Table of contents
- 0. Review of College Algebra(0)
- 1. Measuring Angles(0)
- 2. Trigonometric Functions on Right Triangles(0)
- 3. Unit Circle(0)
- 4. Graphing Trigonometric Functions(0)
- 5. Inverse Trigonometric Functions and Basic Trigonometric Equations(0)
- 6. Trigonometric Identities and More Equations(0)
- 7. Non-Right Triangles(0)
- 8. Vectors(0)
- 9. Polar Equations(0)
- 10. Parametric Equations(0)
- 11. Graphing Complex Numbers(0)
2. Trigonometric Functions on Right Triangles
Trigonometric Functions on Right Triangles
2. Trigonometric Functions on Right Triangles
Trigonometric Functions on Right Triangles: Study with Video Lessons, Practice Problems & Examples
100PRACTICE PROBLEM
Rewrite the following expression in terms of h, k, and m if sin(A) = h, cos(A) = k, and tan(A) = m.
- sin(- A - 4π) + cos(- A - 8π) - tan(- A - π)
Rewrite the following expression in terms of h, k, and m if sin(A) = h, cos(A) = k, and tan(A) = m.
- sin(- A - 4π) + cos(- A - 8π) - tan(- A - π)