>> One concept that we've been talking about a bit is this idea of the center of mass. But we need to be careful in defining what exactly we mean by the center of mass. So anytime you have some object, you can always draw a coordinate system wherever you like. If that was my coordinate system, where would the center of mass be for this object? I don't know but let's pick. Let's say somewhere about there. That's a good enough guess. How would I calculate exactly where that point is? Well, for a blob like this, it's maybe a little bit tricky. But let's pretend that it's not a blob for a second. Let's say it is something like this. Pretend it's a square with masses m on each side. And now I can draw my coordinate system wherever I like. So why don't we draw the coordinate system right through the center? If this thing is a square and all the corners have mass M on it, you already know the answer to this. Where is the center of mass? What's your name in the back over there? >> (student speaking) Travis. >> Travis, where is the center of mass? >> (student speaking) In the center. >> In the center, right? It's got it in the name -- in the center. That's it. How do I write down an equation that tells me that? I do the following. X position of the center of mass is the following, M1, X1, plus M2, X2, plus dot, dot, dot. And I divide by the total mass, M1 plus M2 plus dot, dot, dot. I can rewrite this as a summation. It's the sum of M sub i, X sub i divided by capital M, the total mass of the system. And I can, of course, do the same thing for the Y center of mass. Y center of mass is going to be the sum over i, M sub i, Y sub i divided by the total mass. All right, with that information, let's calculate it for this particular example and see if Travis was right. Here's our object. We said that the X position of the center of mass is the sum of M sub i, X sub i divided by the total mass of the system. So let's just start from right here. And let's say that each side of this square is L. So we're going to have M1, X1 plus M2, X2 plus M3, X3, plus M4, X4. We have four particles and we're going to divide by the total mass. And let's just for kicks, let's start right here. Okay, what is the X position of that particle? Travis, what do you think? What's the X position of this particle down here? >> (student speaking) I don't think I understand the X position portion of it? >> Yeah, what would be the X location of this particle? It would be this position right here which is if this is the origin -- that would be negative L over 2, okay. So negative L over 2 for that first one and the first one we also said is just mass M so we'll take out that subscript. This is number one. This is number two. This is number three and this is number four. M2 which is also there's the mass M, that also has an X position of negative L over 2. M3 has an X position of positive L over two. X4 is also positive L over 2. And we're going to divide this thing by the total mass of the system which is just four m. And now you see what happens, right? We have a negative there that cancels with the positive there. We have a negative there that cancels with the positive there. And we get Xcm is equal to zero. So on our coordinate system, the X position of the center of mass is equal to zero. And by symmetry, you're going to get Ycm also equal to zero. Okay, so we were right. The center of mass is right in the middle of the system. And it is centered on our coordinate system that we drew. So back to our complicated blob. We have the rock, something like that. And we need to figure out how to find the center of mass of that rock, okay. How do you do it? Well, what we said last time was if we have discrete particles, we can write X center of mass is the sum over i M sub i, X sub i divided by the total mass. But we don't have individual particles anymore. We have a continuous distribution of matter. And so we need to change this thing into an integral. How do you do that? M becomes dm. The summation becomes an integral. R is what we call X. The bottom is still total mass. So let's call this one -- oops. Let's write it now with an integral. It's Xdm divided by the total mass. X is the X position of that little mass element dm. Y is going to look like this. Okay and if you have three dimensions, you can write Z center of mass as well. So if you know what the functional form is of your blob then you can plug it into the integral and you can calculate it. But let's say you don't know what it is. Let's say I give you a big rock and I ask you, "Where is the center of mass?" How do you find it? Let's say I hand you a rock. And I want you to tell me where the center of mass is of that rock. How would you do it? I'm asking you guys. What do you think? How would you find the center of mass of this rock if I hand it to you? Somebody hand the mic to Nasim. Nasim, what do you think? How would I find the center of mass of this rock if I handed you this rock? >> (student speaking) I'm not totally sure but -- maybe try like balancing it in some way? >> Okay. >> (student speaking) On something? >> Excellent. So why don't we take that rock and let's put it on the table? And if I put it on the table and I can get it to balance then I can draw a line straight down through that intersection point between the rock and the table. And the center of mass has to lie along that line. And now, let's do it again. We'll take the rock and we'll rotate it until it's standing up on one edge. Okay and so it's going to look something like this. I had taken my rock and I had rotated it up and now there is a new line that goes straight through that intersection point. And I can redraw my old line on this new picture. And wherever those two lines meet, that is the center of mass. That's how you figure out the center of mass of some complicated object like a rock, okay. And so when you go down to the harbor down in San Diego and you see people balancing those rocks on top of each other. The way you balance those rocks on top of each other is you make sure that that point is directly underneath the center of mass. And if it's not, then it's going to tilt one way and if it's off the other way, it'll tilt the other way. And so you stand there and you very carefully hold it and adjust it. Tilt it left and right until you get that center of mass directly above that contact point and then it will balance, okay. And it's hard to do especially if you have a big, complicated object like this and a little tiny point on the bottom. It's tough to get that point just right but there's people that do it all the time and they're very skilled at it. Question, can you hand him the mike? What's your name? >> (student speaking) Eric. >> Eric, is there a -- >> Be careful of the mic. Hold on a second. >> (student speaking) Okay. >> Yeah, Eric. You got a question? >> (student speaking) Yes. So the balance point is also the center of mass? Is that basically what you're saying? >> What I'm saying is the balance point, this point, is directly beneath the center of mass of the object. >> Oh, okay. >> All right. >> That makes sense. >> So wherever that contact point is, it's directly beneath the center of mass. So we did it twice. We put it on one side and then we put it on another. And we figured out where they intersect and that's where the center of mass is. >> (student speaking) Okay. >> All right? And now you kind of can see what's going to happen, right? If the rock tilts slightly to the right, gravity acting on that center of mass is going to torque the object and cause it to fall to the right. If it's slightly to the left then it's going to torque it and cause it to fall to the left. Yeah, so this is a great exercise of art, and physics, and balancing. It's really very tricky to do but pretty remarkable when you see it in action.
Table of contents
- 0. Math Review31m
- 1. Intro to Physics Units1h 23m
- 2. 1D Motion / Kinematics3h 56m
- Vectors, Scalars, & Displacement13m
- Average Velocity32m
- Intro to Acceleration7m
- Position-Time Graphs & Velocity26m
- Conceptual Problems with Position-Time Graphs22m
- Velocity-Time Graphs & Acceleration5m
- Calculating Displacement from Velocity-Time Graphs15m
- Conceptual Problems with Velocity-Time Graphs10m
- Calculating Change in Velocity from Acceleration-Time Graphs10m
- Graphing Position, Velocity, and Acceleration Graphs11m
- Kinematics Equations37m
- Vertical Motion and Free Fall19m
- Catch/Overtake Problems23m
- 3. Vectors2h 43m
- Review of Vectors vs. Scalars1m
- Introduction to Vectors7m
- Adding Vectors Graphically22m
- Vector Composition & Decomposition11m
- Adding Vectors by Components13m
- Trig Review24m
- Unit Vectors15m
- Introduction to Dot Product (Scalar Product)12m
- Calculating Dot Product Using Components12m
- Intro to Cross Product (Vector Product)23m
- Calculating Cross Product Using Components17m
- 4. 2D Kinematics1h 42m
- 5. Projectile Motion3h 6m
- 6. Intro to Forces (Dynamics)3h 22m
- 7. Friction, Inclines, Systems2h 44m
- 8. Centripetal Forces & Gravitation7h 26m
- Uniform Circular Motion7m
- Period and Frequency in Uniform Circular Motion20m
- Centripetal Forces15m
- Vertical Centripetal Forces10m
- Flat Curves9m
- Banked Curves10m
- Newton's Law of Gravity30m
- Gravitational Forces in 2D25m
- Acceleration Due to Gravity13m
- Satellite Motion: Intro5m
- Satellite Motion: Speed & Period35m
- Geosynchronous Orbits15m
- Overview of Kepler's Laws5m
- Kepler's First Law11m
- Kepler's Third Law16m
- Kepler's Third Law for Elliptical Orbits15m
- Gravitational Potential Energy21m
- Gravitational Potential Energy for Systems of Masses17m
- Escape Velocity21m
- Energy of Circular Orbits23m
- Energy of Elliptical Orbits36m
- Black Holes16m
- Gravitational Force Inside the Earth13m
- Mass Distribution with Calculus45m
- 9. Work & Energy1h 59m
- 10. Conservation of Energy2h 54m
- Intro to Energy Types3m
- Gravitational Potential Energy10m
- Intro to Conservation of Energy32m
- Energy with Non-Conservative Forces20m
- Springs & Elastic Potential Energy19m
- Solving Projectile Motion Using Energy13m
- Motion Along Curved Paths4m
- Rollercoaster Problems13m
- Pendulum Problems13m
- Energy in Connected Objects (Systems)24m
- Force & Potential Energy18m
- 11. Momentum & Impulse3h 40m
- Intro to Momentum11m
- Intro to Impulse14m
- Impulse with Variable Forces12m
- Intro to Conservation of Momentum17m
- Push-Away Problems19m
- Types of Collisions4m
- Completely Inelastic Collisions28m
- Adding Mass to a Moving System8m
- Collisions & Motion (Momentum & Energy)26m
- Ballistic Pendulum14m
- Collisions with Springs13m
- Elastic Collisions24m
- How to Identify the Type of Collision9m
- Intro to Center of Mass15m
- 12. Rotational Kinematics2h 59m
- 13. Rotational Inertia & Energy7h 4m
- More Conservation of Energy Problems54m
- Conservation of Energy in Rolling Motion45m
- Parallel Axis Theorem13m
- Intro to Moment of Inertia28m
- Moment of Inertia via Integration18m
- Moment of Inertia of Systems23m
- Moment of Inertia & Mass Distribution10m
- Intro to Rotational Kinetic Energy16m
- Energy of Rolling Motion18m
- Types of Motion & Energy24m
- Conservation of Energy with Rotation35m
- Torque with Kinematic Equations56m
- Rotational Dynamics with Two Motions50m
- Rotational Dynamics of Rolling Motion27m
- 14. Torque & Rotational Dynamics2h 5m
- 15. Rotational Equilibrium3h 39m
- 16. Angular Momentum3h 6m
- Opening/Closing Arms on Rotating Stool18m
- Conservation of Angular Momentum46m
- Angular Momentum & Newton's Second Law10m
- Intro to Angular Collisions15m
- Jumping Into/Out of Moving Disc23m
- Spinning on String of Variable Length20m
- Angular Collisions with Linear Motion8m
- Intro to Angular Momentum15m
- Angular Momentum of a Point Mass21m
- Angular Momentum of Objects in Linear Motion7m
- 17. Periodic Motion2h 9m
- 18. Waves & Sound3h 40m
- Intro to Waves11m
- Velocity of Transverse Waves21m
- Velocity of Longitudinal Waves11m
- Wave Functions31m
- Phase Constant14m
- Average Power of Waves on Strings10m
- Wave Intensity19m
- Sound Intensity13m
- Wave Interference8m
- Superposition of Wave Functions3m
- Standing Waves30m
- Standing Wave Functions14m
- Standing Sound Waves12m
- Beats8m
- The Doppler Effect7m
- 19. Fluid Mechanics2h 27m
- 20. Heat and Temperature3h 7m
- Temperature16m
- Linear Thermal Expansion14m
- Volume Thermal Expansion14m
- Moles and Avogadro's Number14m
- Specific Heat & Temperature Changes12m
- Latent Heat & Phase Changes16m
- Intro to Calorimetry21m
- Calorimetry with Temperature and Phase Changes15m
- Advanced Calorimetry: Equilibrium Temperature with Phase Changes9m
- Phase Diagrams, Triple Points and Critical Points6m
- Heat Transfer44m
- 21. Kinetic Theory of Ideal Gases1h 50m
- 22. The First Law of Thermodynamics1h 26m
- 23. The Second Law of Thermodynamics3h 11m
- 24. Electric Force & Field; Gauss' Law3h 42m
- 25. Electric Potential1h 51m
- 26. Capacitors & Dielectrics2h 2m
- 27. Resistors & DC Circuits3h 8m
- 28. Magnetic Fields and Forces2h 23m
- 29. Sources of Magnetic Field2h 30m
- Magnetic Field Produced by Moving Charges10m
- Magnetic Field Produced by Straight Currents27m
- Magnetic Force Between Parallel Currents12m
- Magnetic Force Between Two Moving Charges9m
- Magnetic Field Produced by Loops and Solenoids42m
- Toroidal Solenoids aka Toroids12m
- Biot-Savart Law (Calculus)18m
- Ampere's Law (Calculus)17m
- 30. Induction and Inductance3h 37m
- 31. Alternating Current2h 37m
- Alternating Voltages and Currents18m
- RMS Current and Voltage9m
- Phasors20m
- Resistors in AC Circuits9m
- Phasors for Resistors7m
- Capacitors in AC Circuits16m
- Phasors for Capacitors8m
- Inductors in AC Circuits13m
- Phasors for Inductors7m
- Impedance in AC Circuits18m
- Series LRC Circuits11m
- Resonance in Series LRC Circuits10m
- Power in AC Circuits5m
- 32. Electromagnetic Waves2h 14m
- 33. Geometric Optics2h 57m
- 34. Wave Optics1h 15m
- 35. Special Relativity2h 10m
11. Momentum & Impulse
Intro to Center of Mass
Video duration:
11mPlay a video:
Related Videos
Related Practice