05:53Parametric Equations Introduction, Eliminating The Paremeter t, Graphing Plane Curves, PrecalculusThe Organic Chemistry Tutor428views
Multiple ChoiceGraph the plane curve formed by the parametric equations and indicate its orientation. x(t)=−t+1x\left(t\right)=-t+1; y(t)=t2y\left(t\right)=t^2−2≤t≤2-2\le t\le2 73views
Multiple ChoiceGraph the plane curve formed by the parametric equations and indicate its orientation.x(t)=2t−1x(t)=2t-1; y(t)=2ty(t)=2\sqrt{t}t≥0t≥0 86views
Textbook QuestionIn Exercises 1–8, parametric equations and a value for the parameter t are given. Find the coordinates of the point on the plane curve described by the parametric equations corresponding to the given value of t. x = 3 − 5t, y = 4 + 2t; t = 1206views
Textbook QuestionIn Exercises 1–8, parametric equations and a value for the parameter t are given. Find the coordinates of the point on the plane curve described by the parametric equations corresponding to the given value of t. x = 7 − 4t, y = 5 + 6t; t = 1143views
Textbook QuestionIn Exercises 1–8, parametric equations and a value for the parameter t are given. Find the coordinates of the point on the plane curve described by the parametric equations corresponding to the given value of t. x = t² + 1, y = 5 − t³; t = 2211views
Textbook QuestionIn Exercises 1–8, parametric equations and a value for the parameter t are given. Find the coordinates of the point on the plane curve described by the parametric equations corresponding to the given value of t. x = t² + 3, y = 6 − t³; t = 2130views
Textbook QuestionIn Exercises 1–8, parametric equations and a value for the parameter t are given. Find the coordinates of the point on the plane curve described by the parametric equations corresponding to the given value of t. x = 4 + 2 cos t, y = 3 + 5 sin t; t = π/2150views
Textbook QuestionIn Exercises 1–8, parametric equations and a value for the parameter t are given. Find the coordinates of the point on the plane curve described by the parametric equations corresponding to the given value of t. x = 2 + 3 cos t, y = 4 + 2 sin t; t = π151views
Textbook QuestionIn Exercises 1–8, parametric equations and a value for the parameter t are given. Find the coordinates of the point on the plane curve described by the parametric equations corresponding to the given value of t. x = (60 cos 30°)t, y = 5 + (60 sin 30°)t − 16t²; t = 2148views
Textbook QuestionIn Exercises 9–20, use point plotting to graph the plane curve described by the given parametric equations. Use arrows to show the orientation of the curve corresponding to increasing values of t. x = t − 2, y = 2t + 1; −2 ≤ t ≤ 3170views
Textbook QuestionIn Exercises 15–16, eliminate the parameter and graph the plane curve represented by the parametric equations. Use arrows to show the orientation of each plane curve. _ x = √t , y = t + 1; −∞ < t < ∞192views
Textbook QuestionIn Exercises 9–20, use point plotting to graph the plane curve described by the given parametric equations. Use arrows to show the orientation of the curve corresponding to increasing values of t. x = 2t, y = |t − 1|; −∞ < t < ∞152views
Textbook QuestionIn Exercises 21–40, eliminate the parameter t. Then use the rectangular equation to sketch the plane curve represented by the given parametric equations. Use arrows to show the orientation of the curve corresponding to increasing values of t. (If an interval for t is not specified, assume that −∞ < t < ∞. x = t, y = 2t162views
Textbook QuestionIn Exercises 21–40, eliminate the parameter t. Then use the rectangular equation to sketch the plane curve represented by the given parametric equations. Use arrows to show the orientation of the curve corresponding to increasing values of t. (If an interval for t is not specified, assume that −∞ < t < ∞. _ x = √t, y = t − 1150views
Textbook QuestionIn Exercises 21–40, eliminate the parameter t. Then use the rectangular equation to sketch the plane curve represented by the given parametric equations. Use arrows to show the orientation of the curve corresponding to increasing values of t. (If an interval for t is not specified, assume that −∞ < t < ∞. x = 1 + 3 cos t, y = 2 + 3 sin t; 0 ≤ t < 2π202views
Textbook QuestionIn Exercises 21–40, eliminate the parameter t. Then use the rectangular equation to sketch the plane curve represented by the given parametric equations. Use arrows to show the orientation of the curve corresponding to increasing values of t. (If an interval for t is not specified, assume that −∞ < t < ∞. x = 2ᵗ, y = 2⁻ᵗ; t ≥ 0153views
Textbook QuestionIn Exercises 53–56, find two different sets of parametric equations for each rectangular equation. y = 4x − 3160views
Textbook QuestionIn Exercises 53–56, find two different sets of parametric equations for each rectangular equation. y = x² + 4162views
Textbook QuestionIn Exercises 57–58, the parametric equations of four plane curves are given. Graph each plane curve and determine how they differ from each other. x = t and y = t² − 4192views
Textbook QuestionIn Exercises 59–62, sketch the plane curve represented by the given parametric equations. Then use interval notation to give each relation's domain and range. x = t² + t + 1, y = 2t154views
Textbook QuestionIn Exercises 71–76, eliminate the parameter and graph the plane curve represented by the parametric equations. Use arrows to show the orientation of each plane curve. x = 2t − 1, y = 1 − t; −∞ < t < ∞155views
Textbook QuestionIn Exercises 71–76, eliminate the parameter and graph the plane curve represented by the parametric equations. Use arrows to show the orientation of each plane curve. x = 3 + 2 cos t, y = 1+2 sin t; 0 ≤ t < 2π179views