Multiple ChoiceUse the even-odd identities to evaluate the expression.cos(−θ)−cosθ\cos\left(-\theta\right)-\cos\thetacos(−θ)−cosθ76views2rank
Multiple ChoiceUse the even-odd identities to evaluate the expression.−cot(θ)⋅sin(−θ)-\cot\left(\theta\right)\cdot\sin\left(-\theta\right)−cot(θ)⋅sin(−θ)63views1rank
Multiple ChoiceSelect the expression with the same value as the given expression.sec(−4π5)\sec\left(-\frac{4\pi}{5}\right)sec(−54π)66views
Multiple ChoiceSelect the expression with the same value as the given expression.sin(−38°)\sin\left(-38\degree\right)sin(−38°)63views2rank
Multiple ChoiceUse the Pythagorean identities to rewrite the expression as a single term.(1+cscθ)(1−cscθ)\left(1+\csc\theta\right)\left(1-\csc\theta\right)(1+cscθ)(1−cscθ)76views2rank
Multiple ChoiceUse the Pythagorean identities to rewrite the expression with no fraction.11−secθ\frac{1}{1-\sec\theta}1−secθ162views
Multiple ChoiceSimplify the expression.tan2θ−sec2θ+1\tan^2\theta-\sec^2\theta+1tan2θ−sec2θ+156views
Multiple ChoiceSimplify the expression.tan(−θ)sec(−θ)\frac{\tan\left(-\theta\right)}{\sec\left(-\theta\right)}sec(−θ)tan(−θ)58views2rank
Multiple ChoiceSimplify the expression.(tan2θsin2θ−1)csc2(θ)cos2(−θ)\left(\frac{\tan^2\theta}{\sin^2\theta}-1\right)\csc^2\left(\theta\right)\cos^2\left(-\theta\right)(sin2θtan2θ−1)csc2(θ)cos2(−θ)57views
Multiple ChoiceIdentify the most helpful first step in verifying the identity.sec3θ=secθ+tan2θcosθ\sec^3\theta=\sec\theta+\frac{\tan^2\theta}{\cos\theta}sec3θ=secθ+cosθtan2θ56views
Multiple ChoiceIdentify the most helpful first step in verifying the identity.(tan2θsin2θ−1)=sec2θsin2(−θ)\left(\frac{\tan^2\theta}{\sin^2\theta}-1\right)=\sec^2\theta\sin^2\left(-\theta\right)(sin2θtan2θ−1)=sec2θsin2(−θ)68views