Multiple ChoiceIf vectors v⃗=⟨4,3⟩v ⃗=⟨4,3⟩v⃗=⟨4,3⟩ and u⃗=⟨9,1⟩u ⃗=⟨9,1⟩u⃗=⟨9,1⟩, calculate v⃗⋅u⃗v ⃗⋅u ⃗v⃗⋅u⃗.107views
Multiple ChoiceIf vectors v⃗=12ı^v⃗=12îv⃗=12ı^ and u⃗=100ȷ^u⃗=100ĵu⃗=100ȷ^, calculate u⃗⋅v⃗u ⃗⋅v ⃗u⃗⋅v⃗.117views
Multiple ChoiceIf vectors a⃗=13ı^a⃗=13îa⃗=13ı^, ⃗b⃗=5ı^−12ȷ^⃗b⃗=5î-12ĵ⃗b⃗=5ı^−12ȷ^, and c⃗=24ȷ^c⃗=24ĵc⃗=24ȷ^, calculate b⃗⋅(a⃗−c⃗)b ⃗⋅(a ⃗-c ⃗)b⃗⋅(a⃗−c⃗).106views1rank
Multiple ChoiceIf vectors ∣a⃗∣=3|a⃗|=3∣a⃗∣=3 and ∣b⃗∣=7|b⃗|=7∣b⃗∣=7, and a⃗⋅b⃗=14.85a⃗\cdot b⃗=14.85a⃗⋅b⃗=14.85, determine the angle between vectors a⃗a ⃗a⃗ and b⃗b ⃗b⃗.101views
Multiple ChoiceIf vectors a⃗=4ı^a⃗=4îa⃗=4ı^ and b⃗=3ı^−2ȷ^b⃗=3î-2ĵb⃗=3ı^−2ȷ^, determine the angle between vectors a⃗a ⃗a⃗ and b⃗b ⃗b⃗.109views
Multiple ChoiceIf vectors ∣v⃗∣=12|v ⃗ |=12∣v⃗∣=12, ∣u⃗∣=100|u ⃗ |=100 ∣u⃗∣=100 and the angle between v⃗v ⃗v⃗ & u⃗u ⃗u⃗ is θ=π6\theta=\frac{\pi}{6}θ=6π, calculate v⃗⋅u⃗v ⃗⋅u ⃗v⃗⋅u⃗ .119views
Textbook QuestionIn Exercises 1–8, use the given vectors to find v⋅w and v⋅v. v = 3i + j, w = i + 3j226views
Textbook QuestionIn Exercises 1–8, use the given vectors to find v⋅w and v⋅v. v = 5i - 4j, w = -2i - j186views
Textbook QuestionIn Exercises 1–8, use the given vectors to find v⋅w and v⋅v. v = -6i - 5j, w = -10i - 8j238views
Textbook QuestionIn Exercises 5–8, let v = -5i + 2j and w = 2i - 4j Find the specified vector, scalar, or angle. v ⋅ w171views
Textbook QuestionFind the angle between each pair of vectors. Round to two decimal places as necessary.〈2, 1〉, 〈-3, 1〉 193views
Textbook QuestionFind the angle between each pair of vectors. Round to two decimal places as necessary.〈4, 0〉, 〈2, 2〉 144views
Textbook QuestionFind the angle between each pair of vectors. Round to two decimal places as necessary.〈1, 6〉, 〈-1, 7〉 139views
Textbook QuestionFind the angle between each pair of vectors. Round to two decimal places as necessary.3i + 4j, j176views
Textbook QuestionFind the angle between each pair of vectors. Round to two decimal places as necessary.2i + 2j, -5i - 5j179views
Textbook QuestionIn Exercises 5–8, let v = -5i + 2j and w = 2i - 4j Find the specified vector, scalar, or angle. projᵥᵥv178views
Textbook QuestionIn Exercises 9–16, let u = 2i - j, v = 3i + j, and w = i + 4j. Find each specified scalar. u ⋅ (v + w)330views
Textbook QuestionIn Exercises 9–16, let u = 2i - j, v = 3i + j, and w = i + 4j. Find each specified scalar. u ⋅ v + u ⋅ w182views
Textbook QuestionIn Exercises 9–16, let u = 2i - j, v = 3i + j, and w = i + 4j. Find each specified scalar. (4u) ⋅ v251views
Textbook QuestionIn Exercises 9–16, let u = 2i - j, v = 3i + j, and w = i + 4j. Find each specified scalar. 4(u ⋅ v)188views
Textbook QuestionIn Exercises 17–22, find the angle between v and w. Round to the nearest tenth of a degree. v = 2i - j, w = 3i + 4j260views
Textbook QuestionIn Exercises 17–22, find the angle between v and w. Round to the nearest tenth of a degree. v = -3i + 2j, w = 4i - j234views
Textbook QuestionIn Exercises 17–22, find the angle between v and w. Round to the nearest tenth of a degree. v = 6i, w = 5i + 4j266views
Textbook QuestionIn Exercises 23–32, use the dot product to determine whether v and w are orthogonal. v = i + j, w = i - j303views
Textbook QuestionIn Exercises 23–32, use the dot product to determine whether v and w are orthogonal. v = 2i + 8j, w = 4i - j231views
Textbook QuestionIn Exercises 23–32, use the dot product to determine whether v and w are orthogonal. v = 2i - 2j, w = -i + j193views
Textbook QuestionIn Exercises 23–32, use the dot product to determine whether v and w are orthogonal. v = 3i, w = -4i227views
Textbook QuestionIn Exercises 23–32, use the dot product to determine whether v and w are orthogonal. v = 3i, w = -4j299views
Textbook QuestionIn Exercises 33–38, find projᵥᵥ v. Then decompose v into two vectors, v₁ and v₂, where v₁ is parallel to w and v₂ is orthogonal to w. v = 3i - 2j, w = i - j203views
Textbook QuestionIn Exercises 33–38, find projᵥᵥ v. Then decompose v into two vectors, v₁ and v₂, where v₁ is parallel to w and v₂ is orthogonal to w. v = i + 3j, w = -2i + 5j193views
Textbook QuestionIn Exercises 33–38, find projᵥᵥ v. Then decompose v into two vectors, v₁ and v₂, where v₁ is parallel to w and v₂ is orthogonal to w. v = i + 2j, w = 3i + 6j249views
Textbook QuestionIn Exercises 37–39, find the dot product v ⋅ w. Then find the angle between v and w to the nearest tenth of a degree. v = 2i + 4j, w = 6i - 11j175views
Textbook QuestionIn Exercises 39–42, let u = -i + j, v = 3i - 2j, and w = -5j. Find each specified scalar or vector. 5u ⋅ (3v - 4w)218views
Textbook QuestionIn Exercises 40–41, use the dot product to determine whether v and w are orthogonal. v = 12i - 8j, w = 2i + 3j177views
Textbook QuestionIn Exercises 39–42, let u = -i + j, v = 3i - 2j, and w = -5j. Find each specified scalar or vector. projᵤ (v + w)198views
Textbook QuestionIn Exercises 42–43, find projᵥᵥv. Then decompose v into two vectors, v₁ and v₂ where v₁ is parallel to w and v₂ is orthogonal to w. v = -2i + 5j, w = 5i + 4j193views
Textbook QuestionIn Exercises 43–44, find the angle, in degrees, between v and w. v = 2 cos 4𝜋 i + 2 sin 4𝜋 j, w = 3 cos 3𝜋 i + 3 sin 3𝜋 j 3 3 2 2191views
Textbook QuestionIn Exercises 45–50, determine whether v and w are parallel, orthogonal, or neither. v = 3i - 5j, w = 6i - 10j175views
Textbook QuestionIn Exercises 45–50, determine whether v and w are parallel, orthogonal, or neither. v = 3i - 5j, w = 6i + 10j197views1rank
Textbook QuestionIn Exercises 45–50, determine whether v and w are parallel, orthogonal, or neither. v = 3i - 5j, w = 6i + 18 j 5268views