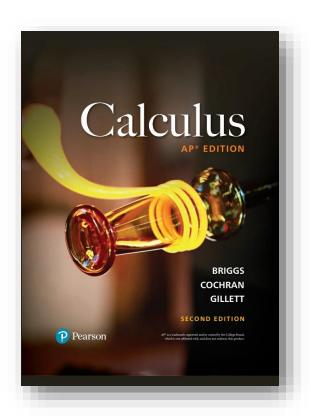


Correlation of Calculus, 2nd Edition, AP[®] Edition © 2018



to the AP[®] Calculus BC – AP[®] Students | College Board

Unit 1: Limits and Continuity

Торіс	ENDURING UNDERSTANDING	LEARNING OBJECTIVE	ESSENTIAL KNOWLEDGE	<i>Calculus</i> AP Edition 2e
TOPIC 1.1 Introducing Calculus: Can Change Occur at an Instant?	CHA-1: Calculus allows us to generalize knowledge about motion to diverse	CHA-1.A: Interpret the rate of change at an instant in terms of average rates of change	CHA-1.A.1: Calculus uses limits to understand and model dynamic change.	Sect. 2.1 Sect. 2.2 Sect. 2.3 Sect. 2.4 Sect. 2.6 Sect. 2.1
	problems involving change.	over intervals containing that instant.	5 5 5	
			CHA-1.A.3: The limit concept allows us to define instantaneous rate of change in terms of average rates of change.	Sect. 2.1 Sect. 2.2 Sect. 2.3 Sect. 2.4 Sect. 2.6 Sect. 2.7
TOPIC 1.2 Defining Limits and Using Limit Notation	LIM-1: Reasoning with definitions, theorems, and properties can be used to justify claims about limits.	LIM-1.A: Represent limits analytically using correct notation. LIM-1.B: Interpret limits expressed in analytic notation.	LIM-1.A.1 Given a function f, the limit of f (x) as x approaches c is a real number R if f (x) can be made arbitrarily close to R by taking x sufficiently close to c (but not equal to c). If the limit exists and is a real number, then the common notation is f x R lim x c ()= \rightarrow .	Sect. 2.1 Sect. 2.2
			LIM-1.B.1 A limit can be expressed in multiple ways, including graphically, numerically, and analytically.	Sect. 2.1 Sect. 2.2

TOPIC 1.3	LIM-1	LIM-1.C	LIM-1.C.1	Sect. 2.3
Estimating Limit	Reasoning with	Estimate limits of	The concept of a limit	
Values from Graphs	definitions,	functions.	includes one sided limits.	
	theorems, and		LIM-1.C.2	Sect. 2.3
	properties can be		Graphical information	
	used to justify claims		about a function can be	
	about limits.		used to estimate limits.	
			LIM-1.C.3	Sect. 2.3
			Because of issues of	
			scale, graphical	
			representations of	
			functions may miss	
			important function	
			behavior.	
			LIM-1.C.4	Sect. 2.3
			A limit might not exist	
			for some functions at	
			particular values of x.	
			Some ways that the limit	
			might not exist are if the	
			function is unbounded, if	
			the function is oscillating	
			near this value, or if the	
			limit from the left does	
			not equal the limit from the right.	
TOPIC 1.4	LIM-1: Reasoning	LIM-1.C	LIM-1.C.5	Sect. 2.3
Estimating Limit	with definitions,	Estimate limits of	Numerical information	5000. 2.5
Values from Tables	theorems, and	functions.	can be used to estimate	
	properties can be	Turretions.	limits.	
	used to justify claims			
	about limits.			
TOPIC 1.5	LIM-1: Reasoning	LIM-1.D	LIM-1.D.1	Sect. 2.3
Determining Limits	with definitions,	Determine the	One-sided limits can be	
Using Algebraic	theorems, and	limits of functions	determined analytically	
Properties of Limits	properties can be	using limit	or graphically.	
	used to justify claims	theorems.	LIM.1.D.2	Sect. 2.3
	about limits.		Limits of sums,	
			differences, products,	
			quotients, and composite	
			functions can be found	
			using limit theorems.	
TOPIC 1.6	LIM-1: Reasoning	LIM-1.E	LIM-1.E.1	Sect. 2.3
Determining Limits	with definitions,	Determine the	It may be necessary or	
Using Algebraic	theorems, and	limits of functions	helpful to rearrange	
Manipulation	properties can be	using equivalent	expressions into	
	used to justify claims	expressions for the	equivalent forms before	

	about limits.	function or squeeze theorem.	evaluating limits.	
TOPIC 1.7 Selecting Procedures for Determining Limits				Sect. 2.3
TOPIC 1.8 Determining Limits Using the Squeeze Theorem	LIM-1 Reasoning with definitions, theorems, and properties can be used to justify claims about limits.	LIM-1.E Determine the limits of functions using equivalent expressions for the function or squeeze theorem.	LIM-1.E.2 The limit of a function may be found by using the squeeze theorem.	Sect. 2.3
TOPIC 1.9 Connecting Multiple Representations of Limits				Sect. 2.3
TOPIC 1.10 Exploring Types of Discontinuities	LIM-2 Reasoning with definitions, theorems, and properties can be used to justify claims about continuity.	LIM-2.A Justify conclusions about continuity at a point using the definition	LIM-2.A.1 Types of discontinuities include removable discontinuities, jump discontinuities, and discontinuities due to vertical asymptotes.	Sect. 2.6
TOPIC 1.11 Defining Continuity at a Point	LIM-2 Reasoning with definitions, theorems, and properties can be used to justify claims about continuity.	LIM-2.A Justify conclusions about continuity at a point using the definition	LIM-2.A.2 A function f is continuous at $x = c$ provided that f(c) exists, lim f x () exists, and lim \rightarrow f (x)= f (c).	Sect. 2.6
TOPIC 1.12 Confirming Continuity over an Interval	LIM-2 Reasoning with definitions, theorems, and properties can be used to justify claims about continuity.	LIM-2.B Determine intervals over which a function is continuous.	LIM-2.B.1 A function is continuous on an interval if the function is continuous at each point in the interval.	Sect. 2.6
			LIM-2.B.2 Polynomial, rational, power, exponential, logarithmic, and trigonometric functions are continuous on all points in their domains.	Sect. 2.6

TOPIC 1.13 Removing Discontinuities	LIM-2 Reasoning with definitions, theorems, and properties can be used to justify claims about continuity.	LIM-2.C Determine values of x or solve for parameters that make discontinuous functions continuous, if possible.	LIM-2.C.1 If the limit of a function exists at a discontinuity in its graph, then it is possible to remove the discontinuity by defining or redefining the value of the function at that point, so it equals the value of the limit of the function as x approaches that point.	Sect. 2.6
			LIM-2.C.2 In order for a piecewise-defined function to be continuous at a boundary to the partition of its domain, the value of the expression defining the function on one side of the boundary must equal the value of the expression defining the other side of the boundary, as well as the value of the function at the boundary.	Sect. 2.6
TOPIC 1.14 Connecting Infinite Limits and Vertical Asymptotes	LIM-2 Reasoning with definitions, theorems, and properties can be	LIM-2.D Interpret the behavior of functions using limits involving	LIM-2.D.1 The concept of a limit can be extended to include infinite limits. LIM-2.D.2 Asymptotic	Sect. 2.4 Sect. 2.4
Asymptotes	used to justify claims about continuity.	infinity.	and unbounded behavior of functions can be described and explained using limits.	JEUL 2.4
TOPIC 1.15 Connecting Limits at Infinity and Horizontal	LIM-2 Reasoning with definitions, theorems, and properties can be	LIM-2.D Interpret the behavior of functions using limits involving	LIM-2.D.3 The concept of a limit can be extended to include limits at infinity	Sect. 2.5
Asymptotes	used to justify claims about continuity.	infinity.	LIM-2.D.4 Limits at infinity describe end behavior.	Sect. 2.5
			LIM-2.D.5 Relative magnitudes of functions and their rates of change can be	Sect. 2.5

			compared using limits.	
TOPIC 1.16 Working with the Intermediate Value Theorem (IVT)	FUN-1 Existence theorems allow us to draw conclusions about a function's behavior on an interval without precisely locating that behavior.	FUN-1.A Explain the behavior of a function on an interval using the Intermediate Value Theorem.	FUN-1.A .1 If f is a continuous function on the closed interval [a, b] and d is a number between f (a) and f (b), then the Intermediate Value Theorem guarantees that there is at least one number c between a and b, such that f(c) = d.	Sect. 2.6
Unit 2: Differentiation	: Definition and Funda	amental Properties		I
TOPIC 2.1 Defining Average and Instantaneous Rates of Change at a Point	CHA-2 Derivatives allow us to determine rates of change at an instant by applying limits to knowledge about rates of change over intervals.	CHA-2.A Determine average rates of change using difference quotients.	CHA-2.A.1 The difference quotients f $(a+h)-f(a)/h$ and f $(x)-f(a)/x$ -a express the average rate of change of a function over an interval.	Sect. 3.1
		CHA-2.B Represent the derivative of a function as the limit of a difference quotient.	The instantaneous rate of change of a function at x = a can be expressed by + - $\lim \rightarrow f(a + h)$ - f(a)/h or $\lim \rightarrow f(x) - f$ (a)/x-a provided the limit exists. These are equivalent forms of the definition of the derivative and are denoted f'(a).	Sect. 3.1
TOPIC 2.2 Defining the Derivative of a Function and Using Derivative Notation	CHA-2 Derivatives allow us to determine rates of change at an instant by applying limits to	CHA-2.B Represent the derivative of a function as the limit of a difference quotient.	The derivative of f is the function whose value at x is $+ - \lim_{x \to 0} f(x+h) - f(x)/h$, provided this limit exists.	Sect. 3.1 Sect. 3.2
	knowledge about rates of change over intervals.	CHA-2.C Determine the equation of a line tangent to a curve at a given	CHA-2.B.3 For y = f(x), notations for the derivative include dy/dx, f'(x), and y'.	Sect. 3.1 Sect. 3.2
		point.	CHA-2.B.4 The derivative can be represented graphically, numerically, analytically,	Sect. 3.1 Sect. 3.2

			and verbally.	
			CHA-2.C.1 The derivative	Sect. 3.1
			of a function at a point is	Sect. 3.2
			the slope of the line	
			tangent to a graph of the	
			function at that point	
TOPIC 2.3	CHA-2 Derivatives	CHA-2.D Estimate	CHA-2.D.1 The derivative	Sect. 3.2
Estimating Derivatives	allow us to	derivatives.	at a point can be	
of a Function at a	determine rates of		estimated from	
Point	change at an instant		information given in	
	by applying limits to		tables or graphs.	
	knowledge about		CHA-2.D.2 Technology	Sect. 3.2
	rates of change over		can be used to calculate	
	intervals.		or estimate the value of a	
			derivative of a function	
			at a point.	
TOPIC 2.4	FUN-2 Recognizing	FUN-2.A Explain the	FUN-2.A.1 If a function is	Sect. 3.1
Connecting	that a function's	relationship	differentiable at a point,	Sect. 3.2
Differentiability and	derivative may also	between	then it is continuous at	
Continuity:	be a function allows	differentiability and	that point. In particular, if	
Determining When	us to develop	continuity.	a point is not in the	
Derivatives Do and	knowledge about		domain of f, then it is not	
Do Not Exist	the related behaviors of both.		in the domain of f '.	
			FUN-2.A.2 A continuous	Sect. 3.1
			function may fail to be	Sect. 3.2
			differentiable at a point	
			in its domain.	
TOPIC 2.5	FUN-3 Recognizing	FUN-3.A Calculate	FUN-3.A.1 Direct	Sect. 3.3
Applying the Power	opportunities to	derivatives of	application of the	
Rule	apply derivative rules	familiar functions.	definition of the	
	can simplify differentiation.		derivative and specific rules can be used to	
	unerentiation.		calculate the derivative	
			for functions of the form	
			$f(x)=x^r$	
TOPIC 2.6	FUN-3 Recognizing	FUN-3.A Calculate	FUN-3.A.2 Sums,	Sect. 3.3
Derivative Rules:	opportunities to	derivatives of	differences, and constant	5000. 5.5
Constant, Sum,	apply derivative rules	familiar functions.	multiples of functions	
Difference, and Constant Multiple	can simplify		can be differentiated	
	differentiation.		using derivative rules.	
			FUN-3.A.3 The power	Sect. 3.3
			rule combined with sum,	
			difference, and constant	
			multiple properties can	
			be used to find the	
			derivatives for	
			polynomial functions.	

TOPIC 2.7 Derivatives of cos x, sin x, ex, and ln x	FUN-3 Recognizing opportunities to apply derivative rules can simplify differentiation.	FUN-3.A Calculate derivatives of familiar functions.	FUN-3.A.4 Specific rules can be used to find the derivatives for sine, cosine, exponential, and logarithmic functions.	Sect. 3.5 Sect. 3.9
	LIM-3 Reasoning with definitions, theorems, and properties can be used to determine a limit.	LIM-3.A Interpret a limit as a definition of a derivative.	LIM-3.A.1 In some cases, recognizing an expression for the definition of the derivative of a function whose derivative is known offers a strategy for determining a limit.	Sect. 3.5 Sect. 3.9
TOPIC 2.8 The Product Rule	FUN-3 Recognizing opportunities to apply derivative rules can simplify differentiation.	FUN-3.B Calculate derivatives of products and quotients of differentiable functions.	FUN-3.B.1 Derivatives of products of differentiable functions can be found using the product rule.	Sect. 3.4
TOPIC 2.9 The Quotient Rule	FUN-3 Recognizing opportunities to apply derivative rules can simplify differentiation.	FUN-3.B Calculate derivatives of products and quotients of differentiable functions.	FUN-3.B.2 Derivatives of quotients of differentiable functions can be found using the quotient rule.	Sect. 3.4
TOPIC 2.10 Finding the Derivatives of Tangent, Cotangent, Secant, and/or Cosecant Functions	FUN-3 Recognizing opportunities to apply derivative rules can simplify differentiation.	FUN-3.B Calculate derivatives of products and quotients of differentiable functions.	FUN-3.B.3 Rearranging tangent, cotangent, secant, and cosecant functions using identities allows differentiation using derivative rules.	Sect. 3.5
Unit 3: Differentiation	: Composite, Implicit,	and Inverse Function	S	
TOPIC 3.1 The Chain Rule	FUN-3 Recognizing opportunities to apply derivative rules can simplify differentiation.	FUN-3.C Calculate derivatives of compositions of differentiable functions.	FUN-3.C.1 The chain rule provides a way to differentiate composite functions.	Sect. 3.7 Sect. 3.8

TOPIC 3.2 Implicit Differentiation	FUN-3 Recognizing opportunities to apply derivative rules can simplify differentiation.	FUN-3.D Calculate derivatives of implicit implicitly defined functions.	FUN-3.D.1 The chain rule is the basis for implicit differentiation.	Sect. 3.8
TOPIC 3.3 Differentiating Inverse Functions	FUN-3 Recognizing opportunities to apply derivative rules can simplify differentiation.	FUN-3.E Calculate derivatives of inverse and inverse trigonometric functions.	FUN-3.E.1 The chain rule and definition of an inverse function can be used to find the derivative of an inverse function, provided the derivative exists.	Sect. 3.10
TOPIC 3.4 Differentiating Inverse Trigonometric Functions	FUN-3 Recognizing opportunities to apply derivative rules can simplify differentiation.	FUN-3.E Calculate derivatives of inverse and inverse trigonometric functions.	FUN-3.E.2 The chain rule applied with the definition of an inverse function, or the formula for the derivative of an inverse function, can be used to find the derivatives of inverse trigonometric functions.	Sect. 3.8
TOPIC 3.5 Selecting Procedures for Calculating Derivatives				Sect. 3.2 Sect. 3.3 Sect. 3.4
TOPIC 3.6 Calculating Higher- Order Derivatives	FUN-3 Recognizing opportunities to apply derivative rules can simplify differentiation.	FUN-3.F Determine higher order derivatives of a function.	FUN-3.F.1 Differentiating f ' produces the second derivative f ", provided the derivative of f ' exists; repeating this process produces higher order derivatives of f.	Sect. 3.6
			FUN-3.F.2 n Higher-order derivatives are represented with a variety of notations. For y = f (x), notations for the second derivative include d2y/dx2, f "(x), and y ". Higher-order derivatives can be denoted dy/dx or f^(n)(x)	Sect. 3.6

Unit 4: Contextual Ap	plications of Different	iation	1	1
TOPIC 4.1 Interpreting the Meaning of the Derivative in Context	CHA-3 Derivatives allow us to solve real-world problems involving rates of change.	CHA-3.A Interpret the meaning of a derivative in context.	CHA-3.A.1 The derivative of a function can be interpreted as the instantaneous rate of change with respect to its independent variable.	Sect. 3.6
			CHA-3.A.2 The derivative can be used to express information about rates of change in applied contexts.	Sect. 3.6
			CHA-3.A.3 The unit for f'(x) is the unit for f divided by the unit for x.	Sect. 3.6
TOPIC 4.2 Straight-Line Motion: Connecting Position, Velocity, and Acceleration	CHA-3 Derivatives allow us to solve real-world problems involving rates of change.	CHA-3.B Calculate rates of change in applied contexts.	CHA-3.B.1 The derivative can be used to solve rectilinear motion problems involving position, speed, velocity, and acceleration.	Sect. 3.6
TOPIC 4.3 Rates of Change in Applied Contexts Other Than Motion	CHA-3 Derivatives allow us to solve real-world problems involving rates of change.	CHA-3.C Interpret rates of change in applied contexts.	CHA-3.C.1 The derivative can be used to solve problems involving rates of change in applied contexts.	Sect. 3.6
TOPIC 4.4 Introduction to Related Rates	CHA-3 Derivatives allow us to solve real-world problems involving rates of change.	CHA-3.D Calculate related rates in applied contexts.	CHA-3.D.1 The chain rule is the basis for differentiating variables in a related rates problem with respect to the same independent variable.	Sect. 3.11
			CHA-3.D.2 Other differentiation rules, such	Sect. 3.11

Solving Related Rates Problems allow us to solve real-world problems involving rates of change. related rates in applied contexts. can be used to solve related rates problems; that is, finding a rate at which one quantity is changing by relating it to other quantities whose rates of change are known. TOPIC 4.6 Approximating Values of a Function Using Local Linearization CHA-3 Derivatives allow us to solve real-world problems involving rates of change CHA-3.F. Approximate a value on a curve using the equation of a tangent line. CHA-3.F. The tangent locally linear approximation of the function near the point of tangency. Sect. 4.5 TOPIC 4.7 UM-4 L'Hospital's Rule allows us to determine the limits of some indeterminate forms. LIM-4.4 'Hospital's Rule allows us to determine the limits of some indeterminate forms. LIM-4.A Determine forms. LIM-4.A.1 When the ratio of two functions tends to 0/0 or ov/o in the limit, such forms are said to be indeterminate. Sect. 4.7 LIM-4.2 LIM-4.2 LIM-4.2 LIM-4.2 Sect. 4.7	TOPIC 4.5	CHA-3 Derivatives	CHA-3.E Interpret	as the product rule and the quotient rule, may also be necessary to differentiate all variables with respect to the same independent variable. CHA-3.E.1 The derivative	Sect. 3.11
Approximating Values of a Function Using Local Linearity and Linearizationallow us to solve real-world problems involving rates of changeApproximate a value on a curve using the equation of a tangent line.line is the graph of a locally linear approximation of the function near the point of tangency.CHA-3.F.2 For a tangent line approximation, the function's behavior near the point of tangency may determine whether a tangent line value.Sect. 4.5TOPIC 4.7 Using L'Hospital's Rule allows us to determine the limits of some indeterminate FormsLIM-4 L'Hospital's efforms.LIM-4.A Determine that result in indeterminate forms.LIM-4.A.1 When the ratio of two functions tends to of or ∞ / ∞ in the limit, such forms are said to be indeterminate.Sect. 4.7CIM-4.A.2 Limits of Indeterminate indeterminate forms.LIM-4.A.2 Limits of the indeterminate forms.LIM-4.A.2 Limits of the indeterminate.Sect. 4.7	Solving Related Rates Problems	involving rates of	related rates in applied contexts.	that is, finding a rate at which one quantity is changing by relating it to other quantities whose rates of change are	
Ine approximation, the function's behavior near the point of tangency may determine whether a tangent line value is an underestimate or an overestimate of the corresponding function value.Ine approximation, the function's behavior near the point of tangency may determine whether a tangent line value is an underestimate or an overestimate of the corresponding function value.TOPIC 4.7 Using L'Hospital's Rule for Determining Limits of Indeterminate FormsLIM-4 L'Hospital's Rule allows us to determine the limits of some indeterminate forms.LIM-4.A. Determine limits of functions that result in indeterminate forms.LIM-4.A.1 When the ratio of two functions tends to 0/0 or ∞/∞ in the limit, such forms are said to be indeterminate.Sect. 4.7LIM-4.A.2 Limits of the indeterminate forms 0 0 or ∞/∞ may be evaluated usingSect. 4.7	Approximating Values of a Function Using Local Linearity and	allow us to solve real-world problems involving rates of	Approximate a value on a curve using the equation	line is the graph of a locally linear approximation of the function near the point	Sect. 4.5
Using L'Hospital's Rule for Determining Limits of Indeterminate FormsRule allows us to determine the limits of some indeterminate forms.limits of functions that result in indeterminate forms.of two functions tends to 0/0 or ∞/∞ in the limit, such forms are said to be indeterminate.LIM-4.A.2 Limits of the indeterminate forms 0 0 or ∞/∞ may be evaluated usingSect. 4.7				line approximation, the function's behavior near the point of tangency may determine whether a tangent line value is an underestimate or an overestimate of the corresponding function value.	
Limits of the indeterminate forms 0 0 or ∞/∞ may be evaluated using	Using L'Hospital's Rule for Determining Limits of	Rule allows us to determine the limits of some	limits of functions that result in indeterminate	of two functions tends to $0/0$ or ∞/∞ in the limit, such forms are said to be	Sect. 4.7
				Limits of the indeterminate forms 0 0 or ∞/∞ may be evaluated using	Sect. 4.7

TOPIC 5.1 Using the Mean Value Theorem	FUN-1 Existence theorems allow us to draw conclusions about a function's behavior on an interval without precisely locating that behavior.	FUN-1.B Justify conclusions about functions by applying the Mean Value Theorem over an interval.	FUN-1.B.1 If a function f is continuous over the interval [a, b] and differentiable over the interval (a, b), then the Mean Value Theorem guarantees a point within that open interval where the instantaneous rate of change equals the average rate of change over the interval.	Sect. 4.6
TOPIC 5.2 Extreme Value Theorem, Global Versus Local Extrema, and Critical Points	FUN-1 Existence theorems allow us to draw conclusions about a function's behavior on an interval without precisely locating that behavior.	FUN-1.C Justify conclusions about functions by applying the Extreme Value Theorem.	FUN-1.C.1 If a function f is continuous over the interval (a, b), then the Extreme Value Theorem guarantees that f has at least one minimum value and at least one maximum value on [a, b]. FUN-1.C.2 A point on a	Sect. 4.1 Sect. 4.1
			function where the first derivative equals zero or fails to exist is a critical point of the function. FUN-1.C.3 All local (relative) extrema occur at critical points of a function, though not all critical points are local extrema.	Sect. 4.1
TOPIC 5.3 Determining Intervals on Which a Function Is Increasing or Decreasing	FUN-4 A function's derivative can be used to understand some behaviors of the function.	FUN-4.A Justify conclusions about the behavior of a function based on the behavior of its derivatives.	FUN-4.A.1 The first derivative of a function can provide information about the function and its graph, including intervals where the function is increasing or decreasing.	Sect. 4.2
TOPIC 5.4 Using the First Derivative Test to Determine Relative (Local) Extrema	FUN-4 A function's derivative can be used to understand some behaviors of the function.	FUN-4.A Justify conclusions about the behavior of a function based on the behavior of its derivatives.	FUN-4.A.2 The first derivative of a function can determine the location of relative (local) extrema of the function.	Sect. 4.2

TOPIC 5.5 Using the Candidates Test to Determine Absolute (Global) Extrema	FUN-4 A function's derivative can be used to understand some behaviors of the function.	FUN-4.A Justify conclusions about the behavior of a function based on the behavior of its derivatives	FUN-4.A.3 Absolute (global) extrema of a function on a closed interval can only occur at critical points or at endpoints.	Sect. 4.1
TOPIC 5.6 Determining Concavity of Functions over Their Domains	FUN-4 A function's derivative can be used to understand some behaviors of the function.	FUN-4.A Justify conclusions about the behavior of a function based on the behavior of its derivatives.	FUN-4.A.4 The graph of a function is concave up (down) on an open interval if the function's derivative is increasing (decreasing) on that interval.	Sect. 4.2
			FUN-4.A.5 The second derivative of a function provides information about the function and its graph, including intervals of upward or downward concavity.	Sect. 4.2
			FUN-4.A.6 The second derivative of a function may be used to locate points of inflection for the graph of the original function.	Sect. 4.2
TOPIC 5.7 Using the Second Derivative Test to Determine Extrema	FUN-4 A function's derivative can be used to understand some behaviors of the function.	FUN-4.A Justify conclusions about the behavior of a function based on the behavior of its derivatives.	FUN-4.A.7 The second derivative of a function may determine whether a critical point is the location of a relative (local) maximum or minimum.	Sect. 4.2
			FUN-4.A.8 When a continuous function has only one critical point on an interval on its domain and the critical point corresponds to a relative (local) extremum of the function on the interval, then that critical point also corresponds to the	Sect. 4.2

			absolute (global) extremum of the function on the interval.	
TOPIC 5.8 Sketching Graphs of Functions and Their Derivatives	FUN-4 A function's derivative can be used to understand some behaviors of the function.	FUN-4.A Justify conclusions about the behavior of a function based on the behavior of its derivatives.	FUN-4.A.9 Key features of functions and their derivatives can be identified and related to their graphical, numerical, and analytical representations.	Sect. 4.3
			FUN-4.A.10 Graphical, numerical, and analytical information from f' and f" can be used to predict and explain the behavior of f.	Sect. 4.3:
TOPIC 5.9 Connecting a Function, Its First Derivative, and Its Second Derivative	FUN-4 A function's derivative can be used to understand some behaviors of the function.	FUN-4.A Justify conclusions about the behavior of a function based on the behavior of its derivatives.	FUN-4.A.11 Key features of the graphs of f, f', and f" are related to one another	Sect. 4.3:
TOPIC 5.10 Introduction to Optimization Problems	FUN-4 A function's derivative can be used to understand some behaviors of the function.	Calculate minimum and maximum values in applied contexts or analysis of functions.	FUN-4.B.1 The derivative can be used to solve optimization problems; that is, finding a minimum or maximum value of a function on a given interval.	Sect. 4.4
TOPIC 5.11 Solving Optimization Problems	FUN-4 A function's derivative can be used to understand some behaviors of the function.	FUN-4.C Interpret minimum and maximum values calculated in applied contexts.	FUN-4.C.1 Minimum and maximum values of a function take on specific meanings in applied contexts.	Sect. 4.4
TOPIC 5.12 Exploring Behaviors of Implicit Relations	FUN-4 A function's derivative can be used to understand some behaviors of the function.	FUN-4.D Determine critical points of implicit relations.	FUN-4.D.1 A point on an implicit relation where the first derivative equals zero or does not exist is a critical point of the function.	Sect. 4.2
		FUN-4.E Justify conclusions about the behavior of an implicitly defined	FUN-4.E.1 Applications of derivatives can be extended to implicitly defined functions.	Sect. 4.2

		function based on evidence from its derivatives.	FUN-4.E.2 Second derivatives involving implicit differentiation may be relations of x, y, and dy/dx.	Sect. 4.2
Unit 6: Integration ar	d Accumulation of Ch	ange		1
TOPIC 6.1 Exploring Accumulations of Change	CHA-4 Definite integrals allow us to solve problems involving the accumulation of change over an interval.	CHA-4.A Interpret the meaning of areas associated with the graph of a rate of change in context.	CHA-4.A.1 The area of the region between the graph of a rate of change function and the x axis gives the accumulation of change.	Sect. 5.1 Sect. 6.1
			CHA-4.A.2 In some cases, accumulation of change can be evaluated by using geometry.	Sect. 5.1 Sect. 6.1
			CHA-4.A.3 positive (negative). If a rate of change is positive (negative) over an interval, then the accumulated change is	Sect. 5.1 Sect. 6.1
			CHA-4.A.4 The unit for the area of a region defined by rate of change is the unit for the rate of change multiplied by the unit for the independent variable.	Sect. 5.1 Sect. 6.1
TOPIC 6.2 Approximating Areas with Riemann Sums	LIM-5 Definite integrals can be approximated using geometric and numerical methods.	LIM-5.A Approximate a definite integral using geometric and numerical methods	LIM-5.A.1 Definite integrals can be approximated for functions that are represented graphically, numerically, analytically, and verbally.	Sect. 5.2
			LIM-5.A.2 Definite integrals can be approximated using a	Sect. 5.2

			left Riemann sum, a right Riemann sum, a midpoint Riemann sum, or a trapezoidal sum; approximations can be computed using either uniform or nonuniform partitions.	
			LIM-5.A.3 Definite integrals can be approximated using numerical methods, with or without technology	Sect. 5.2
			LIM-5.A.4 Depending on the behavior of a function, it may be possible to determine whether an approximation for a definite integral is an underestimate or overestimate for the value of the definite integral.	Sect. 5.2
TOPIC 6.3 Riemann Sums, Summation Notation, and Definite Integral Notation	LIM-5 Definite integrals can be approximated using geometric and numerical methods.	LIM-5.B Interpret the limiting case of the Riemann sum as a definite integral.	LIM-5.B.1 The limit of an approximating Riemann sum can be interpreted as a definite integral.	Sect. 5.2 Sect. 5.3
		LIM-5.C Represent the limiting case of the Riemann sum as a definite integral.	LIM-5.B.2 A Riemann sum, which requires a partition of an interval I, is the sum of products, each of which is the value of the function at a point in a subinterval multiplied by the length of that subinterval of the partition.	Sect. 5.2 Sect. 5.3
			LIM-5.C.1 The definite integral of a continuous function.	Sect. 5.2 Sect. 5.3
			LIM-5.C.2 A definite integral can be translated into the limit of a related	Sect. 5.2 Sect. 5.3

			Riemann sum, and the limit of a Riemann sum can be written as a definite integral.	C + 5.4
TOPIC 6.4 The Fundamental Theorem of Calculus	FUN-5 The Fundamental Theorem of Calculus	FUN-5.A Represent accumulation functions using	FUN-5.A.1 The definite integral can be used to define new functions.	Sect. 5.4
and Accumulation Functions	connects differentiation and integration.	definite integrals.	FUN-5.A.2 If f is a continuous function on an interval.	Sect. 5.4
TOPIC 6.5 Interpreting the Behavior of Accumulation Functions Involving Area	FUN-5 The Fundamental Theorem of Calculus connects differentiation and integration.	FUN-5.A Represent accumulation functions using definite integrals.	FUN-5.A.3 = Graphical, numerical, analytical, and verbal representations of a function f provide information about the function g defined as g $(x) = \int xa f(t)dt.$	Sect. 5.4
TOPIC 6.6 Applying Properties of Definite Integrals	FUN-6 Recognizing opportunities to apply knowledge of geometry and mathematical rules can simplify integration.	FUN-6.A Calculate a definite integral using areas and properties of definite integrals.	FUN-6.A.1 In some cases, a definite integral can be evaluated by using geometry and the connection between the definite integral and area.	Sect. 5.5
			FUN-6.A.2 Properties of definite integrals include the integral of a constant times a function, the integral of the sum of two functions, reversal of limits of integration, and the integral of a function over adjacent intervals.	Sect. 5.5
			FUN-6.A.3 The definition of the definite integral may be extended to functions with removable or jump discontinuities.	Sect. 5.5
TOPIC 6.7 The Fundamental Theorem of Calculus and Definite Integrals	FUN-6 Recognizing opportunities to apply knowledge of geometry and	FUN-6.B Evaluate definite integrals analytically using the Fundamental	FUN-6.B.1 An antiderivative of a function f is a function g whose derivative is f.	Sect. 5.4
2	mathematical rules can simplify integration.	Theorem of Calculus.	FUN-6.B.2 If a function f is continuous on an interval containing a, the function defined by = Fx	Sect. 5.4

			1	
			ft dt () () $\int a x in the$	
			interval. is an	
			antiderivative of f for x	
			FUN-6.B.3	Sect. 5.4
			If f is continuous on the	
			interval [a, b] and F is an	
			antiderivative of f, then ∫	
			AP Calculus AB and BC	
			Course and Exam	
			Description a b f xdx () = $($	
			Fb Fa - ()().	
TOPIC 6.8	FUN-6 Recognizing	FUN-6.C Determine	FUN-6.C.1 $\int f x dx$ () is an	Sect. 5.1
Finding	opportunities to	antiderivatives of	indefinite integral of the	
Antiderivatives and	apply knowledge of	functions and	function f and can be	
Indefinite Integrals:	geometry and	indefinite integrals,	expressed as f xdx Fx C	
Basic Rules and	mathematical rules	using knowledge	where $F x f x () () \int f' =$	
Notation	can simplify	of derivatives.	and C is any constant.	
	integration.		FUN-6.C.2	Sect. 5.1
			Differentiation rules	
			provide the foundation	
			for f inding	
			antiderivatives.	
			FUN-6.C.3	Sect. 5.1
			Many functions do not	
			have closed-form	
			antiderivatives.	
TOPIC 6.9	FUN-6 Recognizing	FUN-6.D For	FUN-6.D.1 Substitution	Sect. 5.6
Integrating Using	opportunities to	integrands	of variables is a	
Substitution	apply knowledge of	requiring	technique for finding	
	geometry and	substitution or	antiderivatives.	
	mathematical rules	rearrangements		
	can simplify	into equivalent	FUN-6.D.2 integration.	Sect. 5.6
	integration.	forms: (a)	For a definite integral,	
		Determine	substitution of variables	
		indefinite integrals.	requires corresponding	
		(b) Evaluate definite	changes to the limits of	
		integrals.		
TOPIC 6.10	FUN-6 Recognizing	FUN-6.D For	FUN-6.D.3 Techniques for	Sect. 7.1
Integrating Functions	opportunities to	integrands	finding antiderivatives	
Using Long Division	apply knowledge of	requiring	include rearrangements	
and Completing the	geometry and	substitution or	into equivalent forms,	
Square	mathematical rules	rearrangements	such as long division and	
-	can simplify	into equivalent	completing the square.	
	integration.	forms: (a)		
		Determine		
		indefinite integrals.		
		(b) Evaluate definite		
		integrals.		
	1		1	ı

TOPIC 6.11 Integrating Using Integration by Parts	FUN-6 Recognizing opportunities to apply knowledge of geometry and mathematical rules can simplify integration.	FUN-6.E For integrands requiring integration by parts: (a) Determine indefinite integrals. (b) Evaluate definite integrals.	FUN-6.E.1 Integration by parts is a technique for finding antiderivatives.	Sect. 7.2
TOPIC 6.12 Using Linear Partial Fractions	FUN-6 Recognizing opportunities to apply knowledge of geometry and mathematical rules can simplify integration.	FUN-6.F For integrands requiring integration by linear partial fractions: (a) Determine indefinite integrals. (b) Evaluate definite integrals.	FUN-6.F.1 Some rational functions can be decomposed into sums of ratios of linear, nonrepeating factors to which basic integration techniques can be applied.	Sect. 7.3
TOPIC 6.13 Evaluating Improper Integrals	LIM-6 The use of limits allows us to show that the areas of unbounded regions may be finite.	LIM-6.A Evaluate an improper integral or determine that the integral diverges.	LIM-6.A.1 An improper integral is an integral that has one or both limits infinite or has an integrand that is unbounded in the interval of integration.	Sect. 7.4
			LIM-6.A.2 Improper integrals can be determined using limits of definite integrals.	Sect. 7.4
TOPIC 6.14 Selecting Techniques for Antidifferentiation				Sect. 7.1 Sect. 7.2
Unit 7: Differential Eq	uations			
TOPIC 7.1 Modeling Situations with Differential Equations	LIM-6.A.2 Improper integrals can be determined using limits of definite integrals. bc only	FUN-7.A Interpret verbal statements of problems as differential equations involving a derivative expression.	FUN-7.A.1 Differential equations relate a function of an independent variable and the function's derivatives.	Sect. 8.1
TOPIC 7.2 Verifying Solutions for Differential Equations	FUN-7 Solving differential equations allows us to determine functions	FUN-7.B Verify solutions to differential equations.	FUN-7.B.1 Derivatives can be used to verify that a function is a solution to a given differential	Sect. 8.1

	and develop models.		equation.	
			FUN-7.B.2 There may be infinitely many general solutions to a differential equation.	Sect. 8.1
TOPIC 7.3 Sketching Slope Fields	FUN-7 Solving differential equations allows us to determine functions and develop models.	FUN-7.C Estimate solutions to differential equations.	FUN-7.C.1 A slope field is a graphical representation of a differential equation on a finite set of points in the plane.	Sect. 8.2
			FUN-7.C.2 Slope fields provide information about the behavior of solutions to first-order differential equations.	Sect. 8.2
TOPIC 7.4 Reasoning Using Slope Fields	FUN-7 Solving differential equations allows us to determine functions and develop models.	FUN-7.C Estimate solutions to differential equations.	FUN-7.C.3 Solutions to differential equations are functions or families of functions.	Sect. 8.2
TOPIC 7.5 Approximating Solutions Using Euler's Method	FUN-7 Solving differential equations allows us to determine functions and develop models.	FUN-7.C Estimate solutions to differential equations.	FUN-7.C.4 Euler's method provides a procedure for approximating a solution to a differential equation or a point on a solution curve. bc only	Sect. 8.2
TOPIC 7.6 Finding General Solutions Using Separation of Variables	FUN-7 Solving differential equations allows us to determine functions and develop models.	FUN-7.D Determine general solutions to differential equations.	FUN-7.D.1 Some differential equations can be solved by separation of variables.	Sect. 8.3
			FUN-7.D.2 Antidifferentiation can be used to find general solutions to differential equations.	Sect. 8.3
TOPIC 7.7 Finding Particular Solutions Using Initial Conditions and Separation of Variables	FUN-7 Solving differential equations allows us to determine functions and develop models.	FUN-7.E Determine particular solutions to differential equations.	FUN-7.E.1 A general solution may describe infinitely many solutions to a differential equation. There is only one particular solution passing through a given point.	Sect. 8.3

			FUN-7.E.2 The function F defined by $F(x) = y0 \int x a$ f(t) dt is a particular solution to the differential equation dy/dx = f (x), satisfying F(a)= y0. FUN-7.E.3 Solutions to differential equations may be subject to domain restrictions.	Sect. 8.3 Sect. 8.3
TOPIC 7.8 Exponential Models with Differential Equations	FUN-7 Solving differential equations allows us to determine functions and develop models.	FUN-7.F Interpret the meaning of a differential equation and its variables in context.	FUN-7.F.1 Specific applications of finding general and particular solutions to differential equations include motion along a line and exponential growth and decay. FUN-7.F.2 The model for exponential growth and decay that arises from the statement "The rate of change of a quantity is proportional to the size of the quantity" is dy/dt	Sect. 8.4 Sect. 8.4
		FUN-7.G Determine general and particular solutions for problems involving differential equations in context.	 = ky. FUN-7.G.1 The exponential growth and decay model, ky dy dt = , with initial condition y = y0 when t = 0, has solutions of the form y y = 0 ekt . 	Sect. 8.4
TOPIC 7.9 Logistic Models with Differential Equations	FUN-7 Solving differential equations allows us to determine functions and develop models.	FUN-7.H Interpret the meaning of the logistic growth model in context. bc only	FUN-7.H.1 The model for logistic growth that arises from the statement "The rate of change of a quantity is jointly proportional to the size of the quantity and the difference between the quantity and the carrying	Sect. 8.4

	1			
			capacity" is dy/dt =ky (a-	
			y) = bc only	
			FUN-7.H.2	Sect. 8.4
			The logistic differential	
			equation and initial	
			conditions can be	
			interpreted without	
			solving the differential	
			equation. bc only	
			FUN-7.H.3	Sect. 8.4
			The limiting value	
			(carrying capacity) of a	
			logistic differential	
			equation as the	
			independent variable	
			approaches infinity can	
			be determined using the	
			logistic growth model	
			and initial conditions. bc	
			only	
			FUN-7.H.4	Sect. 8.4
			The value of the	
			dependent variable in a	
			logistic differential	
			equation at the point	
			when it is changing	
			fastest can be	
			determined using the	
			•	
			logistic growth model	
			and initial conditions. bc	
			only	
Unit 8: Applications				
TOPIC 8.1	CHA-4 Definite	CHA-4.B Determine	CHA-4.B.1 The average	Sect. 5.5
Finding the Average	integrals allow us to	the average	value of a continuous	
Value of a Function	solve problems	value of a function	function f over an	
on an Interval	involving the	using definite	interval [a, b] is 1/b-a ∫ b	
	accumulation of	integrals.	a f (x)dx.	
	change over an			
	interval.			
TOPIC 8.2	CHA-4 Definite	CHA-4.C Determine	CHA-4.C.1 For a particle	Sect. 6.1
Connecting Position,	integrals allow us to	values for positions	in rectilinear motion over	
Velocity, and	solve problems	and rates of change	an interval of time, the	
Acceleration of	involving the	using definite	definite integral of	
Functions Using	accumulation of	integrals in	velocity represents the	
Integrals	change over an	problems involving	particle's displacement	
	interval.	rectilinear motion.	over the interval of time,	
			and the definite integral	
			of speed represents the	

CHA-4 Definite ntegrals allow us to olve problems nvolving the accumulation of change over an nterval.	CHA-4.D Interpret the meaning of a definite integral in accumulation problems. CHA-4.E Determine net change using definite integrals in	of time. CHA-4.D.1 A function defined as an integral represents an accumulation of a rate of change CHA-4.D.2 The definite integral of the rate of change of a quantity over an interval gives the net change of that quantity over that interval. CHA-4.E.1 The definite integral can be used to	Sect. 5.4 Sect. 5.4 Sect. 5.4
•	net change using definite integrals in	integral of the rate of change of a quantity over an interval gives the net change of that quantity over that interval. CHA-4.E.1 The definite	
	net change using definite integrals in		Sect 51
	applied contexts.	express information about accumulation and net change in many applied contexts.	JECL J.4
CHA-5 Definite ntegrals allow us to olve problems nvolving the ccumulation of change in area or volume over an nterval.	CHA-5.A Calculate areas in the plane using the definite integral.	CHA-5.A.1 Areas of regions in the plane can be calculated with definite integrals.	Sect. 6.2
CHA-5 Definite ntegrals allow us to olve problems nvolving the accumulation of change in area or volume over an nterval.	CHA-5.A Calculate areas in the plane using the definite integral.	CHA-5.A.2 Areas of regions in the plane can be calculated using functions of either x or y	Sect. 6.2
CHA-5 Definite ntegrals allow us to olve problems nvolving the	CHA-5.A Calculate areas in the plane using the definite integral.	CHA-5.A.3 Areas of certain regions in the plane may be calculated using a sum of two or more definite integrals or by evaluating a definite integral of the absolute value of the difference of	Sect. 6.2
CH nt ol nv	IA-5 Definite egrals allow us to lve problems volving the cumulation of ange in area or lume over an	IA-5 Definite egrals allow us to lve problems volving the cumulation of ange in area or	IA-5 Definite egrals allow us to lve problems volving the cumulation of ange in area or lume over anCHA-5.A Calculate plane the plane the plane may be calculated using a sum of two or the plane the plane may be calculated the plane may be calculat

Volumes with Cross Sections: Squares and Rectangles	integrals allow us to solve problems involving the accumulation of change in area or volume over an interval.	volumes of solids with known cross sections using definite integrals.	solids with square and rectangular cross sections can be found using definite integrals and the area formulas for these shapes.	
TOPIC 8.8 Volumes with Cross Sections: Triangles and Semicircles	CHA-5 Definite integrals allow us to solve problems involving the accumulation of change in area or volume over an	CHA-5.B Calculate volumes of solids with known cross sections using definite integrals.	CHA-5.B.2 Volumes of solids with triangular cross sections can be found using definite integrals and the area formulas for these shapes.	Sect. 6.3
	interval.		CHA-5.B.3 Volumes of solids with semicircular and other geometrically defined cross sections can be found using definite integrals and the area formulas for these shapes.	Sect. 6.3
TOPIC 8.9 Volume with Disc Method: Revolving Around the x- or y- Axis	CHA-5 Definite integrals allow us to solve problems involving the accumulation of change in area or volume over an interval	CHA-5.C Calculate volumes of solids of revolution using definite integrals.	CHA-5.C.1 Volumes of solids of revolution around the x- or y-axis may be found by using definite integrals with the disc method.	Sect. 6.4
TOPIC 8.10 Volume with Disc Method: Revolving Around Other Axes	CHA-5 Definite integrals allow us to solve problems involving the accumulation of change in area or volume over an interval.	CHA-5 Definite integrals allow us to solve problems involving the accumulation of change in area or volume over an interval.	CHA-5.C.2 Volumes of solids of revolution around any horizontal or vertical line in the plane may be found by using definite integrals with the disc method.	Sect. 6.4
TOPIC 8.11 Volume with Washer Method: Revolving Around the x- or y- Axis	CHA-5 Definite integrals allow us to solve problems involving the accumulation of change in area or volume over an interval.	CHA-5.C Calculate volumes of solids of revolution using definite integrals.	CHA-5.C.3 Volumes of solids of revolution around the x- or y-axis whose cross sections are ring shaped may be found using definite integrals with the washer method.	Sect. 6.3
TOPIC 8.12 Volume with Washer	CHA-5 Definite integrals allow us to	CHA-5.C Calculate volumes of solids of	CHA-5.C.4 Volumes of solids of revolution	Sect. 6.3

Method: Revolving Around Other Axes	solve problems involving the accumulation of change in area or volume over an interval.	revolution using definite integrals.	around any horizontal or vertical line whose cross sections are ring shaped may be found using definite integrals with the washer method.	
TOPIC 8.13 The Arc Length of a Smooth, Planar Curve and Distance Traveled BC Only	CHA-6 Definite integrals allow us to solve problems involving the accumulation of change in length over an interval.	CHA-6.A Determine the length of a curve in the plane defined by a function, using a definite integral. bc only	CHA-6.A.1 The length of a planar curve defined by a function can be calculated using a definite integral. bc only	Sect. 6.5
Unit 9: Parametric Equ	ations, Polar Coordina		ed Functions	·
TOPIC 9.1 Defining and Differentiating Parametric Equations	CHA-3 Derivatives allow us to solve real-world problems involving rates of change.	CHA-3.G Calculate derivatives of parametric functions. bc only	CHA-3.G.1 Methods for calculating derivatives of real-valued functions can be extended to parametric functions. bc only	Sect. 11.1
			CHA-3.G.2 For a curve defined parametrically, the value of dy/dx at a point on the curve is the slope of the line tangent to the curve at that point. Dy/dx, the slope of the line tangent to a curve defined using parametric equations, can be determined by dividing dy/dt by dx/dt , provided dx/dt does not equal zero. BC only	Sect. 11.1
TOPIC 9.2 Second Derivatives of Parametric Equations	CHA-3 Derivatives allow us to solve real-world problems involving rates of change.	CHA-3.G Calculate derivatives of parametric functions. bc only	CHA-3.G.3 d ² y/dx ² can be calculated by dividing d/dt (dy/dx) by dx/dt. bc only	Sect. 11.2
TOPIC 9.3 Finding Arc Lengths of Curves Given by Parametric Equations	CHA-6 Definite integrals allow us to solve problems involving the accumulation of change in length over an interval.	CHA-6.B Determine the length of a curve in the plane defined by parametric functions, using a definite integral. bc only	CHA-6.B.1 The length of a parametrically defined curve can be calculated using a definite integral. bc only	Sect. 11.2

TOPIC 9.4	CHA-3 Derivatives	CHA-3.H Calculate	CHA-3.H.1 Methods for	Sect. 11.5
Defining and	allow us to solve	derivatives of	calculating derivatives of	Sect. 11.5
Differentiating Vector	real-world problems	vector-valued	real valued functions can	
Valued Functions	involving rates of	functions. bc only	be extended to vector	
valuea l'allettoris	change.	Turrettoris. Se ority	valued functions. bc only	
TOPIC 9.5	FUN-8 Solving an	FUN-8.A Determine	FUN-8.A.1 Methods for	Sect. 11.6
Integrating Vector	initial value problem	a particular solution	calculating integrals of	5000. 11.0
Valued Functions	allows us to	given a rate vector	real-valued functions can	
	determine an	and initial	be extended to	
	expression for the	conditions. bc only	parametric or vector-	
	position of a particle	,	valued functions. bc only	
	moving in the plane.		, ,	
TOPIC 9.6	FUN-8 Solving an	FUN-8.B Determine	FUN-8.B.1 Derivatives	Sect. 11.7
Solving Motion	initial value problem	values for positions	can be used to	
Problems Using	allows us to	and rates of change	determine velocity,	
Parametric and Vector	determine an	in problems	speed, and acceleration	
Valued Functions	expression for the	involving planar	for a particle moving	
	position of a particle	motion. bc only	along a curve in the	
	moving in the plane.		plane defined using	
			parametric or vector-	
			valued functions. bc only	
			FUN-8.B.2 For a particle	Sect. 11.7
			in planar motion over an	
			interval of time, the	
			definite integral of the	
			velocity vector	
			represents the particle's	
			displacement (net	
			change in position) over	
			the interval of time, from	
			which we might	
			determine its position.	
			The definite integral of	
			speed represents the	
			particle's total distance	
			traveled over the interval	
TOPIC 9.7	ELIN-2 Pacagoizing	FUN-3.G Calculate	of time. bc only FUN-3.G.1 Methods for	Sect. 11.3
	FUN-3 Recognizing	derivatives of	calculating derivatives of	Sect. 11.5
Defining Polar Coordinates and	opportunities to apply derivative rules	functions written in	real valued functions can	
Differentiating in	can simplify	polar coordinates.	be extended to functions	
Polar Form	differentiation.	bc only	in polar coordinates. bc	
ruidi ruiiii			only	
			FUN-3.G.2 For a curve	Sect. 11.3
			given by a polar	Jeet. 11.5
				1
			equation $r = f(\theta)$, derivatives of r, x, and y	

TOPIC 9.8 Find the Area of a Polar Region or the	CHA-5 Definite integrals allow us to solve problems	CHA-5.D Calculate areas of regions defined by polar	first and second derivatives of y with respect to x can provide information about the curve. bc only CHA-5.D.1 The concept of calculating areas in rectangular coordinates	Sect. 11.4
Area Bounded by a Single Polar Curve	involving the accumulation of change in area or volume over an interval.	curves using definite integrals. bc only	can be extended to polar coordinates. bc only	
TOPIC 9.9 Finding the Area of the Region Bounded by Two Polar Curves	CHA-5 Definite integrals allow us to solve problems involving the accumulation of change in area or volume over an interval.	CHA-5.D Calculate areas of regions defined by polar curves using definite integrals. bc only	CHA-5.D.2 Areas of regions bounded by polar curves can be calculated with definite integrals. bc only	Sect. 11.4
Unit 10: Infinite Sequ		1	1	T
TOPIC 10.1 Defining Convergent and Divergent Infinite Series	LIM-7 Applying limits may allow us to determine the finite sum of	LIM-7.A Determine whether a series converges or diverges. bc only	LIM-7.A.1 The nth partial sum is defined as the sum of the first n terms of a series. bc only	Sect. 9.3
	infinitely many terms.		LIM-7.A.2 An infinite series of numbers converges to a real number S (or has sum S), if and only if the limit of its sequence of partial sums exists and equals S. bc only	Sect. 9.3
TOPIC 10.2 Working with Geometric Series	LIM-7 Applying limits may allow us to determine the finite sum of	LIM-7.A Determine whether a series converges or diverges. bc only	LIM-7.A.3 A geometric series is a series with a constant ratio between successive terms. bc only	Sect. 9.3
	infinitely many terms.		LIM-7.A.4 If a is a real number and r is a real number such that $ r < 1$, then the geometric series $\sum_{ar} n = a/1$ -r BC only	Sect. 9.3
TOPIC 10.3 The nth Term Test for Divergence	LIM-7 Applying limits may allow us to determine the finite sum of	LIM-7.A Determine whether a series converges or diverges. bc only	LIM-7.A.5 The nth term test is a test for divergence of a series. bc only	Sect. 9.4

	infinitely many terms.			
TOPIC 10.4 Integral Test for Convergence	LIM-7 Applying limits may allow us to determine the finite sum of infinitely many terms.	LIM-7.A Determine whether a series converges or diverges. bc only	LIM-7.A.6 The integral test is a method to determine whether a series converges or diverges. bc only	Sect. 9.4
TOPIC 10.5 Harmonic Series and p-Series	LIM-7 Applying limits may allow us to determine the finite sum of infinitely many terms.	LIM-7.A Determine whether a series converges or diverges. bc only	LIM-7.A.7 In addition to geometric series, common series of numbers include the harmonic series, the alternating harmonic series, and p-series. bc only	Sect. 9.4
TOPIC 10.6 Comparison Tests for Convergence	LIM-7 Applying limits may allow us to determine the finite sum of infinitely many terms.	LIM-7.A Determine whether a series converges or diverges. bc only	LIM-7.A.8 The comparison test is a method to determine whether a series converges or diverges. bc only	Sect. 9.5
			LIM-7.A.9 The limit comparison test is a method to determine whether a series converges or diverges. bc only	Sect. 9.5
TOPIC 10.7 Alternating Series Test for Convergence	LIM-7 Applying limits may allow us to determine the finite sum of infinitely many terms.	LIM-7.A Determine whether a series converges or diverges. bc only	LIM-7.A.10 The alternating series test is a method to determine whether an alternating series converges. bc only	Sect. 9.6
TOPIC 10.8 Ratio Test for Convergence	LIM-7 Applying limits may allow us to determine the finite sum of infinitely many terms.	LIM-7.A Determine whether a series converges or diverges. bc only	LIM-7.A.11 The ratio test is a method to determine whether a series of numbers converges or diverges. bc only	Sect. 9.5
TOPIC 10.9 Determining Absolute or Conditional Convergence	LIM-7 Applying limits may allow us to determine the finite sum of infinitely many	LIM-7.A Determine whether a series converges or diverges. bc only	LIM-7.A.12 A series may be absolutely convergent, conditionally convergent, or divergent. bc only	Sect. 9.5
	terms.		LIM-7.A.13 If a series converges absolutely,	Sect. 9.5

			then it converges. bc	
			only	
			LIM-7.A.14 If a series	Sect. 9.5
			converges absolutely,	
			then any series obtained	
			from it by regrouping or	
			rearranging the terms	
			has the same value. bc	
			only	
TOPIC 10.10	LIM-7 Applying	LIM-7.B	LIM-7.B.1 If an	Sect. 9.6
Alternating Series	limits may allow us	Approximate the	alternating series	
Error Bound	to determine the	sum of a series. bc	converges by the	
	finite sum of	only	alternating series test,	
	infinitely many	,	then the alternating	
	terms.		series error bound can	
			be used to bound how	
			far a partial sum is from	
			the value of the infinite	
			series. bc only	
TOPIC 10.11	LIM-8 Power series	LIM-8.A Represent	LIM-8.A.1 The coefficient	Sect. 10.1
Finding Taylor	allow us to represent	a function at a	of the nth degree term in	
Polynomial	associated functions	point as a Taylor	a Taylor polynomial for a	
Approximations of	on an appropriate	polynomial. bc only	function f centered at x =	
Functions	interval.		a is f^(n) (a)/n! . bc only	
			LIM-8.A.2 In many cases,	Sect. 10.1
			as the degree of a Taylor	
			polynomial increases, the	
			nth degree polynomial	
			will approach the original	
			function over some	
			interval. bc only	
		LIM-8.B	LIM-8.B.1	Sect. 10.1
		Approximate	Taylor polynomials for a	
		function LIM-8.B.1	function f centered at $x =$	
		values using a	a can be used to	
		Taylor polynomial.	approximate function	
		bc only	values of f near $x = a$. bc	
		-	only	
TOPIC 10.12	LIM-8 Power series	LIM-8.C Determine	LIM-8.C.1 The Lagrange	Sect. 10.1
Lagrange Error Bound	allow us to represent	the error bound	error bound can be used	
	associated functions	associated with a	to determine a maximum	
	on an appropriate	Taylor polynomial	interval for the error of a	
	interval.	approximation. bc	Taylor polynomial	
		only	approximation to a	
			function. bc only	
			LIM-8.C.2 In some	Sect. 10.1
			situations, the alternating	

TOPIC 10.13 Radius and Interval of Convergence of Power Series	LIM-8 Power series allow us to represent associated functions on an appropriate interval.	LIM-8 Power series allow us to represent associated functions on an appropriate interval.	series error bound can be used to bound the error of a Taylor polynomial approximation to the value of a function. bc only LIM-8.D.1 A power series is a series of the form $\sum_{an} (x - r)$ where n is a non-negative integer (an), an sequence of real numbers, and r is a real number. bc only	Sect. 10.2
			LIM-8.D.2 If a power series converges, it either converges at a single point or has an interval of convergence. bc only LIM-8.D.3 The ratio test can be used to determine the radius of	Sect. 10.2 Sect. 10.2
			convergence of a power series. bc only LIM-8.D.4 The radius of convergence of a power series can be used to identify an open interval	Sect. 10.2
			on which the series converges, but it is necessary to test both endpoints of the interval to determine the interval of convergence. bc only LIM-8.D.5 If a power	Sect. 10.2
			series has a positive radius of convergence, then the power series is the Taylor series of the function to which it converges over the open	Ject. 10.2
		30	interval. bc only LIM-8.D.6 The radius of convergence of a power series obtained by term- by-term differentiation or term by-term integration is the same	Sect. 10.2

TOPIC 10.14 Finding Taylor or Maclaurin Series for a Function	LIM-8 Power series allow us to represent associated functions on an appropriate interval.	LIM-8.E Represent a function as a Taylor series or a Maclaurin series. bc only	as the radius of convergence of the original power series. bc only LIM-8.E.1 A Taylor polynomial for f (x) is a partial sum of the Taylor series for f (x). bc only	Sect. 10.3
		LIM-8.F Interpret Taylor series and Maclaurin series. bc only	LIM-8.F.1 The Maclaurin series for 1/1-x is a geometric series. bc only LIM-8.F.2 The Maclaurin series for sin x, cos x, and ex provides the foundation for constructing the Maclaurin series for other functions. bc only	Sect. 10.3 Sect. 10.3
TOPIC 10.15 Representing Functions as Power Series	LIM-8 Power series allow us to represent associated functions on an appropriate interval.	LIM-8.G Represent a given function as a power series. bc only	LIM-8.G.1 Using a known series, a power series for a given function can be derived using operations such as term-by-term differentiation or term- by term integration, and by various methods (e.g., algebraic processes, substitutions, or using properties of geometric series). bc only	Sect. 10.3