Multiple ChoiceGiven z1=5(cosπ6+isinπ6)z_1=5\left(\cos\frac{\pi}{6}+i\sin\frac{\pi}{6}\right)z1=5(cos6π+isin6π) and z2=3(cos3π4+isin3π4)z_2=3\left(\cos\frac{3\pi}{4}+i\sin\frac{3\pi}{4}\right)z2=3(cos43π+isin43π), find the product z1・z2z_1・z_2z1・z2.44views
Multiple ChoiceGiven z1=23(cos25°+isin25°)z_1=\frac23\left(\cos25\degree+i\sin25\degree\right)z1=32(cos25°+isin25°) and z2=52(cos15°+isin15°)z_2=\frac52\left(\cos15\degree+i\sin15\degree\right)z2=25(cos15°+isin15°), find the product z1・z2z_1・z_2z1・z2.44views
Multiple ChoiceGiven z1=15(cosπ2+isinπ2)z_1=\frac15\left(\cos\frac{\pi}{2}+i\sin\frac{\pi}{2}\right)z1=51(cos2π+isin2π) and z2=5(cosπ5+isinπ5)z_2=5\left(\cos\frac{\pi}{5}+i\sin\frac{\pi}{5}\right)z2=5(cos5π+isin5π), find the quotient z1z2\frac{z_1}{z_2}z2z1.40views
Multiple ChoiceGiven z1=12(cos30°+isin30°)z_1=12\left(\cos30\degree+i\sin30\degree\right)z1=12(cos30°+isin30°) and z2=3(cos50°+isin50°)z_2=3\left(\cos50\degree+i\sin50\degree\right)z2=3(cos50°+isin50°), find the quotient z1z2\frac{z_1}{z_2}z2z1.50views