>> Matt Anderson: Okay, let's ask you a question. Do you weigh less during a full moon? >> Yes? >> Matt Anderson: Okay, why? >> Because it's closer to the earth? >> Matt Anderson: Because the moon is closer to the earth. Well, not exactly, right? What does a full moon mean? A full moon means it is reflecting sunlight across its entire area, its entire cross-sectional area. And what that means is that a full moon is typically right above you. Okay? The sun is over here. And it's shining onto the full face of the moon and you observe that as a full moon. If the moon is over here, then it's a half moon. If it's over here, it's a half moon. And if it's over here, then you just see a little sliver of it, okay? So, the full moon really just has to do with position of the moon in the sky relative to you. Now, if it's directly behind the earth, you of course have the shadow of the earth, and that's -- that happened recently, right? We had the lunar eclipse. And so, if the shadow of the earth crosses the moon, then it turns dark, and sort of reddish, and that's a lunar eclipse. But let's say we just have the case where we're standing on the earth, and the moon is right above us. Let's ignore the sun for a second. What do you think, Faye? Do you weigh less when the moon is there, compared to the moon in some other position? >> I honestly don't know. >> Matt Anderson: Okay. Good. Does anybody else have a thought? I mean, why would you weigh less during a full moon? I mean, if you're a werewolf, shouldn't you weigh more? You're growing hair and stuff, right, and nails, right? Anybody else have a thought? What's your name? Jorge? >> Yes. >> Matt Anderson: Let's talk to Jorge for a second. Jorge, do you weigh less during a full moon? >> Probably yes because of the gravitational pull might be less upon you because the moon is right above you as opposed to a different direction. >> Matt Anderson: Ah-ha. Alright. So, what we said was gravity pulls on everything in the universe. So, if I put the moon over here, then there are two things pulling on me, right? I have the force due to the earth, but I also have the force due to the moon, which granted, it's going to be less than the force of the earth, but they're still in the same direction. And if I have more force pulling me down, then that scale underneath me pushing back up, has to push harder. So, now if I take the moon, and I put it over on the other side, then we know what's going to happen. This force changes direction. The earth is pulling down on me, but the moon is pulling up on me. Let's see if we can calculate this picture now. Alright? So, I have a few things that are acting on me. I have the force of the earth pulling down. I have the force of the moon, pulling up. And I also have the normal force, N, of the ground pushing up on me. And that normal force N is what we call our weight. How hard is the ground or the scale underneath me, pushing up on me? Okay, so we've got sum of the forces in the Y direction. What do we have? We have F of the moon going up. We have N of the normal force going up. We have the force of the earth pulling us down. If we're standing there without accelerating, then this is equal to zero. And so now we can solve this for N. N is just going to be FE minus FM. And we know exactly what those things are. FE is G Mass of the earth, mass of me, divided by the radius of the earth squared. F of the moon is going to be G Mass of the moon, mass of me, but now what do I want to put down here? Jorge? What should I put in the denominator of this equation? >> The radius of earth plus yourself and-- >> Matt Anderson: The radius of earth plus what? >> Also the radius of the moon. >> Matt Anderson: Okay. The radius of the earth, which is this. The radius of the moon, is that. But I might be missing something, right? >> Yes. Drawing a blank. >> Matt Anderson: Okay. Let's go back to this equation here. Right? G M1 M2 over R squared. What is this R? What does that represent? >> The radius. >> Matt Anderson: No. >> No, sorry. >> Matt Anderson: Usually we write it for a radius. >> Right. >> Matt Anderson: But again, we've run out of letters. Okay? So, we're using it as something different now. Okay, what does this R represent in Newton's Universal Law of Gravitation? It is the distance between-- >> Two objects. >> Matt Anderson: -the two objects. M1 and M2. So, really what I want is this distance here. What is this distance, and it is pretty close to the distance between the earth and the moon. Okay, you can make a small correction based on the size of the earth. But it's pretty much close to the distance between the earth and moon. Okay? That's the important part. How far am I from the moon? So, we're going to put our M right there. Alright, and now we can factor out some stuff. We have the big G. We have a little M. And then we have mass of the earth over RE squared. We have mass of the moon, divided by REM squared. And if you plug in all these numbers, and we're going to let M equal 100 kilograms, and you plug in all those numbers, you're going to get something like 982 newtons, whereas on the earth, if you were very careful with your numbers, you weighed 983 newtons. Okay? And you can double check those numbers yourself and make sure we're making sense. But it's basically one part in a thousand less when the moon is full and above you, versus other times. Okay? You do weigh less during the full moon. Not very much at all. Probably not enough that you would notice, okay? But maybe you would, I don't know. When I go out under the full moon, I like to jump around. Maybe it's easier for me to jump around because I weigh less, okay? Let's think about this for a second. This says that not only is the earth pulling on me, and not only is the earth pulling on the moon, but the moon is pulling on me and in fact, the moon is pulling on the earth. And you probably already know that. You know that the moon is pulling on the earth. Why do you know that? What effect on the earth is due to the moon pulling on it? Well, I was thinking of something more direct that you might observe say, when you go to the beach. What's your name? >> Oh, Aiden [inaudible]. >> Matt Anderson: Aiden? Okay, had the mic to Aiden. Aiden, what do think? Is there anything that we can observe on the earth that tells us, "Yes, the moon is pulling on us?" >> Aren't the tides affected by the moon? >> Matt Anderson: The tides. That's exactly right. Okay, the tides are because of the moon. You don't have the moon here, we don't have tides anymore. Ocean would just sit there static, not move around, except a little bit maybe due to wind or weather patterns like that. But you wouldn't have this sloshing of the oceans. So, when it's high tide, here in San Diego, when it's high tide, you should be able to point exactly to where the moon is. The moon is pulling that water towards you, so the moon's got to be back over there. And when it's low tide, it's pulling it the other way. So, it's got to be over there somewhere. The moon sloshes those oceans around on the earth, and that's the tides.
Table of contents
- 0. Math Review31m
- 1. Intro to Physics Units1h 23m
- 2. 1D Motion / Kinematics3h 56m
- Vectors, Scalars, & Displacement13m
- Average Velocity32m
- Intro to Acceleration7m
- Position-Time Graphs & Velocity26m
- Conceptual Problems with Position-Time Graphs22m
- Velocity-Time Graphs & Acceleration5m
- Calculating Displacement from Velocity-Time Graphs15m
- Conceptual Problems with Velocity-Time Graphs10m
- Calculating Change in Velocity from Acceleration-Time Graphs10m
- Graphing Position, Velocity, and Acceleration Graphs11m
- Kinematics Equations37m
- Vertical Motion and Free Fall19m
- Catch/Overtake Problems23m
- 3. Vectors2h 43m
- Review of Vectors vs. Scalars1m
- Introduction to Vectors7m
- Adding Vectors Graphically22m
- Vector Composition & Decomposition11m
- Adding Vectors by Components13m
- Trig Review24m
- Unit Vectors15m
- Introduction to Dot Product (Scalar Product)12m
- Calculating Dot Product Using Components12m
- Intro to Cross Product (Vector Product)23m
- Calculating Cross Product Using Components17m
- 4. 2D Kinematics1h 42m
- 5. Projectile Motion3h 6m
- 6. Intro to Forces (Dynamics)3h 22m
- 7. Friction, Inclines, Systems2h 44m
- 8. Centripetal Forces & Gravitation7h 26m
- Uniform Circular Motion7m
- Period and Frequency in Uniform Circular Motion20m
- Centripetal Forces15m
- Vertical Centripetal Forces10m
- Flat Curves9m
- Banked Curves10m
- Newton's Law of Gravity30m
- Gravitational Forces in 2D25m
- Acceleration Due to Gravity13m
- Satellite Motion: Intro5m
- Satellite Motion: Speed & Period35m
- Geosynchronous Orbits15m
- Overview of Kepler's Laws5m
- Kepler's First Law11m
- Kepler's Third Law16m
- Kepler's Third Law for Elliptical Orbits15m
- Gravitational Potential Energy21m
- Gravitational Potential Energy for Systems of Masses17m
- Escape Velocity21m
- Energy of Circular Orbits23m
- Energy of Elliptical Orbits36m
- Black Holes16m
- Gravitational Force Inside the Earth13m
- Mass Distribution with Calculus45m
- 9. Work & Energy1h 59m
- 10. Conservation of Energy2h 54m
- Intro to Energy Types3m
- Gravitational Potential Energy10m
- Intro to Conservation of Energy32m
- Energy with Non-Conservative Forces20m
- Springs & Elastic Potential Energy19m
- Solving Projectile Motion Using Energy13m
- Motion Along Curved Paths4m
- Rollercoaster Problems13m
- Pendulum Problems13m
- Energy in Connected Objects (Systems)24m
- Force & Potential Energy18m
- 11. Momentum & Impulse3h 40m
- Intro to Momentum11m
- Intro to Impulse14m
- Impulse with Variable Forces12m
- Intro to Conservation of Momentum17m
- Push-Away Problems19m
- Types of Collisions4m
- Completely Inelastic Collisions28m
- Adding Mass to a Moving System8m
- Collisions & Motion (Momentum & Energy)26m
- Ballistic Pendulum14m
- Collisions with Springs13m
- Elastic Collisions24m
- How to Identify the Type of Collision9m
- Intro to Center of Mass15m
- 12. Rotational Kinematics2h 59m
- 13. Rotational Inertia & Energy7h 4m
- More Conservation of Energy Problems54m
- Conservation of Energy in Rolling Motion45m
- Parallel Axis Theorem13m
- Intro to Moment of Inertia28m
- Moment of Inertia via Integration18m
- Moment of Inertia of Systems23m
- Moment of Inertia & Mass Distribution10m
- Intro to Rotational Kinetic Energy16m
- Energy of Rolling Motion18m
- Types of Motion & Energy24m
- Conservation of Energy with Rotation35m
- Torque with Kinematic Equations56m
- Rotational Dynamics with Two Motions50m
- Rotational Dynamics of Rolling Motion27m
- 14. Torque & Rotational Dynamics2h 5m
- 15. Rotational Equilibrium3h 39m
- 16. Angular Momentum3h 6m
- Opening/Closing Arms on Rotating Stool18m
- Conservation of Angular Momentum46m
- Angular Momentum & Newton's Second Law10m
- Intro to Angular Collisions15m
- Jumping Into/Out of Moving Disc23m
- Spinning on String of Variable Length20m
- Angular Collisions with Linear Motion8m
- Intro to Angular Momentum15m
- Angular Momentum of a Point Mass21m
- Angular Momentum of Objects in Linear Motion7m
- 17. Periodic Motion2h 9m
- 18. Waves & Sound3h 40m
- Intro to Waves11m
- Velocity of Transverse Waves21m
- Velocity of Longitudinal Waves11m
- Wave Functions31m
- Phase Constant14m
- Average Power of Waves on Strings10m
- Wave Intensity19m
- Sound Intensity13m
- Wave Interference8m
- Superposition of Wave Functions3m
- Standing Waves30m
- Standing Wave Functions14m
- Standing Sound Waves12m
- Beats8m
- The Doppler Effect7m
- 19. Fluid Mechanics2h 27m
- 20. Heat and Temperature3h 7m
- Temperature16m
- Linear Thermal Expansion14m
- Volume Thermal Expansion14m
- Moles and Avogadro's Number14m
- Specific Heat & Temperature Changes12m
- Latent Heat & Phase Changes16m
- Intro to Calorimetry21m
- Calorimetry with Temperature and Phase Changes15m
- Advanced Calorimetry: Equilibrium Temperature with Phase Changes9m
- Phase Diagrams, Triple Points and Critical Points6m
- Heat Transfer44m
- 21. Kinetic Theory of Ideal Gases1h 50m
- 22. The First Law of Thermodynamics1h 26m
- 23. The Second Law of Thermodynamics3h 11m
- 24. Electric Force & Field; Gauss' Law3h 42m
- 25. Electric Potential1h 51m
- 26. Capacitors & Dielectrics2h 2m
- 27. Resistors & DC Circuits3h 8m
- 28. Magnetic Fields and Forces2h 23m
- 29. Sources of Magnetic Field2h 30m
- Magnetic Field Produced by Moving Charges10m
- Magnetic Field Produced by Straight Currents27m
- Magnetic Force Between Parallel Currents12m
- Magnetic Force Between Two Moving Charges9m
- Magnetic Field Produced by Loops and Solenoids42m
- Toroidal Solenoids aka Toroids12m
- Biot-Savart Law (Calculus)18m
- Ampere's Law (Calculus)17m
- 30. Induction and Inductance3h 37m
- 31. Alternating Current2h 37m
- Alternating Voltages and Currents18m
- RMS Current and Voltage9m
- Phasors20m
- Resistors in AC Circuits9m
- Phasors for Resistors7m
- Capacitors in AC Circuits16m
- Phasors for Capacitors8m
- Inductors in AC Circuits13m
- Phasors for Inductors7m
- Impedance in AC Circuits18m
- Series LRC Circuits11m
- Resonance in Series LRC Circuits10m
- Power in AC Circuits5m
- 32. Electromagnetic Waves2h 14m
- 33. Geometric Optics2h 57m
- 34. Wave Optics1h 15m
- 35. Special Relativity2h 10m
6. Intro to Forces (Dynamics)
Vertical Equilibrium & The Normal Force
Video duration:
9mPlay a video:
Related Videos
Related Practice