Table of contents
- 0. Fundamental Concepts of Algebra3h 29m
- 1. Equations and Inequalities3h 27m
- 2. Graphs1h 43m
- 3. Functions & Graphs2h 17m
- 4. Polynomial Functions1h 54m
- 5. Rational Functions1h 23m
- 6. Exponential and Logarithmic Functions2h 28m
- 7. Measuring Angles40m
- 8. Trigonometric Functions on Right Triangles2h 5m
- 9. Unit Circle1h 19m
- 10. Graphing Trigonometric Functions1h 19m
- 11. Inverse Trigonometric Functions and Basic Trig Equations1h 41m
- 12. Trigonometric Identities 2h 34m
- 13. Non-Right Triangles1h 38m
- 14. Vectors2h 25m
- 15. Polar Equations2h 5m
- 16. Parametric Equations1h 6m
- 17. Graphing Complex Numbers1h 7m
- 18. Systems of Equations and Matrices3h 6m
- 19. Conic Sections2h 36m
- 20. Sequences, Series & Induction1h 15m
- 21. Combinatorics and Probability1h 45m
- 22. Limits & Continuity1h 49m
- 23. Intro to Derivatives & Area Under the Curve2h 9m
3. Functions & Graphs
Function Composition
Struggling with Precalculus?
Join thousands of students who trust us to help them ace their exams!Watch the first videoMultiple Choice
Given the functions f(x)=x2−21 and g(x)=x+2 find (f∘g)(x) and (g∘f)(x).
A
(f∘g)(x)=x1 ; (g∘f)(x)=x2−22x2−3
B
(f∘g)(x)=x1 ; (g∘f)(x)=x2−23
C
(f∘g)(x)=x ; (g∘f)(x)=x2−2
D
(f∘g)(x)=x ; (g∘f)(x)=x+2−21

1
To find \((f \circ g)(x)\), we need to substitute \(g(x)\) into \(f(x)\). Start by identifying \(g(x) = \sqrt{x+2}\).
Substitute \(g(x)\) into \(f(x)\): \(f(g(x)) = f(\sqrt{x+2}) = \frac{1}{(\sqrt{x+2})^2 - 2}\).
Simplify the expression: \((\sqrt{x+2})^2 = x + 2\), so \(f(g(x)) = \frac{1}{x + 2 - 2} = \frac{1}{x}\).
Next, to find \((g \circ f)(x)\), substitute \(f(x)\) into \(g(x)\). Start by identifying \(f(x) = \frac{1}{x^2 - 2}\).
Substitute \(f(x)\) into \(g(x)\): \(g(f(x)) = g\left(\frac{1}{x^2 - 2}\right) = \sqrt{\frac{1}{x^2 - 2} + 2}\). Simplify the expression inside the square root.
Watch next
Master Function Composition with a bite sized video explanation from Patrick
Start learning