Here are the essential concepts you must grasp in order to answer the question correctly.
Distributive Property
The distributive property states that a(b + c) = ab + ac. This principle allows us to multiply a single term by each term within a parenthesis. In the context of the given expression, √6 must be multiplied by both 3 and √2, which will help simplify the expression effectively.
Recommended video:
Imaginary Roots with the Square Root Property
Simplifying Radicals
Simplifying radicals involves reducing square roots to their simplest form. For example, √(a*b) can be expressed as √a * √b. In the expression √6(3 + √2), it is important to recognize how to handle the square root of 6 when multiplying with other terms, ensuring the final expression is as simplified as possible.
Recommended video:
Simplifying Trig Expressions
Combining Like Terms
Combining like terms is a fundamental algebraic skill that involves adding or subtracting terms that have the same variable or radical part. After applying the distributive property in the expression, it may result in terms that can be combined, such as constants or similar radical expressions, to achieve a more concise final answer.
Recommended video:
Adding and Subtracting Complex Numbers