Hey, everyone. Welcome back. So we've multiplied and divided radicals, and one of the things that we should know about radicals is that they can never be left at the bottom of a fraction. This is one of those weird rules that you just can't do in math. Now you might be thinking we've already seen radicals at the bottom of fractions like 2 of 8. But in that case, it was fine because usually, those fractions reduced to perfect squares like 14. And then if it was a perfect square, the radical just goes away, and you're left with a rational number. What I'm going to show you in this video is that sometimes that doesn't happen. Sometimes you might have an expression like 13, and you can't simplify that to a perfect square. So, to solve these types of problems, we're going to have to do another thing. We're going to have to do something called rationalizing the denominator. I'm going to show you what that process is. It's actually really straightforward, so let's just go ahead and get to it. So again, if we have something like 2 of 8, it’s simplified to a perfect square, and that was perfectly fine. So radicals can simplify to perfect squares, and we don't have to do anything else because you're just left with something like 12. But if you can't simplify this radical over here to a perfect square, then we're going to have to make it 1. And the way we make it 1 is by doing this thing called rationalizing the denominator. It's actually really straightforward. Basically, we're going to take this expression over here, and we're going to multiply it by something to get rid of that radical on the bottom. And so what you're going to do is you're going to multiply the top and the bottom, the numerator and the denominator, by something, and usually, that something that you multiply by is just whatever is on the bottom radical. So, in other words, we're going to take this expression over here, and I'm just going to multiply it by 3, but I have to do it on the top and the bottom. You always have to make sure to do it on the top and the bottom because then you're basically just multiplying this expression by 1, and you're not changing the value of it. So whatever you do at the bottom, you have to do on the top. And the reason this works is because let's just work it out. What is 3 times 3? Basically, once we've done this, we've now turned the bottom into a perfect square. It's the square root of 9, which we know is actually just 3. So in other words, we've multiplied it by itself to sort of get rid of the radical, and now it's just a rational number on the bottom. Alright? So what happens to the top? Well, again, we just multiply straight across, and then we ended up with 33. So, look at the difference between where we started and ended. Here, we had 13, we had a radical on the bottom. And here, when we're done, we actually have 3 on the bottom and that's perfectly fine. We have a radical on top, but we can have radicals on the top, and that's perfectly fine. So what I want you to do is I actually want you to plug in, if you have a calculator handy, 1 divided by 3. When you plug this in, what you should get out of the calculator is 0.57. And now if you actually do 33, you're going to get the exact same numbers, 0.57. So the whole thing here is that these two expressions are exactly equivalent. They mean the exact same thing. It's just that in one case, we've gotten rid of the radical on the bottom. So this is what rationalizing the denominator means. Thanks for watching, and let's move on to the next one.
Table of contents
- 0. Fundamental Concepts of Algebra3h 29m
- 1. Equations and Inequalities3h 27m
- 2. Graphs1h 43m
- 3. Functions & Graphs2h 17m
- 4. Polynomial Functions1h 54m
- 5. Rational Functions1h 23m
- 6. Exponential and Logarithmic Functions2h 28m
- 7. Measuring Angles39m
- 8. Trigonometric Functions on Right Triangles2h 5m
- 9. Unit Circle1h 19m
- 10. Graphing Trigonometric Functions1h 19m
- 11. Inverse Trigonometric Functions and Basic Trig Equations1h 41m
- 12. Trigonometric Identities 2h 34m
- 13. Non-Right Triangles1h 38m
- 14. Vectors2h 25m
- 15. Polar Equations2h 5m
- 16. Parametric Equations1h 6m
- 17. Graphing Complex Numbers1h 7m
- 18. Systems of Equations and Matrices1h 6m
- 19. Conic Sections2h 36m
- 20. Sequences, Series & Induction1h 15m
- 21. Combinatorics and Probability1h 45m
- 22. Limits & Continuity1h 49m
- 23. Intro to Derivatives & Area Under the Curve2h 9m
0. Fundamental Concepts of Algebra
Rationalize Denominator
Video duration:
2mPlay a video:
Related Videos
Related Practice