Hey, guys. Let's check out this problem. We've got a 100 kilogram load of bricks that's being lowered on a cable. So basically, I've got this load of bricks that's 100 kilograms. I'm just going to draw it as a box. It's being suspended by a cable, but that cable is actually lowering this load of bricks. So we know the velocity here is equal to 5 meters per second. And eventually, what happens is over some period of 2 seconds, it's going to slow to a stop, which means that there are some time period here, I'm going to call this t, which equals 2 seconds. Eventually, this load of bricks will come to a stop, which means the velocity is going to equal 0. So what I'm going to do is I'm going to call this the initial velocity, which is my 5 meters per second. The final velocity is 0. What I want to do is I want to figure out what is the tension in the cable so that this load of bricks actually comes to a stop. Right? So the first thing we have to do is we're going to draw a free-body diagram. So I'm going to do that over here. This is going to be my free-body diagram. So basically, I'm going to have this little dot like this. I have the weight force, the weight force is going to be downwards. This is my W=mg, and that also got a tension force like this. And this is basically what I'm trying to solve for. Alright? So if I'm basically trying to solve for this tension force, again, we look at any other forces. There's no applied forces because you don't have anything pushing or pulling. You also don't have a normal or friction because this thing is in the air. Right? So our free-body diagram is pretty straightforward. It's only these two forces, and now we're getting into our F=ma. So if our F=ma, we have to expand our forces. We need to know the direction of positive. So we're just going to choose the upward direction to be positive. Alright? So now we got our forces. We've got tension that's upwards and then our mg is downwards. So our equation becomes t-mg=ma. Now we want to figure out what this tension is, so I need to figure out everything else in the problem. I have to know mass. I have to know g. I have to know mass and the acceleration. But do we actually know the acceleration? We actually don't. If you look at the problem, all we're told is that this thing is going downwards at 5 meters per second, and then over 2 seconds, it stops. That doesn't tell us what the acceleration is. And so we're kind of stuck here. How do we figure this out if we don't know the acceleration? Well, remember what happens is that if you ever get stuck solving for a, you can always try to solve it using a motion equation, and that's exactly what we're going to do here. So if we want to figure out the acceleration, I'm going to need to write out my 5 kinematics variables. Right? I'm given stuff like initial velocity, final velocity, time So these are all motion variables So I need to know the delta y, this is my v naught, v, a, and t I just need to know 3 out of 5 variables and then I can pick an equation to solve. So I don't know what my delta y is. I don't know the distance that this thing is stopping through, but I do know my initial velocity is 5. Is it 5, though, or is it negative 5? Remember what happens is that you the, direction of velocities and accelerations depend on which direction you choose to be positive. We chose up to be positive, so this v naught actually points down even though we write it as a positive in the diagram. When we're doing math, we actually have to write it with the correct sign. So it's negative 5. The final velocity is 0. The acceleration is actually what we're trying to find here. And we know the time is equal to 2 seconds. So fortunately, And that equation is going to be the simplest one, number 1, which says that the initial, sorry, final velocity is going to be initial velocity plus a times t. So we can use this to find a. So our final velocity is 0. Initial velocity is negative 5 plus, and then we've got a times 2. So if you bring this negative 5 over to the other side, it becomes positive So 5 equals 2a and so your acceleration is going to be 2.5 meters per second squared. So let's talk about the sign. Remember that when you solve for the acceleration, as long as you've plugged in everything correctly, you should get the correct sign, and it should indicate the acceleration's direction. So which means which means that we got a positive number. That just means that we got an upward acceleration. So the upward acceleration is 2.5. This should make some sense. Right? So if the load of bricks is going downwards with 5 meters per second, in order for it to come to a stop, the acceleration has to point upwards. Right? So we got an acceleration of 2.5. Now we can just plug this number back into our F=ma and then solve for the tension. So what happens is we're going to move this mg to the other side and tension becomes mg+ma. You could also just move you can merge those into under parentheses, that's up to you. So the tension is equal to, and now we just plug everything in, 100 times 9.8 plus 100 times the acceleration which is 2.5, and we plug it in as a positive, remember. So if you work this out what you're going to get is 1230 Newtons. So we looked through our answer choices 1230, and that's going to be answer choice a. So we've got our attention is 1230. This should make some sense that we got a 1230 because in order for the acceleration to be up, right, which we want for the load of bricks to slow to a stop, it has to be bigger than your weight force which is 980. So even though the load of bricks is moving downwards, the tension force still has to be bigger to produce an upward acceleration so that the load of bricks stops. Alright? So that's it for this one, guys.
Table of contents
- 0. Math Review31m
- 1. Intro to Physics Units1h 24m
- 2. 1D Motion / Kinematics3h 56m
- Vectors, Scalars, & Displacement13m
- Average Velocity32m
- Intro to Acceleration7m
- Position-Time Graphs & Velocity26m
- Conceptual Problems with Position-Time Graphs22m
- Velocity-Time Graphs & Acceleration5m
- Calculating Displacement from Velocity-Time Graphs15m
- Conceptual Problems with Velocity-Time Graphs10m
- Calculating Change in Velocity from Acceleration-Time Graphs10m
- Graphing Position, Velocity, and Acceleration Graphs11m
- Kinematics Equations37m
- Vertical Motion and Free Fall19m
- Catch/Overtake Problems23m
- 3. Vectors2h 43m
- Review of Vectors vs. Scalars1m
- Introduction to Vectors7m
- Adding Vectors Graphically22m
- Vector Composition & Decomposition11m
- Adding Vectors by Components13m
- Trig Review24m
- Unit Vectors15m
- Introduction to Dot Product (Scalar Product)12m
- Calculating Dot Product Using Components12m
- Intro to Cross Product (Vector Product)23m
- Calculating Cross Product Using Components17m
- 4. 2D Kinematics1h 42m
- 5. Projectile Motion3h 6m
- 6. Intro to Forces (Dynamics)3h 22m
- 7. Friction, Inclines, Systems2h 44m
- 8. Centripetal Forces & Gravitation7h 26m
- Uniform Circular Motion7m
- Period and Frequency in Uniform Circular Motion20m
- Centripetal Forces15m
- Vertical Centripetal Forces10m
- Flat Curves9m
- Banked Curves10m
- Newton's Law of Gravity30m
- Gravitational Forces in 2D25m
- Acceleration Due to Gravity13m
- Satellite Motion: Intro5m
- Satellite Motion: Speed & Period35m
- Geosynchronous Orbits15m
- Overview of Kepler's Laws5m
- Kepler's First Law11m
- Kepler's Third Law16m
- Kepler's Third Law for Elliptical Orbits15m
- Gravitational Potential Energy21m
- Gravitational Potential Energy for Systems of Masses17m
- Escape Velocity21m
- Energy of Circular Orbits23m
- Energy of Elliptical Orbits36m
- Black Holes16m
- Gravitational Force Inside the Earth13m
- Mass Distribution with Calculus45m
- 9. Work & Energy1h 59m
- 10. Conservation of Energy2h 54m
- Intro to Energy Types3m
- Gravitational Potential Energy10m
- Intro to Conservation of Energy32m
- Energy with Non-Conservative Forces20m
- Springs & Elastic Potential Energy19m
- Solving Projectile Motion Using Energy13m
- Motion Along Curved Paths4m
- Rollercoaster Problems13m
- Pendulum Problems13m
- Energy in Connected Objects (Systems)24m
- Force & Potential Energy18m
- 11. Momentum & Impulse3h 40m
- Intro to Momentum11m
- Intro to Impulse14m
- Impulse with Variable Forces12m
- Intro to Conservation of Momentum17m
- Push-Away Problems19m
- Types of Collisions4m
- Completely Inelastic Collisions28m
- Adding Mass to a Moving System8m
- Collisions & Motion (Momentum & Energy)26m
- Ballistic Pendulum14m
- Collisions with Springs13m
- Elastic Collisions24m
- How to Identify the Type of Collision9m
- Intro to Center of Mass15m
- 12. Rotational Kinematics2h 59m
- 13. Rotational Inertia & Energy7h 4m
- More Conservation of Energy Problems54m
- Conservation of Energy in Rolling Motion45m
- Parallel Axis Theorem13m
- Intro to Moment of Inertia28m
- Moment of Inertia via Integration18m
- Moment of Inertia of Systems23m
- Moment of Inertia & Mass Distribution10m
- Intro to Rotational Kinetic Energy16m
- Energy of Rolling Motion18m
- Types of Motion & Energy24m
- Conservation of Energy with Rotation35m
- Torque with Kinematic Equations56m
- Rotational Dynamics with Two Motions50m
- Rotational Dynamics of Rolling Motion27m
- 14. Torque & Rotational Dynamics2h 5m
- 15. Rotational Equilibrium3h 39m
- 16. Angular Momentum3h 6m
- Opening/Closing Arms on Rotating Stool18m
- Conservation of Angular Momentum46m
- Angular Momentum & Newton's Second Law10m
- Intro to Angular Collisions15m
- Jumping Into/Out of Moving Disc23m
- Spinning on String of Variable Length20m
- Angular Collisions with Linear Motion8m
- Intro to Angular Momentum15m
- Angular Momentum of a Point Mass21m
- Angular Momentum of Objects in Linear Motion7m
- 17. Periodic Motion2h 9m
- 18. Waves & Sound3h 40m
- Intro to Waves11m
- Velocity of Transverse Waves21m
- Velocity of Longitudinal Waves11m
- Wave Functions31m
- Phase Constant14m
- Average Power of Waves on Strings10m
- Wave Intensity19m
- Sound Intensity13m
- Wave Interference8m
- Superposition of Wave Functions3m
- Standing Waves30m
- Standing Wave Functions14m
- Standing Sound Waves12m
- Beats8m
- The Doppler Effect7m
- 19. Fluid Mechanics2h 27m
- 20. Heat and Temperature3h 7m
- Temperature16m
- Linear Thermal Expansion14m
- Volume Thermal Expansion14m
- Moles and Avogadro's Number14m
- Specific Heat & Temperature Changes12m
- Latent Heat & Phase Changes16m
- Intro to Calorimetry21m
- Calorimetry with Temperature and Phase Changes15m
- Advanced Calorimetry: Equilibrium Temperature with Phase Changes9m
- Phase Diagrams, Triple Points and Critical Points6m
- Heat Transfer44m
- 21. Kinetic Theory of Ideal Gases1h 50m
- 22. The First Law of Thermodynamics1h 26m
- 23. The Second Law of Thermodynamics3h 11m
- 24. Electric Force & Field; Gauss' Law3h 42m
- 25. Electric Potential1h 51m
- 26. Capacitors & Dielectrics2h 2m
- 27. Resistors & DC Circuits3h 8m
- 28. Magnetic Fields and Forces2h 23m
- 29. Sources of Magnetic Field2h 30m
- Magnetic Field Produced by Moving Charges10m
- Magnetic Field Produced by Straight Currents27m
- Magnetic Force Between Parallel Currents12m
- Magnetic Force Between Two Moving Charges9m
- Magnetic Field Produced by Loops andSolenoids42m
- Toroidal Solenoids aka Toroids12m
- Biot-Savart Law (Calculus)18m
- Ampere's Law (Calculus)17m
- 30. Induction and Inductance3h 37m
- 31. Alternating Current2h 37m
- Alternating Voltages and Currents18m
- RMS Current and Voltage9m
- Phasors20m
- Resistors in AC Circuits9m
- Phasors for Resistors7m
- Capacitors in AC Circuits16m
- Phasors for Capacitors8m
- Inductors in AC Circuits13m
- Phasors for Inductors7m
- Impedance in AC Circuits18m
- Series LRC Circuits11m
- Resonance in Series LRC Circuits10m
- Power in AC Circuits5m
- 32. Electromagnetic Waves2h 14m
- 33. Geometric Optics2h 57m
- 34. Wave Optics1h 15m
- 35. Special Relativity2h 10m
6. Intro to Forces (Dynamics)
Vertical Forces & Acceleration
Video duration:
5mPlay a video:
Related Videos
Related Practice
Vertical Forces & Acceleration practice set
