Table of contents
- 0. Review of College Algebra4h 43m
- 1. Measuring Angles39m
- 2. Trigonometric Functions on Right Triangles2h 5m
- 3. Unit Circle1h 19m
- 4. Graphing Trigonometric Functions1h 19m
- 5. Inverse Trigonometric Functions and Basic Trigonometric Equations1h 41m
- 6. Trigonometric Identities and More Equations2h 34m
- 7. Non-Right Triangles1h 38m
- 8. Vectors2h 25m
- 9. Polar Equations2h 5m
- 10. Parametric Equations1h 6m
- 11. Graphing Complex Numbers1h 7m
7. Non-Right Triangles
Law of Sines
4:08 minutes
Problem 6
Textbook Question
Textbook QuestionIn Exercises 1–8, solve each triangle. Round lengths of sides to the nearest tenth and angle measures to the nearest degree.
Verified Solution
This video solution was recommended by our tutors as helpful for the problem above
Video duration:
4mPlay a video:
Was this helpful?
Key Concepts
Here are the essential concepts you must grasp in order to answer the question correctly.
Triangle Types
Understanding the types of triangles—such as scalene, isosceles, and equilateral—is essential for solving triangle problems. Each type has unique properties that affect how angles and sides relate to one another. For instance, in an isosceles triangle, two sides are equal, which can simplify calculations when finding unknown angles or lengths.
Recommended video:
5:35
30-60-90 Triangles
Law of Sines
The Law of Sines is a fundamental principle used to solve triangles when given two angles and a side (AAS or ASA) or two sides and a non-included angle (SSA). It states that the ratio of a side length to the sine of its opposite angle is constant across the triangle. This law is particularly useful for finding unknown angles or sides in non-right triangles.
Recommended video:
4:27
Intro to Law of Sines
Law of Cosines
The Law of Cosines is another critical tool for solving triangles, especially when dealing with three sides (SSS) or two sides and the included angle (SAS). It relates the lengths of the sides of a triangle to the cosine of one of its angles, allowing for the calculation of unknown sides or angles. This law is particularly useful when the triangle is not a right triangle.
Recommended video:
4:35
Intro to Law of Cosines
Watch next
Master Intro to Law of Sines with a bite sized video explanation from Patrick Ford
Start learningRelated Videos
Related Practice