Table of contents
- 0. Review of College Algebra4h 43m
- 1. Measuring Angles39m
- 2. Trigonometric Functions on Right Triangles2h 5m
- 3. Unit Circle1h 19m
- 4. Graphing Trigonometric Functions1h 19m
- 5. Inverse Trigonometric Functions and Basic Trigonometric Equations1h 41m
- 6. Trigonometric Identities and More Equations2h 34m
- 7. Non-Right Triangles1h 38m
- 8. Vectors2h 25m
- 9. Polar Equations2h 5m
- 10. Parametric Equations1h 6m
- 11. Graphing Complex Numbers1h 7m
1. Measuring Angles
Radians
Problem 24
Textbook Question
Textbook QuestionDistance between Cities Find the distance in kilometers between each pair of cities, assuming they lie on the same north-south line. Assume the radius of Earth is 6400 km. See Example 2. Farmersville, California, 36° N, and Penticton, British Columbia, 49° N
Verified Solution
This video solution was recommended by our tutors as helpful for the problem above
Video duration:
0m:0sPlay a video:
Was this helpful?
Key Concepts
Here are the essential concepts you must grasp in order to answer the question correctly.
Great Circle Distance
The great circle distance is the shortest distance between two points on the surface of a sphere. It is calculated using the spherical coordinates of the points, which in this case are the latitudes of the cities. Since both cities lie on the same north-south line, the distance can be determined by the difference in their latitudes, converted into kilometers using the Earth's radius.
Recommended video:
06:11
Introduction to the Unit Circle
Latitude
Latitude is a geographic coordinate that specifies the north-south position of a point on the Earth's surface. It is measured in degrees, with the equator at 0° and the poles at 90° N or S. In this problem, the latitudes of Farmersville and Penticton are essential for calculating the distance between them along the Earth's surface.
Conversion of Degrees to Distance
To convert the difference in latitude (in degrees) to a distance (in kilometers), one can use the formula: distance = (difference in latitude) × (π/180) × radius of Earth. This formula accounts for the curvature of the Earth, allowing for an accurate calculation of the distance between the two cities based on their latitudinal positions.
Recommended video:
5:04
Converting between Degrees & Radians
Watch next
Master Converting between Degrees & Radians with a bite sized video explanation from Patrick Ford
Start learningRelated Videos
Related Practice