Hey guys, so in this video we're gonna start talking about pressure and atmospheric pressure, both of which are huge topics in this chapter. Let's check it out. Alright, so pressure is defined as force divided by area. Force divided by area. So it's a measurement of how much a particular force is spread out over a surface area, and it has units of Newton per square meter, and that's because force is measured in Newtons, and area is measured in square meters. Now they got tired of writing Newtons per square meter over and over again, so they decided to call this something, and this is called a Pascal. Pascal, named after Mr. Pascal, abbreviated PA, and it just means that if you have 1 Pascal, you have 1 Newton per square meter. Let's look at a quick example here. So, two identical wood blocks, these two guys here, 12, and it specifies here that they have 800 kilograms per cubic meter. Hopefully, right away, you identify that this is density because of the units. It doesn't say that, but you need to know that. So the density, which is ρ, the Greek letter rho, is 800 kilograms per cubic meter. This is why we covered density earlier. And these are the dimensions of the blocks. So 0.2 by 0.2 by 1. So if you notice, this is a long side here. This must be 1 meter, and these guys here will be the point twos meters. And here, it's just oriented in a different direction. This is the long side so this is going to be 1 meter, and this must be 0.2. Heights. And the depth here must be 0.2 as well. Okay. So, they're placed outdoors, meaning that there's a bunch of air around them and horizontal surface, on horizontal surfaces. So the idea is that it's placed on a sort of surface here, the floor, something like that. We want to know the pressure of each block on the surfaces that they sit on. So the idea is that if you have a block and it sits on a surface, it is pushing against the surface, and it's applying a pressure. Why? Because there's a force over an area, and then whenever you have a force over an area, you have a pressure. So I want to know how much pressure is this block over here applying on the surface right underneath it. So you might imagine that it looks kind of like that, right? If you draw sort of the 3D version here. And you might imagine that there's the bottom here of this guy is also pushing against the surface, against the floor. And I want to know the pressure. So we're calculating pressure. Pressure against the floor, let's call that How do we find pressure? Well, the equation for pressure is force over area. So let's write that. It's the amount of force that the block applies on the floor, divided by the area, the area that they're touching. How much area is that? It's just this area down here, the area of interaction. Okay, so what is the force? This block pushes against the floor because it has weight because of gravity, right? So gravity pulls on the block down, the Earth pulls down the block, the block pulls on the table, or on the surface, on the floor. So the force that's causing the block to push against the surface is mg. So I'm just gonna rename this to mg, and this happens a lot, by the way, that the force on a pressure problem is the weight force divided by the area. And I can just sort of start plugging in that the area here is going to be 0.2 times 0.2. Okay? Obviously, we know gravity is 9.8. For the sake of this problem, to keep it simple, we're going to use that gravity is approximately 10 meters per second squared to make our lives easier. But I still have to find the mass. And once I find the mass, I plug it in, and we're done. How do we find mass? You may remember that if you have density, which you do, and if you have volume, which you do, you can find mass. Because density is mass over volume, therefore, mass is density times volume. Now, please don't get the little p, the little curvy Greek p, which is rho, confused, that's density. Don't get that confused with big P, pressure. Okay. Those are different things. It's unfortunate that they look so similar. So, do I have pressure and volume? Yes. So that I can find I'm sorry. Do I have density? See, I just did it. Do I have density and volume? We do. So we're gonna be able to just plug all this stuff in and figure out the mass. So let's do that real quick. Mass is gonna be density, which is 800 kilograms per cubic meter. Remember to always put units like this, it's easier to cancel, times the volume. The volume is just the 3 sides multiplied. So 0.2 times 0.2 times 1.0. And because this is meter meter meter, this is cubic meter. And this is nice because cubic meter cancels here and we end up with the mass. The mass will be, I have it here, 32 kilograms. Now that I have the mass, I can plug it in here, 32. Gravity is 10. This is 0.04. And if you do this entire thing, you get that the pressure is 8000. Now the question is, what are the units here? Well, because I'm using the standard units, this is just going to be Pascal. Now if you don't see that, just keep in mind that mg, because this is in kilograms and this is in meters per second squared, this mg here is in Newtons. And this was meter and meter, so this is meter squared. So Newtons per meter squared gives you a Pascal. So that is the answer to this one. Okay. Now I'm gonna do the second one in a different way so you can see another way that you could have done this. That is gonna be a little bit easier, and it's gonna be helpful later on. But this is sort of the most straightforward way. You could have done it without anything fancy. Okay. So let's do this a little bit differently. And the first thing you might be wondering is, isn't it just the same thing because it's the same block? Well, pressure is force over area. And while the force is the same because the mass is the same, because it's the same block, right? The area is different. The floor is touching, is interacting with the surface underneath it, via a much larger area. So the area that they are touching against each other is much bigger. And if the area is bigger, you might imagine that the pressure will be smaller. Okay. The pressure will be smaller. But we're gonna calculate this differently. So the pressure with the floor is still gonna be the force against the floor, divided by the area. And the force against the floor, by the way, it's still mg, divided by the area. But I'm going to show you something a little bit different now. So what is the area? The area is these two dimensions here, right? These two dimensions here, not all 3 of them but just 2, which is the width times the depth. Okay? So let's leave it there. And in mass, remember we just did this here, mass is right here. Mass is density times volume. But what is volume? Volume is width times depth times height. Okay? Width, depth, and height. So I can plug in this stuff in here, and I can say the m is going to become row wdh, don't forget the g over here, divided by w times d. Okay? And this is the only time I'm going to do this, just to show you this is actually very helpful for you. W cancel, d cancels, and you're left with that the pressure against the floor is gonna be ρhg (row h g) . So this is interesting because the pressure actually does not depend on the area. It only depends on how high this thing is. Why doesn't pressure
Table of contents
- 0. Math Review31m
- 1. Intro to Physics Units1h 24m
- 2. 1D Motion / Kinematics3h 56m
- Vectors, Scalars, & Displacement13m
- Average Velocity32m
- Intro to Acceleration7m
- Position-Time Graphs & Velocity26m
- Conceptual Problems with Position-Time Graphs22m
- Velocity-Time Graphs & Acceleration5m
- Calculating Displacement from Velocity-Time Graphs15m
- Conceptual Problems with Velocity-Time Graphs10m
- Calculating Change in Velocity from Acceleration-Time Graphs10m
- Graphing Position, Velocity, and Acceleration Graphs11m
- Kinematics Equations37m
- Vertical Motion and Free Fall19m
- Catch/Overtake Problems23m
- 3. Vectors2h 43m
- Review of Vectors vs. Scalars1m
- Introduction to Vectors7m
- Adding Vectors Graphically22m
- Vector Composition & Decomposition11m
- Adding Vectors by Components13m
- Trig Review24m
- Unit Vectors15m
- Introduction to Dot Product (Scalar Product)12m
- Calculating Dot Product Using Components12m
- Intro to Cross Product (Vector Product)23m
- Calculating Cross Product Using Components17m
- 4. 2D Kinematics1h 42m
- 5. Projectile Motion3h 6m
- 6. Intro to Forces (Dynamics)3h 22m
- 7. Friction, Inclines, Systems2h 44m
- 8. Centripetal Forces & Gravitation7h 26m
- Uniform Circular Motion7m
- Period and Frequency in Uniform Circular Motion20m
- Centripetal Forces15m
- Vertical Centripetal Forces10m
- Flat Curves9m
- Banked Curves10m
- Newton's Law of Gravity30m
- Gravitational Forces in 2D25m
- Acceleration Due to Gravity13m
- Satellite Motion: Intro5m
- Satellite Motion: Speed & Period35m
- Geosynchronous Orbits15m
- Overview of Kepler's Laws5m
- Kepler's First Law11m
- Kepler's Third Law16m
- Kepler's Third Law for Elliptical Orbits15m
- Gravitational Potential Energy21m
- Gravitational Potential Energy for Systems of Masses17m
- Escape Velocity21m
- Energy of Circular Orbits23m
- Energy of Elliptical Orbits36m
- Black Holes16m
- Gravitational Force Inside the Earth13m
- Mass Distribution with Calculus45m
- 9. Work & Energy1h 59m
- 10. Conservation of Energy2h 54m
- Intro to Energy Types3m
- Gravitational Potential Energy10m
- Intro to Conservation of Energy32m
- Energy with Non-Conservative Forces20m
- Springs & Elastic Potential Energy19m
- Solving Projectile Motion Using Energy13m
- Motion Along Curved Paths4m
- Rollercoaster Problems13m
- Pendulum Problems13m
- Energy in Connected Objects (Systems)24m
- Force & Potential Energy18m
- 11. Momentum & Impulse3h 40m
- Intro to Momentum11m
- Intro to Impulse14m
- Impulse with Variable Forces12m
- Intro to Conservation of Momentum17m
- Push-Away Problems19m
- Types of Collisions4m
- Completely Inelastic Collisions28m
- Adding Mass to a Moving System8m
- Collisions & Motion (Momentum & Energy)26m
- Ballistic Pendulum14m
- Collisions with Springs13m
- Elastic Collisions24m
- How to Identify the Type of Collision9m
- Intro to Center of Mass15m
- 12. Rotational Kinematics2h 59m
- 13. Rotational Inertia & Energy7h 4m
- More Conservation of Energy Problems54m
- Conservation of Energy in Rolling Motion45m
- Parallel Axis Theorem13m
- Intro to Moment of Inertia28m
- Moment of Inertia via Integration18m
- Moment of Inertia of Systems23m
- Moment of Inertia & Mass Distribution10m
- Intro to Rotational Kinetic Energy16m
- Energy of Rolling Motion18m
- Types of Motion & Energy24m
- Conservation of Energy with Rotation35m
- Torque with Kinematic Equations56m
- Rotational Dynamics with Two Motions50m
- Rotational Dynamics of Rolling Motion27m
- 14. Torque & Rotational Dynamics2h 5m
- 15. Rotational Equilibrium3h 39m
- 16. Angular Momentum3h 6m
- Opening/Closing Arms on Rotating Stool18m
- Conservation of Angular Momentum46m
- Angular Momentum & Newton's Second Law10m
- Intro to Angular Collisions15m
- Jumping Into/Out of Moving Disc23m
- Spinning on String of Variable Length20m
- Angular Collisions with Linear Motion8m
- Intro to Angular Momentum15m
- Angular Momentum of a Point Mass21m
- Angular Momentum of Objects in Linear Motion7m
- 17. Periodic Motion2h 9m
- 18. Waves & Sound3h 40m
- Intro to Waves11m
- Velocity of Transverse Waves21m
- Velocity of Longitudinal Waves11m
- Wave Functions31m
- Phase Constant14m
- Average Power of Waves on Strings10m
- Wave Intensity19m
- Sound Intensity13m
- Wave Interference8m
- Superposition of Wave Functions3m
- Standing Waves30m
- Standing Wave Functions14m
- Standing Sound Waves12m
- Beats8m
- The Doppler Effect7m
- 19. Fluid Mechanics2h 27m
- 20. Heat and Temperature3h 7m
- Temperature16m
- Linear Thermal Expansion14m
- Volume Thermal Expansion14m
- Moles and Avogadro's Number14m
- Specific Heat & Temperature Changes12m
- Latent Heat & Phase Changes16m
- Intro to Calorimetry21m
- Calorimetry with Temperature and Phase Changes15m
- Advanced Calorimetry: Equilibrium Temperature with Phase Changes9m
- Phase Diagrams, Triple Points and Critical Points6m
- Heat Transfer44m
- 21. Kinetic Theory of Ideal Gases1h 50m
- 22. The First Law of Thermodynamics1h 26m
- 23. The Second Law of Thermodynamics3h 11m
- 24. Electric Force & Field; Gauss' Law3h 42m
- 25. Electric Potential1h 51m
- 26. Capacitors & Dielectrics2h 2m
- 27. Resistors & DC Circuits3h 8m
- 28. Magnetic Fields and Forces2h 23m
- 29. Sources of Magnetic Field2h 30m
- Magnetic Field Produced by Moving Charges10m
- Magnetic Field Produced by Straight Currents27m
- Magnetic Force Between Parallel Currents12m
- Magnetic Force Between Two Moving Charges9m
- Magnetic Field Produced by Loops andSolenoids42m
- Toroidal Solenoids aka Toroids12m
- Biot-Savart Law (Calculus)18m
- Ampere's Law (Calculus)17m
- 30. Induction and Inductance3h 37m
- 31. Alternating Current2h 37m
- Alternating Voltages and Currents18m
- RMS Current and Voltage9m
- Phasors20m
- Resistors in AC Circuits9m
- Phasors for Resistors7m
- Capacitors in AC Circuits16m
- Phasors for Capacitors8m
- Inductors in AC Circuits13m
- Phasors for Inductors7m
- Impedance in AC Circuits18m
- Series LRC Circuits11m
- Resonance in Series LRC Circuits10m
- Power in AC Circuits5m
- 32. Electromagnetic Waves2h 14m
- 33. Geometric Optics2h 57m
- 34. Wave Optics1h 15m
- 35. Special Relativity2h 10m
19. Fluid Mechanics
Intro to Pressure
Video duration:
17mPlay a video:
Related Videos
Related Practice
Intro to Pressure practice set
