So let's check out this problem here. I have a 5.1 kilogram block and what I want to do is I want to calculate the force that I need to get the block moving. And then I want to calculate the force needed to keep it moving at constant speed. So there are really two different situations here that I'm going to draw out the diagrams for. We've got a 5.1 kilogram block on the ground, and I'm going to be pushing it with some mysterious force here to get it moving. And then in the second case, I've got the block like this, except now it's moving with some constant speed. So \(v \) equals constant here, and I want to figure out how hard you need to push it to keep it moving at constant speed. So there are two different forces here. Alright. So we want to draw the free body diagrams. Let's just draw all the other forces that are acting on these blocks. I've got my weight force. That's \( mg \), and then I've got the normal force. Alright. So in this particular case, the first one, where you're trying to push it, you're trying to push it with enough force to get the block moving. So therefore, it's not actually moving just yet, which means the kind of friction that you're going up against is going to be static friction. And the moment where you actually get the block moving as we've seen in the previous videos is that's equal to the \( f_s_{\text{max}} \) threshold. Then when you finally actually get it moving, when it's moving with some constant speed, now you're going up against kinetic friction because the velocity is not 0. So that's really the difference between these two diagrams here. In one you're going up against \( f_s_{\text{max}} \) and then the other one you're going up against kinetic friction. Alright. So how do we then calculate these forces? Basically, just use our \( f = ma \). So we have our \( f = ma\) here. Now we just pick a direction of positive. It'll be to the right for both of these diagrams here. So you've got \( f - f_s_{\text{max}} \). And then what's the acceleration? Well, the moment right when I get the block to move, the acceleration is still equal to 0. So we're gonna use \( a = 0 \) for this even though we're actually getting the block to move. We want to figure out the force that you need right before that happens when \( f = f_s_{\text{max}} \). So you have \( f = f_s_{\text{max}} \). Remember that has an equation that's mu static times the normal force. And so the normal force if you're just looking at a block sliding horizontally just gonna be equal to mg So basically \( f = \mu_{\text{static}} \times mg \) and so this is gonna be \( 0.7 \times 5.1 \times 9.8 \), and you're gonna plug this in. You're gonna get 35 newtons. So basically, assuming that this is the coefficient of static friction, you have to push this block with at least 35 Newtons to get it moving. So then we can figure out the other force here by using basically the exact same method. So now we're gonna do the sum of all forces equals mass times acceleration. Here, we know the acceleration has to be 0 because the velocity is gonna be So your forces are \( f \), except now it's not \( f_s_{\text{max}} \), you're just using \( f_k \). So those have to cancel. So your \( f = f_k \) which is mu k times normal. So your force is equal to \( \mu_k \times mg \), right, just like we had before. And so this is gonna be \( 0.5 \times 5.1 \times 9.8 \). So now if you plug this in, you're gonna get 25 Newtons. So let's talk about that. So we got these two different numbers here, which means that our answer is actually answer choice C. It takes 35 newtons to get this block to start moving. Once it actually is moving with some velocity, then it only takes 25 newtons. You don't have to push as hard to keep it moving at constant speed. So because the mu static is always greater than or equal to mu kinetic, what that means is that it always is harder to get something moving than it is to keep it moving. This is something you've definitely experienced before in everyday life. You push something really, really heavy and you have to push really hard at first. But once you actually get it to move, basically, the kinetic friction coefficient decreases, and so it's easier to keep it moving. You don't have to push as hard. Alright. So that's it for this one, guys. Let me know if you have any questions.
Table of contents
- 0. Math Review31m
- 1. Intro to Physics Units1h 24m
- 2. 1D Motion / Kinematics3h 56m
- Vectors, Scalars, & Displacement13m
- Average Velocity32m
- Intro to Acceleration7m
- Position-Time Graphs & Velocity26m
- Conceptual Problems with Position-Time Graphs22m
- Velocity-Time Graphs & Acceleration5m
- Calculating Displacement from Velocity-Time Graphs15m
- Conceptual Problems with Velocity-Time Graphs10m
- Calculating Change in Velocity from Acceleration-Time Graphs10m
- Graphing Position, Velocity, and Acceleration Graphs11m
- Kinematics Equations37m
- Vertical Motion and Free Fall19m
- Catch/Overtake Problems23m
- 3. Vectors2h 43m
- Review of Vectors vs. Scalars1m
- Introduction to Vectors7m
- Adding Vectors Graphically22m
- Vector Composition & Decomposition11m
- Adding Vectors by Components13m
- Trig Review24m
- Unit Vectors15m
- Introduction to Dot Product (Scalar Product)12m
- Calculating Dot Product Using Components12m
- Intro to Cross Product (Vector Product)23m
- Calculating Cross Product Using Components17m
- 4. 2D Kinematics1h 42m
- 5. Projectile Motion3h 6m
- 6. Intro to Forces (Dynamics)3h 22m
- 7. Friction, Inclines, Systems2h 44m
- 8. Centripetal Forces & Gravitation7h 26m
- Uniform Circular Motion7m
- Period and Frequency in Uniform Circular Motion20m
- Centripetal Forces15m
- Vertical Centripetal Forces10m
- Flat Curves9m
- Banked Curves10m
- Newton's Law of Gravity30m
- Gravitational Forces in 2D25m
- Acceleration Due to Gravity13m
- Satellite Motion: Intro5m
- Satellite Motion: Speed & Period35m
- Geosynchronous Orbits15m
- Overview of Kepler's Laws5m
- Kepler's First Law11m
- Kepler's Third Law16m
- Kepler's Third Law for Elliptical Orbits15m
- Gravitational Potential Energy21m
- Gravitational Potential Energy for Systems of Masses17m
- Escape Velocity21m
- Energy of Circular Orbits23m
- Energy of Elliptical Orbits36m
- Black Holes16m
- Gravitational Force Inside the Earth13m
- Mass Distribution with Calculus45m
- 9. Work & Energy1h 59m
- 10. Conservation of Energy2h 54m
- Intro to Energy Types3m
- Gravitational Potential Energy10m
- Intro to Conservation of Energy32m
- Energy with Non-Conservative Forces20m
- Springs & Elastic Potential Energy19m
- Solving Projectile Motion Using Energy13m
- Motion Along Curved Paths4m
- Rollercoaster Problems13m
- Pendulum Problems13m
- Energy in Connected Objects (Systems)24m
- Force & Potential Energy18m
- 11. Momentum & Impulse3h 40m
- Intro to Momentum11m
- Intro to Impulse14m
- Impulse with Variable Forces12m
- Intro to Conservation of Momentum17m
- Push-Away Problems19m
- Types of Collisions4m
- Completely Inelastic Collisions28m
- Adding Mass to a Moving System8m
- Collisions & Motion (Momentum & Energy)26m
- Ballistic Pendulum14m
- Collisions with Springs13m
- Elastic Collisions24m
- How to Identify the Type of Collision9m
- Intro to Center of Mass15m
- 12. Rotational Kinematics2h 59m
- 13. Rotational Inertia & Energy7h 4m
- More Conservation of Energy Problems54m
- Conservation of Energy in Rolling Motion45m
- Parallel Axis Theorem13m
- Intro to Moment of Inertia28m
- Moment of Inertia via Integration18m
- Moment of Inertia of Systems23m
- Moment of Inertia & Mass Distribution10m
- Intro to Rotational Kinetic Energy16m
- Energy of Rolling Motion18m
- Types of Motion & Energy24m
- Conservation of Energy with Rotation35m
- Torque with Kinematic Equations56m
- Rotational Dynamics with Two Motions50m
- Rotational Dynamics of Rolling Motion27m
- 14. Torque & Rotational Dynamics2h 5m
- 15. Rotational Equilibrium3h 39m
- 16. Angular Momentum3h 6m
- Opening/Closing Arms on Rotating Stool18m
- Conservation of Angular Momentum46m
- Angular Momentum & Newton's Second Law10m
- Intro to Angular Collisions15m
- Jumping Into/Out of Moving Disc23m
- Spinning on String of Variable Length20m
- Angular Collisions with Linear Motion8m
- Intro to Angular Momentum15m
- Angular Momentum of a Point Mass21m
- Angular Momentum of Objects in Linear Motion7m
- 17. Periodic Motion2h 9m
- 18. Waves & Sound3h 40m
- Intro to Waves11m
- Velocity of Transverse Waves21m
- Velocity of Longitudinal Waves11m
- Wave Functions31m
- Phase Constant14m
- Average Power of Waves on Strings10m
- Wave Intensity19m
- Sound Intensity13m
- Wave Interference8m
- Superposition of Wave Functions3m
- Standing Waves30m
- Standing Wave Functions14m
- Standing Sound Waves12m
- Beats8m
- The Doppler Effect7m
- 19. Fluid Mechanics2h 27m
- 20. Heat and Temperature3h 7m
- Temperature16m
- Linear Thermal Expansion14m
- Volume Thermal Expansion14m
- Moles and Avogadro's Number14m
- Specific Heat & Temperature Changes12m
- Latent Heat & Phase Changes16m
- Intro to Calorimetry21m
- Calorimetry with Temperature and Phase Changes15m
- Advanced Calorimetry: Equilibrium Temperature with Phase Changes9m
- Phase Diagrams, Triple Points and Critical Points6m
- Heat Transfer44m
- 21. Kinetic Theory of Ideal Gases1h 50m
- 22. The First Law of Thermodynamics1h 26m
- 23. The Second Law of Thermodynamics3h 11m
- 24. Electric Force & Field; Gauss' Law3h 42m
- 25. Electric Potential1h 51m
- 26. Capacitors & Dielectrics2h 2m
- 27. Resistors & DC Circuits3h 8m
- 28. Magnetic Fields and Forces2h 23m
- 29. Sources of Magnetic Field2h 30m
- Magnetic Field Produced by Moving Charges10m
- Magnetic Field Produced by Straight Currents27m
- Magnetic Force Between Parallel Currents12m
- Magnetic Force Between Two Moving Charges9m
- Magnetic Field Produced by Loops andSolenoids42m
- Toroidal Solenoids aka Toroids12m
- Biot-Savart Law (Calculus)18m
- Ampere's Law (Calculus)17m
- 30. Induction and Inductance3h 37m
- 31. Alternating Current2h 37m
- Alternating Voltages and Currents18m
- RMS Current and Voltage9m
- Phasors20m
- Resistors in AC Circuits9m
- Phasors for Resistors7m
- Capacitors in AC Circuits16m
- Phasors for Capacitors8m
- Inductors in AC Circuits13m
- Phasors for Inductors7m
- Impedance in AC Circuits18m
- Series LRC Circuits11m
- Resonance in Series LRC Circuits10m
- Power in AC Circuits5m
- 32. Electromagnetic Waves2h 14m
- 33. Geometric Optics2h 57m
- 34. Wave Optics1h 15m
- 35. Special Relativity2h 10m
7. Friction, Inclines, Systems
Static Friction
Video duration:
4mPlay a video:
Related Videos
Related Practice
Static Friction practice set
