This brings us to directed reactions because the mechanism that I showed you above, even though it's great and very easy to use, it only works with symmetrical ketones. It only works when there's only one type of enolate possible. But what happens if you have an asymmetrical ketone? That means that you would theoretically have more than one enolate possible. For example, take this ketone into consideration. I could get the red enolate on the more substituted side or I could get the blue enolate on the less substituted side. Would I get both? Would I get R groups forming on both sides? No. This is something that we have to answer using directed reactions. It turns out that you can use different bases to direct the direction of the deprotonation to make the enolate. This is a concept that should be familiar to you guys because we've used it before. This is simply a thermodynamic versus kinetic control reaction. The thermodynamic product, let's just review, is going to be the one that's more stable. In this case, since this is an enolate intermediated reaction, it's going to be the one that has the lowest overall energy or the most stable enolate. I'll show you how to determine which one's more stable in a second.
The kinetic product is the one with the lowest activation energy. How do we know which enolate is stable? It's more stable. Remember that an enolate goes through 2 resonance structures. One of the resonance structures is like this. But another resonance structure looks like this. Well, look at that. One of the resonance structures has an alkene in it. The way you determine which one is the most stable enolate is by the most substituted alpha carbon. Why? I'm drawing on that side and I really should have drawn it on the side with the actual red one. That's going to be over here. If you want, I know you hate me right now, but you can pause the video and redraw that on this side if you want or you can just draw an arrow. The one with the most substituted alpha carbon is going to be the most stable. That means that the red one would be my thermodynamic control because the one that is going to it has the most R groups on the alpha carbon. That means it's going to have the most R groups on my double bond and that's what makes the double bond stable. Remember that double bonds are stabilized through R groups.
What makes a kinetic enolate is the easiest to make or that's going to be the least substituted because it's less sterically hindered. These are the competing themes here. Specifically, how do we choose one or the other? If you want the blue enolate, you choose a bulky base like LDA. LDA is the most popular one in this section. You could also use tert-butoxide. A bulky base is going to favor the kinetic product because it's the easiest one to make. Whereas a small base, so for example, NaOH, is going to favor the thermodynamic because it's not going to have trouble getting into that spot to deprotonate and it's going to make the most stable enolate overall. You would determine which side you substitute by looking at your base and then using that enolate to react with your electrophile, whether it be an alkyl halide or an acid chloride. Awesome. In the next video, I want to talk about how this applies to esters.