>> There's block number one and we will use how about pink for the other one. There's block number two. And we'll say that this one has mass M1 and this one has mass M and now let's pull on the top block. And we're going to pull on it such that we want to find the maximum F pull that the blocks still don't move. How hard can you pull on that top block such that none of the blocks move? Okay, to do this we're going to probably need a little bit more information than just the masses. What other information are we going to need? What do you guys think? What's holding those blocks in place if I try to pull on them? Static friction. Exactly what we just talked about, right? Static friction is holding them in place and so we're going to need to know the co-efficients of static friction. And this is where it gets a little bit cumbersome because we have two surfaces to worry about. Block M1 is sitting on block M and so there is some co-efficient of static friction between block 1 and 2. This is what I mean by all these subscripts. So we don't know exactly what that is but that would be some number and then we can just make something up. How about 0.6? And then there is another co-efficient of friction between M2 and the table so this would be static friction between block 2 and the table and maybe that is 0. so these you would be given in the problem okay and if you had numbers for there you would be also given the masses and so forth. So what do we do now? We've got a picture. We need to go to the free body diagram and when we go to the free body diagram we have to treat each one independently so let's see what the free body diagram is going to look like for M1. So M1 becomes a dot. What are the forces that are acting on M1? Just shout them out. What do you guys think? >> Gravity. >> What's the first one we always draw, yeah, gravity. M1 G gravity going down on box M1. What else? >> Normal force. >> Normal force and this is where we need to be specific about which normal force we're talking about normal force on block 1 due to block 2. Okay, normal force on block 1 due to 2. What else? Well, we said we're going to pull it, right? F pull, so that's to the right. >> Static friction. >> Static friction which way? >> Opposite to the pull. >> Yeah, if it's not moving there's got to be something that's balance out F pull and that would be static friction going this way F sub S but we need to put some more subscripts on it because this is static frictional force on block 1 due to block 2, okay? Let's take a look at M2. M2 of course has gravity. What else is acting on M2, okay? >> M >> M1 is acting on M2. M1 is sitting on M2. So what is the force that I need to put on this picture? What should I label it? Okay, not M G yet but normal force of 2 onto 1. M1, 2 is up M2, 1 is down. This is block 1 pushing on block 2. It might be that we see that is in fact is equal to M1 times G but let's keep it like this for now to keep it general. Anything else? There's got to be something else if the whole thing is at rest, right? >> N 2 T. >> What's that? >> N 2 T. >> N 2 T. So there must be some normal force on 2 due to the table. The table is holding up block number 2. What else? It's not moving so this could be it. But we know that there's somebody trying to pull on this thing so there's got to be something else holding this whole thing in place which is static friction on 2 due to the table and then there is some force to the right to balance that out which is what? It's F sub S 2, 1. The static friction on 2 due to block 1. So this is what I mean when I say these things get kind of complicated quickly, right? Because look that simple picture and look at this mess that we have over here. It's a nightmare. It's not a nightmare but it's a bad dream. So what are the action/reaction pairs that we have just identified? N12 goes with N21. Block 1 is pushing on 2 but block 2 is pushing on block 1. Is there another action/reaction pair that we've identified? Yes it is F S12 and F S21. The frictional force here is exactly equal and opposite to the frictional force there, okay? And we know that those magnitudes are equal. Magnitude much M1 2 equals the magnitude of M21. Magnitude of F S12 equals the magnitude of F S21. These are the action/reaction pairs that we're talking about in this chapter, okay? So now that we have this free body diagram setup how are we going to deal with this problem? How could we possibly figure out what is the maximum pull that we could have and this thing still doesn't move? Well, we need to do some math. We need to write down Newton's Second Law and then we have to do some math. So let's do that. We have got number 1 sum of the forces in the x direction is equal to the mass times the acceleration in the x direction. F pull minus F S12 is equal to zero. The whole thing is at rest. The vertical components not too bad. Sum of the forces in the y direction equals the mass times the acceleration in the y direction we get N12 minus M 1 G that also equals zero. What about for the second one? For the second one we have sum of the forces in the x direction. What do we have? We have F S21. Minus F S1T. That equals zero and then we have the vertical forces N2T minus M 2 G minus N21 all that equals zero and this was of course the vertical equation. That's writing down Newton's Second Law and now if we're going to figure out the maximum F pull we need to do one more thing. We need to realize that static friction for instance, F S12 is less than or equal to mu S12 times the normal force on 1 due to 2 and F S2T is less than or equal to mu S2 T times the normal force on 2 due to the table. So how do you figure out the max pull? You set these to the maximum. Okay, you set them to equal and then you figure out how to solve for F pull. Okay? Questions about this approach? You can see why Newton just said for every action there's an equal and opposite reaction because otherwise it gets very complicated very quickly.
Table of contents
- 0. Math Review31m
- 1. Intro to Physics Units1h 23m
- 2. 1D Motion / Kinematics3h 56m
- Vectors, Scalars, & Displacement13m
- Average Velocity32m
- Intro to Acceleration7m
- Position-Time Graphs & Velocity26m
- Conceptual Problems with Position-Time Graphs22m
- Velocity-Time Graphs & Acceleration5m
- Calculating Displacement from Velocity-Time Graphs15m
- Conceptual Problems with Velocity-Time Graphs10m
- Calculating Change in Velocity from Acceleration-Time Graphs10m
- Graphing Position, Velocity, and Acceleration Graphs11m
- Kinematics Equations37m
- Vertical Motion and Free Fall19m
- Catch/Overtake Problems23m
- 3. Vectors2h 43m
- Review of Vectors vs. Scalars1m
- Introduction to Vectors7m
- Adding Vectors Graphically22m
- Vector Composition & Decomposition11m
- Adding Vectors by Components13m
- Trig Review24m
- Unit Vectors15m
- Introduction to Dot Product (Scalar Product)12m
- Calculating Dot Product Using Components12m
- Intro to Cross Product (Vector Product)23m
- Calculating Cross Product Using Components17m
- 4. 2D Kinematics1h 42m
- 5. Projectile Motion3h 6m
- 6. Intro to Forces (Dynamics)3h 22m
- 7. Friction, Inclines, Systems2h 44m
- 8. Centripetal Forces & Gravitation7h 26m
- Uniform Circular Motion7m
- Period and Frequency in Uniform Circular Motion20m
- Centripetal Forces15m
- Vertical Centripetal Forces10m
- Flat Curves9m
- Banked Curves10m
- Newton's Law of Gravity30m
- Gravitational Forces in 2D25m
- Acceleration Due to Gravity13m
- Satellite Motion: Intro5m
- Satellite Motion: Speed & Period35m
- Geosynchronous Orbits15m
- Overview of Kepler's Laws5m
- Kepler's First Law11m
- Kepler's Third Law16m
- Kepler's Third Law for Elliptical Orbits15m
- Gravitational Potential Energy21m
- Gravitational Potential Energy for Systems of Masses17m
- Escape Velocity21m
- Energy of Circular Orbits23m
- Energy of Elliptical Orbits36m
- Black Holes16m
- Gravitational Force Inside the Earth13m
- Mass Distribution with Calculus45m
- 9. Work & Energy1h 59m
- 10. Conservation of Energy2h 54m
- Intro to Energy Types3m
- Gravitational Potential Energy10m
- Intro to Conservation of Energy32m
- Energy with Non-Conservative Forces20m
- Springs & Elastic Potential Energy19m
- Solving Projectile Motion Using Energy13m
- Motion Along Curved Paths4m
- Rollercoaster Problems13m
- Pendulum Problems13m
- Energy in Connected Objects (Systems)24m
- Force & Potential Energy18m
- 11. Momentum & Impulse3h 40m
- Intro to Momentum11m
- Intro to Impulse14m
- Impulse with Variable Forces12m
- Intro to Conservation of Momentum17m
- Push-Away Problems19m
- Types of Collisions4m
- Completely Inelastic Collisions28m
- Adding Mass to a Moving System8m
- Collisions & Motion (Momentum & Energy)26m
- Ballistic Pendulum14m
- Collisions with Springs13m
- Elastic Collisions24m
- How to Identify the Type of Collision9m
- Intro to Center of Mass15m
- 12. Rotational Kinematics2h 59m
- 13. Rotational Inertia & Energy7h 4m
- More Conservation of Energy Problems54m
- Conservation of Energy in Rolling Motion45m
- Parallel Axis Theorem13m
- Intro to Moment of Inertia28m
- Moment of Inertia via Integration18m
- Moment of Inertia of Systems23m
- Moment of Inertia & Mass Distribution10m
- Intro to Rotational Kinetic Energy16m
- Energy of Rolling Motion18m
- Types of Motion & Energy24m
- Conservation of Energy with Rotation35m
- Torque with Kinematic Equations56m
- Rotational Dynamics with Two Motions50m
- Rotational Dynamics of Rolling Motion27m
- 14. Torque & Rotational Dynamics2h 5m
- 15. Rotational Equilibrium3h 39m
- 16. Angular Momentum3h 6m
- Opening/Closing Arms on Rotating Stool18m
- Conservation of Angular Momentum46m
- Angular Momentum & Newton's Second Law10m
- Intro to Angular Collisions15m
- Jumping Into/Out of Moving Disc23m
- Spinning on String of Variable Length20m
- Angular Collisions with Linear Motion8m
- Intro to Angular Momentum15m
- Angular Momentum of a Point Mass21m
- Angular Momentum of Objects in Linear Motion7m
- 17. Periodic Motion2h 9m
- 18. Waves & Sound3h 40m
- Intro to Waves11m
- Velocity of Transverse Waves21m
- Velocity of Longitudinal Waves11m
- Wave Functions31m
- Phase Constant14m
- Average Power of Waves on Strings10m
- Wave Intensity19m
- Sound Intensity13m
- Wave Interference8m
- Superposition of Wave Functions3m
- Standing Waves30m
- Standing Wave Functions14m
- Standing Sound Waves12m
- Beats8m
- The Doppler Effect7m
- 19. Fluid Mechanics2h 27m
- 20. Heat and Temperature3h 7m
- Temperature16m
- Linear Thermal Expansion14m
- Volume Thermal Expansion14m
- Moles and Avogadro's Number14m
- Specific Heat & Temperature Changes12m
- Latent Heat & Phase Changes16m
- Intro to Calorimetry21m
- Calorimetry with Temperature and Phase Changes15m
- Advanced Calorimetry: Equilibrium Temperature with Phase Changes9m
- Phase Diagrams, Triple Points and Critical Points6m
- Heat Transfer44m
- 21. Kinetic Theory of Ideal Gases1h 50m
- 22. The First Law of Thermodynamics1h 26m
- 23. The Second Law of Thermodynamics3h 11m
- 24. Electric Force & Field; Gauss' Law3h 42m
- 25. Electric Potential1h 51m
- 26. Capacitors & Dielectrics2h 2m
- 27. Resistors & DC Circuits3h 8m
- 28. Magnetic Fields and Forces2h 23m
- 29. Sources of Magnetic Field2h 30m
- Magnetic Field Produced by Moving Charges10m
- Magnetic Field Produced by Straight Currents27m
- Magnetic Force Between Parallel Currents12m
- Magnetic Force Between Two Moving Charges9m
- Magnetic Field Produced by Loops and Solenoids42m
- Toroidal Solenoids aka Toroids12m
- Biot-Savart Law (Calculus)18m
- Ampere's Law (Calculus)17m
- 30. Induction and Inductance3h 37m
- 31. Alternating Current2h 37m
- Alternating Voltages and Currents18m
- RMS Current and Voltage9m
- Phasors20m
- Resistors in AC Circuits9m
- Phasors for Resistors7m
- Capacitors in AC Circuits16m
- Phasors for Capacitors8m
- Inductors in AC Circuits13m
- Phasors for Inductors7m
- Impedance in AC Circuits18m
- Series LRC Circuits11m
- Resonance in Series LRC Circuits10m
- Power in AC Circuits5m
- 32. Electromagnetic Waves2h 14m
- 33. Geometric Optics2h 57m
- 34. Wave Optics1h 15m
- 35. Special Relativity2h 10m
6. Intro to Forces (Dynamics)
Forces in Connected Systems of Objects
Video duration:
11mPlay a video:
Related Videos
Related Practice