All right. So I hope that you didn't say all of them because there are some that can and some that can't. Let me give you an example. The first one, there's a carbon here that has a bond to an oxygen. It has 2 bonds to carbon and then it has one bond to H. Would you guys agree with that? So now my question is, is there a way that I could turn this carbon into a carbon that has more bonds to oxygen? Here's the way you have to think about it. You have to think well, how many bonds to carbon does it already have? It has 2. It has 1, 2 bonds to carbon. Is that cool so far? Since it has 2 bonds to carbon, how many total bonds could it have to oxygen theoretically? 2. Because no matter what, carbon can only have 4 bonds. So what that means is that if it has 2 bonds to carbon, later on, I could oxidize it so that it has 2 bonds to oxygen. So could this be oxidized? Yes. This could be oxidized because I could make it in the form where there's 2 bonds to oxygen. So let's move on to the next one.
The next one, this carbon, could it be oxidized? No. This one is not going to be able to be oxidized because notice that it already has its maximum number of bonds to oxygen because it has 2 carbons. 1, 2. Is there a way to add a 3rd bond to oxygen? No. Let's move on to 3. Could 3 be oxidized? Yes. Because it only has one bond to carbon. So that means if it only has one bond to carbon, then it could have how many bonds to oxygen? 3. How many bonds does it have right now? Only 1. So it could actually be oxidized more than once. Then finally, we have compound number 4. 3 gets a check mark. 4, could this carbon be oxidized? Yes. Once again, because it only has one bond to carbon, so that means that we could take away that H and we could make another bond to oxygen there. So that's the way that it works. All of these could be oxidized except for 2, which can't because it already has the maximum number of bonds to carbon and oxygen.
All right. So what reagents are going to do this? Well, strong oxidizing agents are agents that are going to add the maximum number of oxygens possible while following the rule of not breaking any carbons. These reagents are going to be KMnO4. KMnO4 is a reagent that you've probably already seen, but in case you haven't, potassium permanganate, very strong oxidizing agent. Also, your chromium 6 reagents. Now it's a Cr6+. Remember that is the oxidation state of the atom. You are not going to have to calculate oxidation states in organic chemistry. What you should know is that if you see chromium present in any of these weird molecules, these are all examples of strong oxidizing agents. It turns out there's more reagents than this. The Jones reagent is an example of a chromium reagent where Jones' reagent would use CrO3 and sulfuric acid. So all I'm trying to say is that as long as you see some kind of chromium in the reagent, think this is a strong oxidizing agent. You don't have to actually calculate out the oxidation state. So what I want you guys to do for this next practice problem is go ahead and draw the new oxidation products of each of these molecules. So I want 4 different things in these boxes. If it's not going to react, put no reaction. But I want to see all the different oxidation products. So go ahead and try to do the first one.