Table of contents
- 0. Math Review31m
- 1. Intro to Physics Units1h 23m
- 2. 1D Motion / Kinematics3h 56m
- Vectors, Scalars, & Displacement13m
- Average Velocity32m
- Intro to Acceleration7m
- Position-Time Graphs & Velocity26m
- Conceptual Problems with Position-Time Graphs22m
- Velocity-Time Graphs & Acceleration5m
- Calculating Displacement from Velocity-Time Graphs15m
- Conceptual Problems with Velocity-Time Graphs10m
- Calculating Change in Velocity from Acceleration-Time Graphs10m
- Graphing Position, Velocity, and Acceleration Graphs11m
- Kinematics Equations37m
- Vertical Motion and Free Fall19m
- Catch/Overtake Problems23m
- 3. Vectors2h 43m
- Review of Vectors vs. Scalars1m
- Introduction to Vectors7m
- Adding Vectors Graphically22m
- Vector Composition & Decomposition11m
- Adding Vectors by Components13m
- Trig Review24m
- Unit Vectors15m
- Introduction to Dot Product (Scalar Product)12m
- Calculating Dot Product Using Components12m
- Intro to Cross Product (Vector Product)23m
- Calculating Cross Product Using Components17m
- 4. 2D Kinematics1h 42m
- 5. Projectile Motion3h 6m
- 6. Intro to Forces (Dynamics)3h 22m
- 7. Friction, Inclines, Systems2h 44m
- 8. Centripetal Forces & Gravitation7h 26m
- Uniform Circular Motion7m
- Period and Frequency in Uniform Circular Motion20m
- Centripetal Forces15m
- Vertical Centripetal Forces10m
- Flat Curves9m
- Banked Curves10m
- Newton's Law of Gravity30m
- Gravitational Forces in 2D25m
- Acceleration Due to Gravity13m
- Satellite Motion: Intro5m
- Satellite Motion: Speed & Period35m
- Geosynchronous Orbits15m
- Overview of Kepler's Laws5m
- Kepler's First Law11m
- Kepler's Third Law16m
- Kepler's Third Law for Elliptical Orbits15m
- Gravitational Potential Energy21m
- Gravitational Potential Energy for Systems of Masses17m
- Escape Velocity21m
- Energy of Circular Orbits23m
- Energy of Elliptical Orbits36m
- Black Holes16m
- Gravitational Force Inside the Earth13m
- Mass Distribution with Calculus45m
- 9. Work & Energy1h 59m
- 10. Conservation of Energy2h 54m
- Intro to Energy Types3m
- Gravitational Potential Energy10m
- Intro to Conservation of Energy32m
- Energy with Non-Conservative Forces20m
- Springs & Elastic Potential Energy19m
- Solving Projectile Motion Using Energy13m
- Motion Along Curved Paths4m
- Rollercoaster Problems13m
- Pendulum Problems13m
- Energy in Connected Objects (Systems)24m
- Force & Potential Energy18m
- 11. Momentum & Impulse3h 40m
- Intro to Momentum11m
- Intro to Impulse14m
- Impulse with Variable Forces12m
- Intro to Conservation of Momentum17m
- Push-Away Problems19m
- Types of Collisions4m
- Completely Inelastic Collisions28m
- Adding Mass to a Moving System8m
- Collisions & Motion (Momentum & Energy)26m
- Ballistic Pendulum14m
- Collisions with Springs13m
- Elastic Collisions24m
- How to Identify the Type of Collision9m
- Intro to Center of Mass15m
- 12. Rotational Kinematics2h 59m
- 13. Rotational Inertia & Energy7h 4m
- More Conservation of Energy Problems54m
- Conservation of Energy in Rolling Motion45m
- Parallel Axis Theorem13m
- Intro to Moment of Inertia28m
- Moment of Inertia via Integration18m
- Moment of Inertia of Systems23m
- Moment of Inertia & Mass Distribution10m
- Intro to Rotational Kinetic Energy16m
- Energy of Rolling Motion18m
- Types of Motion & Energy24m
- Conservation of Energy with Rotation35m
- Torque with Kinematic Equations56m
- Rotational Dynamics with Two Motions50m
- Rotational Dynamics of Rolling Motion27m
- 14. Torque & Rotational Dynamics2h 5m
- 15. Rotational Equilibrium3h 39m
- 16. Angular Momentum3h 6m
- Opening/Closing Arms on Rotating Stool18m
- Conservation of Angular Momentum46m
- Angular Momentum & Newton's Second Law10m
- Intro to Angular Collisions15m
- Jumping Into/Out of Moving Disc23m
- Spinning on String of Variable Length20m
- Angular Collisions with Linear Motion8m
- Intro to Angular Momentum15m
- Angular Momentum of a Point Mass21m
- Angular Momentum of Objects in Linear Motion7m
- 17. Periodic Motion2h 9m
- 18. Waves & Sound3h 40m
- Intro to Waves11m
- Velocity of Transverse Waves21m
- Velocity of Longitudinal Waves11m
- Wave Functions31m
- Phase Constant14m
- Average Power of Waves on Strings10m
- Wave Intensity19m
- Sound Intensity13m
- Wave Interference8m
- Superposition of Wave Functions3m
- Standing Waves30m
- Standing Wave Functions14m
- Standing Sound Waves12m
- Beats8m
- The Doppler Effect7m
- 19. Fluid Mechanics2h 27m
- 20. Heat and Temperature3h 7m
- Temperature16m
- Linear Thermal Expansion14m
- Volume Thermal Expansion14m
- Moles and Avogadro's Number14m
- Specific Heat & Temperature Changes12m
- Latent Heat & Phase Changes16m
- Intro to Calorimetry21m
- Calorimetry with Temperature and Phase Changes15m
- Advanced Calorimetry: Equilibrium Temperature with Phase Changes9m
- Phase Diagrams, Triple Points and Critical Points6m
- Heat Transfer44m
- 21. Kinetic Theory of Ideal Gases1h 50m
- 22. The First Law of Thermodynamics1h 26m
- 23. The Second Law of Thermodynamics3h 11m
- 24. Electric Force & Field; Gauss' Law3h 42m
- 25. Electric Potential1h 51m
- 26. Capacitors & Dielectrics2h 2m
- 27. Resistors & DC Circuits3h 8m
- 28. Magnetic Fields and Forces2h 23m
- 29. Sources of Magnetic Field2h 30m
- Magnetic Field Produced by Moving Charges10m
- Magnetic Field Produced by Straight Currents27m
- Magnetic Force Between Parallel Currents12m
- Magnetic Force Between Two Moving Charges9m
- Magnetic Field Produced by Loops and Solenoids42m
- Toroidal Solenoids aka Toroids12m
- Biot-Savart Law (Calculus)18m
- Ampere's Law (Calculus)17m
- 30. Induction and Inductance3h 37m
- 31. Alternating Current2h 37m
- Alternating Voltages and Currents18m
- RMS Current and Voltage9m
- Phasors20m
- Resistors in AC Circuits9m
- Phasors for Resistors7m
- Capacitors in AC Circuits16m
- Phasors for Capacitors8m
- Inductors in AC Circuits13m
- Phasors for Inductors7m
- Impedance in AC Circuits18m
- Series LRC Circuits11m
- Resonance in Series LRC Circuits10m
- Power in AC Circuits5m
- 32. Electromagnetic Waves2h 14m
- 33. Geometric Optics2h 57m
- 34. Wave Optics1h 15m
- 35. Special Relativity2h 10m
20. Heat and Temperature
Heat Transfer
2:28 minutes
Problem 17c
Textbook Question
Textbook QuestionThe emissivity of tungsten is 0.350. A tungsten sphere with radius 1.50 cm is suspended within a large evacuated enclosure whose walls are at 290.0 K. What power input is required to maintain the sphere at 3000.0 K if heat conduction along the supports is ignored?
Verified step by step guidance
1
Identify the relevant physical law: The problem involves thermal radiation and can be solved using the Stefan-Boltzmann law, which states that the power radiated by a black body is proportional to the fourth power of its absolute temperature. The formula is given by $P = e \sigma A T^4$, where $P$ is the power radiated, $e$ is the emissivity, $\sigma$ is the Stefan-Boltzmann constant ($5.67 \times 10^{-8} \, \text{W m}^{-2} \text{K}^{-4}$), $A$ is the surface area of the sphere, and $T$ is the absolute temperature of the sphere.
Calculate the surface area of the sphere: The surface area $A$ of a sphere is given by $A = 4\pi r^2$, where $r$ is the radius of the sphere. Substitute $r = 1.50 \, \text{cm}$ (convert this to meters before substituting).
Calculate the power radiated by the sphere at 3000.0 K: Substitute the values of $e$, $\sigma$, $A$, and $T = 3000.0 \, \text{K}$ into the Stefan-Boltzmann law to find the power radiated by the sphere at its operating temperature.
Calculate the power radiated by the sphere at 290.0 K: Since the enclosure is at 290.0 K, the sphere also radiates power at this temperature. Use the same formula, substituting $T = 290.0 \, \text{K}$, to find the power radiated by the sphere at the temperature of the enclosure.
Determine the net power input required: The net power input required to maintain the sphere at 3000.0 K is the difference between the power radiated by the sphere at 3000.0 K and the power radiated at 290.0 K. Subtract the power at 290.0 K from the power at 3000.0 K to find the net power input.
Recommended similar problem, with video answer:
Verified Solution
This video solution was recommended by our tutors as helpful for the problem above
Video duration:
2mPlay a video:
Was this helpful?
Key Concepts
Here are the essential concepts you must grasp in order to answer the question correctly.
Emissivity
Emissivity is a measure of a material's ability to emit thermal radiation compared to that of a perfect black body, which has an emissivity of 1.0. It ranges from 0 to 1, with lower values indicating less efficient radiation. In this scenario, tungsten's emissivity of 0.350 means it emits only 35% of the thermal radiation that a black body would emit at the same temperature.
Recommended video:
Guided course
13:08
Radiation
Stefan-Boltzmann Law
The Stefan-Boltzmann Law states that the power radiated by a black body is proportional to the fourth power of its absolute temperature, expressed as P = εσAT^4, where P is the power, ε is emissivity, σ is the Stefan-Boltzmann constant, A is the surface area, and T is the temperature in Kelvin. This law is crucial for calculating the power required to maintain the tungsten sphere at a higher temperature than its surroundings.
Recommended video:
Guided course
10:20
Gauss' Law
Heat Transfer
Heat transfer refers to the movement of thermal energy from one object or substance to another, occurring through conduction, convection, or radiation. In this problem, conduction is ignored, so the primary mode of heat transfer is radiation, which is significant at high temperatures. Understanding how heat transfer works is essential for determining the power input needed to keep the tungsten sphere at 3000.0 K.
Recommended video:
Guided course
05:14
Overview of Heat Transfer
Watch next
Master Overview of Heat Transfer with a bite sized video explanation from Patrick Ford
Start learningRelated Videos
Related Practice