Table of contents
- 0. Math Review(0)
- 1. Intro to Physics Units(0)
- 2. 1D Motion / Kinematics(0)
- Vectors, Scalars, & Displacement(0)
- Average Velocity(0)
- Intro to Acceleration(0)
- Position-Time Graphs & Velocity(0)
- Conceptual Problems with Position-Time Graphs(0)
- Velocity-Time Graphs & Acceleration(0)
- Calculating Displacement from Velocity-Time Graphs(0)
- Conceptual Problems with Velocity-Time Graphs(0)
- Calculating Change in Velocity from Acceleration-Time Graphs(0)
- Graphing Position, Velocity, and Acceleration Graphs(0)
- Kinematics Equations(0)
- Vertical Motion and Free Fall(0)
- Catch/Overtake Problems(0)
- 3. Vectors(0)
- Review of Vectors vs. Scalars(0)
- Introduction to Vectors(0)
- Adding Vectors Graphically(0)
- Vector Composition & Decomposition(0)
- Adding Vectors by Components(0)
- Trig Review(0)
- Unit Vectors(0)
- Introduction to Dot Product (Scalar Product)(0)
- Calculating Dot Product Using Components(0)
- Intro to Cross Product (Vector Product)(0)
- Calculating Cross Product Using Components(0)
- 4. 2D Kinematics(0)
- 5. Projectile Motion(0)
- 6. Intro to Forces (Dynamics)(0)
- 7. Friction, Inclines, Systems(0)
- 8. Centripetal Forces & Gravitation(0)
- Uniform Circular Motion(0)
- Period and Frequency in Uniform Circular Motion(0)
- Centripetal Forces(0)
- Vertical Centripetal Forces(0)
- Flat Curves(0)
- Banked Curves(0)
- Newton's Law of Gravity(0)
- Gravitational Forces in 2D(0)
- Acceleration Due to Gravity(0)
- Satellite Motion: Intro(0)
- Satellite Motion: Speed & Period(0)
- Geosynchronous Orbits(0)
- Overview of Kepler's Laws(0)
- Kepler's First Law(0)
- Kepler's Third Law(0)
- Kepler's Third Law for Elliptical Orbits(0)
- Gravitational Potential Energy(0)
- Gravitational Potential Energy for Systems of Masses(0)
- Escape Velocity(0)
- Energy of Circular Orbits(0)
- Energy of Elliptical Orbits(0)
- Black Holes(0)
- Gravitational Force Inside the Earth(0)
- Mass Distribution with Calculus(0)
- 9. Work & Energy(0)
- 10. Conservation of Energy(0)
- Intro to Energy Types(0)
- Gravitational Potential Energy(0)
- Intro to Conservation of Energy(0)
- Energy with Non-Conservative Forces(0)
- Springs & Elastic Potential Energy(0)
- Solving Projectile Motion Using Energy(0)
- Motion Along Curved Paths(0)
- Rollercoaster Problems(0)
- Pendulum Problems(0)
- Energy in Connected Objects (Systems)(0)
- Force & Potential Energy(0)
- 11. Momentum & Impulse(0)
- Intro to Momentum(0)
- Intro to Impulse(0)
- Impulse with Variable Forces(0)
- Intro to Conservation of Momentum(0)
- Push-Away Problems(0)
- Types of Collisions(0)
- Completely Inelastic Collisions(0)
- Adding Mass to a Moving System(0)
- Collisions & Motion (Momentum & Energy)(0)
- Ballistic Pendulum(0)
- Collisions with Springs(0)
- Elastic Collisions(0)
- How to Identify the Type of Collision(0)
- Intro to Center of Mass(0)
- 12. Rotational Kinematics(0)
- 13. Rotational Inertia & Energy(0)
- More Conservation of Energy Problems(0)
- Conservation of Energy in Rolling Motion(0)
- Parallel Axis Theorem(0)
- Intro to Moment of Inertia(0)
- Moment of Inertia via Integration(0)
- Moment of Inertia of Systems(0)
- Moment of Inertia & Mass Distribution(0)
- Intro to Rotational Kinetic Energy(0)
- Energy of Rolling Motion(0)
- Types of Motion & Energy(0)
- Conservation of Energy with Rotation(0)
- Torque with Kinematic Equations(0)
- Rotational Dynamics with Two Motions(0)
- Rotational Dynamics of Rolling Motion(0)
- 14. Torque & Rotational Dynamics(0)
- 15. Rotational Equilibrium(0)
- 16. Angular Momentum(0)
- Opening/Closing Arms on Rotating Stool(0)
- Conservation of Angular Momentum(0)
- Angular Momentum & Newton's Second Law(0)
- Intro to Angular Collisions(0)
- Jumping Into/Out of Moving Disc(0)
- Spinning on String of Variable Length(0)
- Angular Collisions with Linear Motion(0)
- Intro to Angular Momentum(0)
- Angular Momentum of a Point Mass(0)
- Angular Momentum of Objects in Linear Motion(0)
- 17. Periodic Motion(0)
- 18. Waves & Sound(0)
- Intro to Waves(0)
- Velocity of Transverse Waves(0)
- Velocity of Longitudinal Waves(0)
- Wave Functions(0)
- Phase Constant(0)
- Average Power of Waves on Strings(0)
- Wave Intensity(0)
- Sound Intensity(0)
- Wave Interference(0)
- Superposition of Wave Functions(0)
- Standing Waves(0)
- Standing Wave Functions(0)
- Standing Sound Waves(0)
- Beats(0)
- The Doppler Effect(0)
- 19. Fluid Mechanics(0)
- 20. Heat and Temperature(0)
- Temperature(0)
- Linear Thermal Expansion(0)
- Volume Thermal Expansion(0)
- Moles and Avogadro's Number(0)
- Specific Heat & Temperature Changes(0)
- Latent Heat & Phase Changes(0)
- Intro to Calorimetry(0)
- Calorimetry with Temperature and Phase Changes(0)
- Advanced Calorimetry: Equilibrium Temperature with Phase Changes(0)
- Phase Diagrams, Triple Points and Critical Points(0)
- Heat Transfer(0)
- 21. Kinetic Theory of Ideal Gases(0)
- 22. The First Law of Thermodynamics(0)
- 23. The Second Law of Thermodynamics(0)
- 24. Electric Force & Field; Gauss' Law(0)
- 25. Electric Potential(0)
- 26. Capacitors & Dielectrics(0)
- 27. Resistors & DC Circuits(0)
- 28. Magnetic Fields and Forces(0)
- 29. Sources of Magnetic Field(0)
- Magnetic Field Produced by Moving Charges(0)
- Magnetic Field Produced by Straight Currents(0)
- Magnetic Force Between Parallel Currents(0)
- Magnetic Force Between Two Moving Charges(0)
- Magnetic Field Produced by Loops and Solenoids(0)
- Toroidal Solenoids aka Toroids(0)
- Biot-Savart Law (Calculus)(0)
- Ampere's Law (Calculus)(0)
- 30. Induction and Inductance(0)
- 31. Alternating Current(0)
- Alternating Voltages and Currents(0)
- RMS Current and Voltage(0)
- Phasors(0)
- Resistors in AC Circuits(0)
- Phasors for Resistors(0)
- Capacitors in AC Circuits(0)
- Phasors for Capacitors(0)
- Inductors in AC Circuits(0)
- Phasors for Inductors(0)
- Impedance in AC Circuits(0)
- Series LRC Circuits(0)
- Resonance in Series LRC Circuits(0)
- Power in AC Circuits(0)
- 32. Electromagnetic Waves(0)
- 33. Geometric Optics(0)
- 34. Wave Optics(0)
- 35. Special Relativity(0)
13. Rotational Inertia & Energy
More Conservation of Energy Problems
13. Rotational Inertia & Energy
More Conservation of Energy Problems: Study with Video Lessons, Practice Problems & Examples
4PRACTICE PROBLEM
A steel cable is connected at one end to a wooden crate that can slide down an inclined ramp. The other end of the cable is wound around a metal solid drum positioned in a groove at the top of the ramp as shown in the diagram. The ramp is inclined at an angle of 30° to the horizontal, and the crate has a mass of 5.0 kg. The solid drum has a mass of 50 kg and a radius of 0.25 m and rotates without slipping as the cable unrolls. Determine the speed of the crate after it has slid 2.0 meters along the ramp, starting from rest, when there is no friction.
![Diagram showing a crate on a 30° ramp connected to a drum, illustrating energy conservation problem.]()
A steel cable is connected at one end to a wooden crate that can slide down an inclined ramp. The other end of the cable is wound around a metal solid drum positioned in a groove at the top of the ramp as shown in the diagram. The ramp is inclined at an angle of 30° to the horizontal, and the crate has a mass of 5.0 kg. The solid drum has a mass of 50 kg and a radius of 0.25 m and rotates without slipping as the cable unrolls. Determine the speed of the crate after it has slid 2.0 meters along the ramp, starting from rest, when there is no friction.