Hey guys. In a previous video, we covered linear thermal expansion, which had to do with 1-dimensional objects that were changing temperature. Remember the idea was: if you change the temperature of a metal rod or pole or something like that, then the length also changes, and these equations describe the relationship between the changing temperature and the changing length. In this video, we're going to talk about a very similar concept, something called volumetric thermal expansion. The idea here is the exact same, except now we're just going to apply it to three-dimensional objects like spheres or cubes. So the idea here is that if you increase the temperature of a 3D object, you're going to increase their volume, so their volume is going to increase. Alright, so let's take a look here. The idea is that with linear thermal expansion, we're talking about 1-dimensional objects. So what happens is when you change the temperature, the length increases. That's the only dimension that this thing increased. Now when we're talking about volumetric, we're talking about three-dimensional objects. What happens is if you take a cube or something like that, it has some initial volume and now you're going to increase the temperature, then it's going to expand not just along the length but also the width and the height. It's going to expand in all three dimensions and it's going to change a volume, ∆v. Now the equation that we use for linear thermal expansion was ∆l, and for volumetric, it's going to be ∆v. So really these equations are going to look very similar.
So let's take a look here. The equation for ∆v is going to be:
∆v
=
β
V
₀
∆T
Notice the similarities. We had a coefficient, then we had some initial length. Here we have another coefficient called β and then the initial volume times ∆T. Alright? So go ahead and pause the video. What do you think the equation for V final is going to look like? Well, hopefully you guys realize that these things are also going to look similar as well. V final is just going to be V initial times (1 plus β times ∆T). Right? So it's basically the same exact setup, just some of the letters are different.
Alright, so what you need to know here is that this β is a new coefficient. This β has to do with the volumetric expansion coefficient, whereas α had to do with the linear expansion coefficient. This β is actually equal to 3 times α because if you have the linear expansion coefficient β is going to be the same thing in three dimensions, so it's just going to be 3 times that. I have a couple of examples here. So for example, we have aluminum as α = 2.4 × 10¯5 and β is going to be 3 times that. These are actually the actual values for some of these, for some of these materials here.
Alright? So let's go ahead and take a look at our example, that's really all we need to know. So a ball of lead has an initial temperature of 333 K and has an initial volume. So we have that T₀ is equal to here we're actually given it in Kelvin 333, and our V₀ is going to be 50 cm³. Now we want to figure out how much the ball shrinks by how much does the ball shrink when you decrease the temperature. So we're actually looking to find here in part A, actually this is the only part here, is we're actually looking to find what is this ∆V here. Alright. So we're going to decrease the temperature to 303, so this is our T final. This is going to be 303 K. Alright? So we're also told the last thing is that our coefficient of linear expansion, this is going to be α, is going to be 2.9 × 10¯5. So these are all our values here. So what's ∆v? We're just going to use the equation if we're looking for ∆v not V final, then we're just going to use this equation over here. So ∆v is going to be this is β times the initial volume times ∆T. So which variables do I have? Well, I'm looking for ∆v and I have the initial volume. I don't have the β. Remember what I was given is the coefficient of linear expansion, the coefficient of linear expansion, and I'm also not sure what the ∆T is as well. So let's go ahead and find those out. So how do I figure out β? Well, for aluminum, all we know is this coefficient of linear expansion to 2.9. However, what you have to realize is that for the same material, we can always relate β and α together. So β is equal to 3α. So because we're dealing with volumetric expansion, we're just going to do 3 times 2.9 × 10¯5, and your β coefficient is going to be 8.7 × 10¯5.
Alright. So that's the coefficient. Now what about ∆T? Well, how do we get ∆T? Remember we're changing from temperatures; we're changing from an initial temperature of 333, and then our final temperature is going to be 303. What this means here is that ∆T is T final - T initial, which is going to be −30 K. Alright? So this is actually what we're going to plug into this term right here. So that means ∆v is just going to be this is going to be 8.7 × 10¯5. That's our coefficient. Then we have the initial volume. It's okay we actually keep it in centimeters cubed because that just means our answer is going to be in centimeters cubed. So we have 50 cm³ and then we have our temperature of −30.
If you go ahead and plug this in, what you're going to get is —0.13 cm³. That's basically the decrease in volume once you shrink this, once you decrease the temperature of the ball.
Alright, so that's it for this one, guys. Let me know if you have any questions.
Table of contents
- 0. Math Review31m
- 1. Intro to Physics Units1h 23m
- 2. 1D Motion / Kinematics3h 56m
- Vectors, Scalars, & Displacement13m
- Average Velocity32m
- Intro to Acceleration7m
- Position-Time Graphs & Velocity26m
- Conceptual Problems with Position-Time Graphs22m
- Velocity-Time Graphs & Acceleration5m
- Calculating Displacement from Velocity-Time Graphs15m
- Conceptual Problems with Velocity-Time Graphs10m
- Calculating Change in Velocity from Acceleration-Time Graphs10m
- Graphing Position, Velocity, and Acceleration Graphs11m
- Kinematics Equations37m
- Vertical Motion and Free Fall19m
- Catch/Overtake Problems23m
- 3. Vectors2h 43m
- Review of Vectors vs. Scalars1m
- Introduction to Vectors7m
- Adding Vectors Graphically22m
- Vector Composition & Decomposition11m
- Adding Vectors by Components13m
- Trig Review24m
- Unit Vectors15m
- Introduction to Dot Product (Scalar Product)12m
- Calculating Dot Product Using Components12m
- Intro to Cross Product (Vector Product)23m
- Calculating Cross Product Using Components17m
- 4. 2D Kinematics1h 42m
- 5. Projectile Motion3h 6m
- 6. Intro to Forces (Dynamics)3h 22m
- 7. Friction, Inclines, Systems2h 44m
- 8. Centripetal Forces & Gravitation7h 26m
- Uniform Circular Motion7m
- Period and Frequency in Uniform Circular Motion20m
- Centripetal Forces15m
- Vertical Centripetal Forces10m
- Flat Curves9m
- Banked Curves10m
- Newton's Law of Gravity30m
- Gravitational Forces in 2D25m
- Acceleration Due to Gravity13m
- Satellite Motion: Intro5m
- Satellite Motion: Speed & Period35m
- Geosynchronous Orbits15m
- Overview of Kepler's Laws5m
- Kepler's First Law11m
- Kepler's Third Law16m
- Kepler's Third Law for Elliptical Orbits15m
- Gravitational Potential Energy21m
- Gravitational Potential Energy for Systems of Masses17m
- Escape Velocity21m
- Energy of Circular Orbits23m
- Energy of Elliptical Orbits36m
- Black Holes16m
- Gravitational Force Inside the Earth13m
- Mass Distribution with Calculus45m
- 9. Work & Energy1h 59m
- 10. Conservation of Energy2h 54m
- Intro to Energy Types3m
- Gravitational Potential Energy10m
- Intro to Conservation of Energy32m
- Energy with Non-Conservative Forces20m
- Springs & Elastic Potential Energy19m
- Solving Projectile Motion Using Energy13m
- Motion Along Curved Paths4m
- Rollercoaster Problems13m
- Pendulum Problems13m
- Energy in Connected Objects (Systems)24m
- Force & Potential Energy18m
- 11. Momentum & Impulse3h 40m
- Intro to Momentum11m
- Intro to Impulse14m
- Impulse with Variable Forces12m
- Intro to Conservation of Momentum17m
- Push-Away Problems19m
- Types of Collisions4m
- Completely Inelastic Collisions28m
- Adding Mass to a Moving System8m
- Collisions & Motion (Momentum & Energy)26m
- Ballistic Pendulum14m
- Collisions with Springs13m
- Elastic Collisions24m
- How to Identify the Type of Collision9m
- Intro to Center of Mass15m
- 12. Rotational Kinematics2h 59m
- 13. Rotational Inertia & Energy7h 4m
- More Conservation of Energy Problems54m
- Conservation of Energy in Rolling Motion45m
- Parallel Axis Theorem13m
- Intro to Moment of Inertia28m
- Moment of Inertia via Integration18m
- Moment of Inertia of Systems23m
- Moment of Inertia & Mass Distribution10m
- Intro to Rotational Kinetic Energy16m
- Energy of Rolling Motion18m
- Types of Motion & Energy24m
- Conservation of Energy with Rotation35m
- Torque with Kinematic Equations56m
- Rotational Dynamics with Two Motions50m
- Rotational Dynamics of Rolling Motion27m
- 14. Torque & Rotational Dynamics2h 5m
- 15. Rotational Equilibrium3h 39m
- 16. Angular Momentum3h 6m
- Opening/Closing Arms on Rotating Stool18m
- Conservation of Angular Momentum46m
- Angular Momentum & Newton's Second Law10m
- Intro to Angular Collisions15m
- Jumping Into/Out of Moving Disc23m
- Spinning on String of Variable Length20m
- Angular Collisions with Linear Motion8m
- Intro to Angular Momentum15m
- Angular Momentum of a Point Mass21m
- Angular Momentum of Objects in Linear Motion7m
- 17. Periodic Motion2h 9m
- 18. Waves & Sound3h 40m
- Intro to Waves11m
- Velocity of Transverse Waves21m
- Velocity of Longitudinal Waves11m
- Wave Functions31m
- Phase Constant14m
- Average Power of Waves on Strings10m
- Wave Intensity19m
- Sound Intensity13m
- Wave Interference8m
- Superposition of Wave Functions3m
- Standing Waves30m
- Standing Wave Functions14m
- Standing Sound Waves12m
- Beats8m
- The Doppler Effect7m
- 19. Fluid Mechanics2h 27m
- 20. Heat and Temperature3h 7m
- Temperature16m
- Linear Thermal Expansion14m
- Volume Thermal Expansion14m
- Moles and Avogadro's Number14m
- Specific Heat & Temperature Changes12m
- Latent Heat & Phase Changes16m
- Intro to Calorimetry21m
- Calorimetry with Temperature and Phase Changes15m
- Advanced Calorimetry: Equilibrium Temperature with Phase Changes9m
- Phase Diagrams, Triple Points and Critical Points6m
- Heat Transfer44m
- 21. Kinetic Theory of Ideal Gases1h 50m
- 22. The First Law of Thermodynamics1h 26m
- 23. The Second Law of Thermodynamics3h 11m
- 24. Electric Force & Field; Gauss' Law3h 42m
- 25. Electric Potential1h 51m
- 26. Capacitors & Dielectrics2h 2m
- 27. Resistors & DC Circuits3h 8m
- 28. Magnetic Fields and Forces2h 23m
- 29. Sources of Magnetic Field2h 30m
- Magnetic Field Produced by Moving Charges10m
- Magnetic Field Produced by Straight Currents27m
- Magnetic Force Between Parallel Currents12m
- Magnetic Force Between Two Moving Charges9m
- Magnetic Field Produced by Loops and Solenoids42m
- Toroidal Solenoids aka Toroids12m
- Biot-Savart Law (Calculus)18m
- Ampere's Law (Calculus)17m
- 30. Induction and Inductance3h 37m
- 31. Alternating Current2h 37m
- Alternating Voltages and Currents18m
- RMS Current and Voltage9m
- Phasors20m
- Resistors in AC Circuits9m
- Phasors for Resistors7m
- Capacitors in AC Circuits16m
- Phasors for Capacitors8m
- Inductors in AC Circuits13m
- Phasors for Inductors7m
- Impedance in AC Circuits18m
- Series LRC Circuits11m
- Resonance in Series LRC Circuits10m
- Power in AC Circuits5m
- 32. Electromagnetic Waves2h 14m
- 33. Geometric Optics2h 57m
- 34. Wave Optics1h 15m
- 35. Special Relativity2h 10m
20. Heat and Temperature
Volume Thermal Expansion
Video duration:
5mPlay a video:
Related Videos
Related Practice
Volume Thermal Expansion practice set
- Problem sets built by lead tutorsExpert video explanations