Hey everyone. So in this video, we're going to take a look at our acidic and basic amino acids. Let's first start out with our acidic amino acids. They take the form of aspartic acid and glutamic acid. Now we know that with amino acids, we have three-letter codes, as well as one-letter codes. Three-letter codes are pretty easy because for the majority of the amino acids, they're just the first three letters of the amino acid's particular name. In this case, for acidic and basic amino acids, that's going to fit the description for the three-letter code. Here, aspartic acid, ASP, ASP. Glutamic acid, GLU, GLU. Now, here when it comes to their one-letter code, it can be a little bit tricky. Here we're going to determine their one-letter code by sounding them out phonetically. So if we say aspartic acid, aspardic, it sounds like there's a D within the description. So aspardic. So that's why we're going to say that its one-letter code is D. For glutamic acid, so glutamicmic at the end. So depending on how you say it phonetically it sounds like an E. Glutamic. So that's why we're gonna go with E here. So we have the one-letter code for aspartic acid being D and the one-letter code for glutamic acid being E. I put them in this order because I remembered as drinking acid you're going to the emergency room. Right? So here we're talking about drink D for aspartic and emergency E for glutamic. So that's why we list them as aspartic first then glutamic. Now for aspartic acid, what does it resemble? Well, here when it comes to aspartic acid, we're going to say that this carbon here is just connected to a carboxylic acid group. Remember, these are acids. Biological acids are carboxylic acids. It's just one example of a type of biological acid. So here, this carbon would just be connected to a carboxylic acid. This would be what aspartic acid resembles. Now for glutamic acid, it's a little bit trickier. We're going to say we don't have just one carbon, we're going to say this carbon here is connected to another carbon, and that carbon is connected to a carboxylic acid. Now, we can say here that these two carbons are connected together or glued together, because if you look you have glu and then E, they're glued together to help make glutamic acid. So that's the way I remember what glutamic acid looks like. I have my initial carbon in red. It's going to be glued to another carbon, and it's that carbon that's connected to a carboxylic acid. Right? So right now, we've learned two ways of finding out what our acidic amino acids would be. Next, we have our basic amino acids. Basic because they have basic side chains. Now, here they are lysine, they are histidine, and there are arginine. So here again, the three-letter code is based on the first three letters in their name. So if we look here we have lysine, LYS, histidine, HIS, and then Arginine is ARG. Here when it comes to their one-letter code, it's a little bit trickier. So what do I say to myself to help me remember this? Well, I kind of think of an old cartoon I used to look at when I was smaller. It was based on this basic idea. So basic basic side chain. This basic idea of a cat and a mouse, and the cat would always try to catch the mouse, but could never do it. That's Tom and Jerry. So I'm kind of giving my age a little bit, but I kind of go with this idea of Tom and Jerry to help me remember the basic side chains of amino acids because it's a basic concept. We're gonna say here that KHR stands for kittens hunt rats. So this idea again is a play on Tom and Jerry, the cartoon show. Now here, if we take a look, we can say that for lysine LS or K, the way I remember that lysine is connected to K is that we can say that lysine is a liar, but that's okay. Alright. So what do we have here? We have Lysine is connected to K. So that's the way I remember the one-letter code for lysine. And if we were to take a look at lysine, we'd say that lysine resembles methionine. We're gonna say here, Lysine resembles Methionine. If we look at the alphabet we can say that L is next to M on the alphabet chart. So lysine resembles Methionine, so here we draw it as. Here go our carbons, and at the end because we're dealing with a basic side chain we'd have an amine group, so NH2. So here this would represent lysine. For the next one, histidine, and arginine are a little bit trickier. Okay. So these, we're going to come up with other ways of recognizing them. Their one-letters are easier to see because with histidine, hist starts with an H. So for this one, we're going to say that this carbon is connected to a 5 membered ring. So what we're gonna do here is we're just gonna draw the 5 membered ring initially and then we're gonna we're gonna alter it. Because it's a basic side chain, we're gonna have the presence of nitrogen groups. We're gonna say that this carbon is connected to the 5 membered ring, and we're gonna pay attention to this carbon here in black. Now to draw this correctly, we're going to say that there's 2 nitrogens within this 5 membered ring. 1 of the nitrogens will be directly connected to that carbon in black and one of them will be one carbon away, so over here. The one carbon away is going to be double bonded because nitrogen ideally wants to make 3 bonds. So here we're going to put a double bond there, actually we're going to put these in blue keep up with the theme. And then the other nitrogen that's connected to that carbon in black, it needs to make 3 bonds as well, it's not double-bonded so in order to make its third bond it'll have a hydrogen branching off of it. So here, this represents histidine. It's basically our carbon in red connected to a 5-membered ring. The carbon in black is the one connected to that red carbon here. And it has 1 nitrogen directly connected to it and it has 1 nitrogen away from it. The one that's away from it is double bonded, the one that's next to it, connected to it, has a hydrogen and it's single bonded. Alright, so then those are those 2. And then finally here we have our arginine arginine. Depending on how you want to pronounce it. So here, this one's trickier. How do I remember_assigned_to_73_29_Start">what this structure looks like? Well, here we have ARG as its three-letter code, and we could think about where do I hear ARG? Argh. Well, you might hear argh if you bump your knee, hurt yourself, or step on a tack. So let's say you step on something sharp. Okay. And let's say you step on a tack. And you'll give out an expression of Argh! This hurts. Going along this theme is going to help us to remember what the structure of this amino acid resembles. We're going to say here that this amino acid, this carbon here will be connected to these carbons here and then that one will be connected to a nitrogen. In order to make its 3 bonds, it has a hydrogen on it. It's connected to a carbon which is double-bonded to another nitrogen. In order to make 3 bonds, it's single-bonded to a hydrogen. And then that double-bonded carbon is finally connected to its last nitrogen which is NH2. Now, here we're thinking about stepping on something sharp pointing like a tack, something triangular at the top, and if we were to think of this triangular thing, this end here kind of resembles a triangle. So stepping on this amino acid is very painful. We're going to say here that this represents a triangle of amines. Triangle is for 3, and what do we have here? We have 1, 2, 3 carbons involved that are coming off of this red carbon, and then how many nitrogens do we have? We have 1, 2, 3 nitrogens. Okay, so that's a way of us remembering what the structure of this amino acid resembles. So let me erase all these circles. Okay. So that would be our final structure. So remember, when it comes to our acidic and basic amino acids based on their side chains, to remember the 2, just remember drink acid, you're going to the emergency room. So here D is for aspartic acid and E for the emergency room is_ss">is for glutamic acid. Then based on my childhood cartoon, Tom and Jerry, we're going to say that kittens hunt rats and we're going to say here that K is for Lysine, H here is for histidine, and then we have an R here for arginine arginine. So that's how we can remember the different types of letter coding for the amino acids. And then just remember some of the tricks that I talked about when it comes to their structures. We have our aspartic acid, which is just that carbon in red branching off to a carboxylic acid. Glutamic acid, where that red carbon glues itself to another carbon which that carbon is connected to a carboxylic acid. And then we have our lysine has a structure similar to methionine. We have our histidine is just a red carbon connected to a 5-membered ring. And then we have finally arginine arginine, that's a painful arc. Think of a triangular tack where you step on it. It's made up of 3 amines, so we have 3 carbons and 3 nitrogens. So keep that in mind when examining these different types of amino acids.
Table of contents
- 1. A Review of General Chemistry5h 5m
- Summary23m
- Intro to Organic Chemistry5m
- Atomic Structure16m
- Wave Function9m
- Molecular Orbitals17m
- Sigma and Pi Bonds9m
- Octet Rule12m
- Bonding Preferences12m
- Formal Charges6m
- Skeletal Structure14m
- Lewis Structure20m
- Condensed Structural Formula15m
- Degrees of Unsaturation15m
- Constitutional Isomers14m
- Resonance Structures46m
- Hybridization23m
- Molecular Geometry16m
- Electronegativity22m
- 2. Molecular Representations1h 14m
- 3. Acids and Bases2h 46m
- 4. Alkanes and Cycloalkanes4h 19m
- IUPAC Naming29m
- Alkyl Groups13m
- Naming Cycloalkanes10m
- Naming Bicyclic Compounds10m
- Naming Alkyl Halides7m
- Naming Alkenes3m
- Naming Alcohols8m
- Naming Amines15m
- Cis vs Trans21m
- Conformational Isomers13m
- Newman Projections14m
- Drawing Newman Projections16m
- Barrier To Rotation7m
- Ring Strain8m
- Axial vs Equatorial7m
- Cis vs Trans Conformations4m
- Equatorial Preference14m
- Chair Flip9m
- Calculating Energy Difference Between Chair Conformations17m
- A-Values17m
- Decalin7m
- 5. Chirality3h 39m
- Constitutional Isomers vs. Stereoisomers9m
- Chirality12m
- Test 1:Plane of Symmetry7m
- Test 2:Stereocenter Test17m
- R and S Configuration43m
- Enantiomers vs. Diastereomers13m
- Atropisomers9m
- Meso Compound12m
- Test 3:Disubstituted Cycloalkanes13m
- What is the Relationship Between Isomers?16m
- Fischer Projection10m
- R and S of Fischer Projections7m
- Optical Activity5m
- Enantiomeric Excess20m
- Calculations with Enantiomeric Percentages11m
- Non-Carbon Chiral Centers8m
- 6. Thermodynamics and Kinetics1h 22m
- 7. Substitution Reactions1h 48m
- 8. Elimination Reactions2h 30m
- 9. Alkenes and Alkynes2h 9m
- 10. Addition Reactions3h 18m
- Addition Reaction6m
- Markovnikov5m
- Hydrohalogenation6m
- Acid-Catalyzed Hydration17m
- Oxymercuration15m
- Hydroboration26m
- Hydrogenation6m
- Halogenation6m
- Halohydrin12m
- Carbene12m
- Epoxidation8m
- Epoxide Reactions9m
- Dihydroxylation8m
- Ozonolysis7m
- Ozonolysis Full Mechanism24m
- Oxidative Cleavage3m
- Alkyne Oxidative Cleavage6m
- Alkyne Hydrohalogenation3m
- Alkyne Halogenation2m
- Alkyne Hydration6m
- Alkyne Hydroboration2m
- 11. Radical Reactions1h 58m
- 12. Alcohols, Ethers, Epoxides and Thiols2h 42m
- Alcohol Nomenclature4m
- Naming Ethers6m
- Naming Epoxides18m
- Naming Thiols11m
- Alcohol Synthesis7m
- Leaving Group Conversions - Using HX11m
- Leaving Group Conversions - SOCl2 and PBr313m
- Leaving Group Conversions - Sulfonyl Chlorides7m
- Leaving Group Conversions Summary4m
- Williamson Ether Synthesis3m
- Making Ethers - Alkoxymercuration4m
- Making Ethers - Alcohol Condensation4m
- Making Ethers - Acid-Catalyzed Alkoxylation4m
- Making Ethers - Cumulative Practice10m
- Ether Cleavage8m
- Alcohol Protecting Groups3m
- t-Butyl Ether Protecting Groups5m
- Silyl Ether Protecting Groups10m
- Sharpless Epoxidation9m
- Thiol Reactions6m
- Sulfide Oxidation4m
- 13. Alcohols and Carbonyl Compounds2h 17m
- 14. Synthetic Techniques1h 26m
- 15. Analytical Techniques:IR, NMR, Mass Spect7h 3m
- Purpose of Analytical Techniques5m
- Infrared Spectroscopy16m
- Infrared Spectroscopy Table31m
- IR Spect:Drawing Spectra40m
- IR Spect:Extra Practice26m
- NMR Spectroscopy10m
- 1H NMR:Number of Signals26m
- 1H NMR:Q-Test26m
- 1H NMR:E/Z Diastereoisomerism8m
- H NMR Table24m
- 1H NMR:Spin-Splitting (N + 1) Rule22m
- 1H NMR:Spin-Splitting Simple Tree Diagrams11m
- 1H NMR:Spin-Splitting Complex Tree Diagrams12m
- 1H NMR:Spin-Splitting Patterns8m
- NMR Integration18m
- NMR Practice14m
- Carbon NMR4m
- Structure Determination without Mass Spect47m
- Mass Spectrometry12m
- Mass Spect:Fragmentation28m
- Mass Spect:Isotopes27m
- 16. Conjugated Systems6h 13m
- Conjugation Chemistry13m
- Stability of Conjugated Intermediates4m
- Allylic Halogenation12m
- Reactions at the Allylic Position39m
- Conjugated Hydrohalogenation (1,2 vs 1,4 addition)26m
- Diels-Alder Reaction9m
- Diels-Alder Forming Bridged Products11m
- Diels-Alder Retrosynthesis8m
- Molecular Orbital Theory9m
- Drawing Atomic Orbitals6m
- Drawing Molecular Orbitals17m
- HOMO LUMO4m
- Orbital Diagram:3-atoms- Allylic Ions13m
- Orbital Diagram:4-atoms- 1,3-butadiene11m
- Orbital Diagram:5-atoms- Allylic Ions10m
- Orbital Diagram:6-atoms- 1,3,5-hexatriene13m
- Orbital Diagram:Excited States4m
- Pericyclic Reaction10m
- Thermal Cycloaddition Reactions26m
- Photochemical Cycloaddition Reactions26m
- Thermal Electrocyclic Reactions14m
- Photochemical Electrocyclic Reactions10m
- Cumulative Electrocyclic Problems25m
- Sigmatropic Rearrangement17m
- Cope Rearrangement9m
- Claisen Rearrangement15m
- 17. Ultraviolet Spectroscopy51m
- 18. Aromaticity2h 34m
- 19. Reactions of Aromatics: EAS and Beyond5h 1m
- Electrophilic Aromatic Substitution9m
- Benzene Reactions11m
- EAS:Halogenation Mechanism6m
- EAS:Nitration Mechanism9m
- EAS:Friedel-Crafts Alkylation Mechanism6m
- EAS:Friedel-Crafts Acylation Mechanism5m
- EAS:Any Carbocation Mechanism7m
- Electron Withdrawing Groups22m
- EAS:Ortho vs. Para Positions4m
- Acylation of Aniline9m
- Limitations of Friedel-Crafts Alkyation19m
- Advantages of Friedel-Crafts Acylation6m
- Blocking Groups - Sulfonic Acid12m
- EAS:Synergistic and Competitive Groups13m
- Side-Chain Halogenation6m
- Side-Chain Oxidation4m
- Reactions at Benzylic Positions31m
- Birch Reduction10m
- EAS:Sequence Groups4m
- EAS:Retrosynthesis29m
- Diazo Replacement Reactions6m
- Diazo Sequence Groups5m
- Diazo Retrosynthesis13m
- Nucleophilic Aromatic Substitution28m
- Benzyne16m
- 20. Phenols55m
- 21. Aldehydes and Ketones: Nucleophilic Addition4h 56m
- Naming Aldehydes8m
- Naming Ketones7m
- Oxidizing and Reducing Agents9m
- Oxidation of Alcohols28m
- Ozonolysis7m
- DIBAL5m
- Alkyne Hydration9m
- Nucleophilic Addition8m
- Cyanohydrin11m
- Organometallics on Ketones19m
- Overview of Nucleophilic Addition of Solvents13m
- Hydrates6m
- Hemiacetal9m
- Acetal12m
- Acetal Protecting Group16m
- Thioacetal6m
- Imine vs Enamine15m
- Addition of Amine Derivatives5m
- Wolff Kishner Reduction7m
- Baeyer-Villiger Oxidation39m
- Acid Chloride to Ketone7m
- Nitrile to Ketone9m
- Wittig Reaction18m
- Ketone and Aldehyde Synthesis Reactions14m
- 22. Carboxylic Acid Derivatives: NAS2h 51m
- Carboxylic Acid Derivatives7m
- Naming Carboxylic Acids9m
- Diacid Nomenclature6m
- Naming Esters5m
- Naming Nitriles3m
- Acid Chloride Nomenclature5m
- Naming Anhydrides7m
- Naming Amides5m
- Nucleophilic Acyl Substitution18m
- Carboxylic Acid to Acid Chloride6m
- Fischer Esterification5m
- Acid-Catalyzed Ester Hydrolysis4m
- Saponification3m
- Transesterification5m
- Lactones, Lactams and Cyclization Reactions10m
- Carboxylation5m
- Decarboxylation Mechanism14m
- Review of Nitriles46m
- 23. The Chemistry of Thioesters, Phophate Ester and Phosphate Anhydrides1h 10m
- 24. Enolate Chemistry: Reactions at the Alpha-Carbon1h 53m
- Tautomerization9m
- Tautomers of Dicarbonyl Compounds6m
- Enolate4m
- Acid-Catalyzed Alpha-Halogentation4m
- Base-Catalyzed Alpha-Halogentation3m
- Haloform Reaction8m
- Hell-Volhard-Zelinski Reaction3m
- Overview of Alpha-Alkylations and Acylations5m
- Enolate Alkylation and Acylation12m
- Enamine Alkylation and Acylation16m
- Beta-Dicarbonyl Synthesis Pathway7m
- Acetoacetic Ester Synthesis13m
- Malonic Ester Synthesis15m
- 25. Condensation Chemistry2h 9m
- 26. Amines1h 43m
- 27. Heterocycles2h 0m
- Nomenclature of Heterocycles15m
- Acid-Base Properties of Nitrogen Heterocycles10m
- Reactions of Pyrrole, Furan, and Thiophene13m
- Directing Effects in Substituted Pyrroles, Furans, and Thiophenes16m
- Addition Reactions of Furan8m
- EAS Reactions of Pyridine17m
- SNAr Reactions of Pyridine18m
- Side-Chain Reactions of Substituted Pyridines20m
- 28. Carbohydrates5h 53m
- Monosaccharide20m
- Monosaccharides - D and L Isomerism9m
- Monosaccharides - Drawing Fischer Projections18m
- Monosaccharides - Common Structures6m
- Monosaccharides - Forming Cyclic Hemiacetals12m
- Monosaccharides - Cyclization18m
- Monosaccharides - Haworth Projections13m
- Mutarotation11m
- Epimerization9m
- Monosaccharides - Aldose-Ketose Rearrangement8m
- Monosaccharides - Alkylation10m
- Monosaccharides - Acylation7m
- Glycoside6m
- Monosaccharides - N-Glycosides18m
- Monosaccharides - Reduction (Alditols)12m
- Monosaccharides - Weak Oxidation (Aldonic Acid)7m
- Reducing Sugars23m
- Monosaccharides - Strong Oxidation (Aldaric Acid)11m
- Monosaccharides - Oxidative Cleavage27m
- Monosaccharides - Osazones10m
- Monosaccharides - Kiliani-Fischer23m
- Monosaccharides - Wohl Degradation12m
- Monosaccharides - Ruff Degradation12m
- Disaccharide30m
- Polysaccharide11m
- 29. Amino Acids3h 20m
- Proteins and Amino Acids19m
- L and D Amino Acids14m
- Polar Amino Acids14m
- Amino Acid Chart18m
- Acid-Base Properties of Amino Acids33m
- Isoelectric Point14m
- Amino Acid Synthesis: HVZ Method12m
- Synthesis of Amino Acids: Acetamidomalonic Ester Synthesis16m
- Synthesis of Amino Acids: N-Phthalimidomalonic Ester Synthesis13m
- Synthesis of Amino Acids: Strecker Synthesis13m
- Reactions of Amino Acids: Esterification7m
- Reactions of Amino Acids: Acylation3m
- Reactions of Amino Acids: Hydrogenolysis6m
- Reactions of Amino Acids: Ninhydrin Test11m
- 30. Peptides and Proteins2h 42m
- Peptides12m
- Primary Protein Structure4m
- Secondary Protein Structure17m
- Tertiary Protein Structure11m
- Disulfide Bonds17m
- Quaternary Protein Structure10m
- Summary of Protein Structure7m
- Intro to Peptide Sequencing2m
- Peptide Sequencing: Partial Hydrolysis25m
- Peptide Sequencing: Partial Hydrolysis with Cyanogen Bromide7m
- Peptide Sequencing: Edman Degradation28m
- Merrifield Solid-Phase Peptide Synthesis18m
- 31. Catalysis in Organic Reactions1h 30m
- 32. Lipids 2h 50m
- 33. The Organic Chemistry of Metabolic Pathways2h 52m
- Intro to Metabolism6m
- ATP and Energy6m
- Intro to Coenzymes3m
- Coenzymes in Metabolism16m
- Energy Production in Biochemical Pathways5m
- Intro to Glycolysis3m
- Catabolism of Carbohydrates: Glycolysis27m
- Glycolysis Summary15m
- Pyruvate Oxidation (Simplified)4m
- Anaerobic Respiration11m
- Catabolism of Fats: Glycerol Metabolism11m
- Intro to Citric Acid Cycle7m
- Structures of the Citric Acid Cycle19m
- The Citric Acid Cycle35m
- 34. Nucleic Acids1h 32m
- 35. Transition Metals6h 14m
- Electron Configuration of Elements45m
- Coordination Complexes20m
- Ligands24m
- Electron Counting10m
- The 18 and 16 Electron Rule13m
- Cross-Coupling General Reactions40m
- Heck Reaction40m
- Stille Reaction13m
- Suzuki Reaction25m
- Sonogashira Coupling Reaction17m
- Fukuyama Coupling Reaction15m
- Kumada Coupling Reaction13m
- Negishi Coupling Reaction16m
- Buchwald-Hartwig Amination Reaction19m
- Eglinton Reaction17m
- Catalytic Allylic Alkylation18m
- Alkene Metathesis23m
- 36. Synthetic Polymers1h 49m
- Introduction to Polymers6m
- Chain-Growth Polymers10m
- Radical Polymerization15m
- Cationic Polymerization8m
- Anionic Polymerization8m
- Polymer Stereochemistry3m
- Ziegler-Natta Polymerization4m
- Copolymers6m
- Step-Growth Polymers11m
- Step-Growth Polymers: Urethane6m
- Step-Growth Polymers: Polyurethane Mechanism10m
- Step-Growth Polymers: Epoxy Resin8m
- Polymers Structure and Properties8m
29. Amino Acids
Amino Acid Chart
Video duration:
11mPlay a video:
Related Videos
Related Practice
Amino Acid Chart practice set
