Circle the Aldohexoses that would produce the same rough degradation product. If none would share a degradation product then just write Na. So guys before we can determine which ones are going to share a product, we need to do the same transformation to all of them. So do you guys remember how to do this? It's pretty easy. All we're going to do is take off the top carbonyl. So let's just take that off and pretend it doesn't exist anymore. Okay. If it even if it makes it easier for you scratch them out because they really don't matter anymore, okay.
Now this is going to be a little bit makeshift, but try to turn try to draw it in such a way so you can turn that top O now, the one that used to be at C2, turn it into an aldehyde. So I'm just going to do this double bond, double bond, double bond, double bond. Those H's are going to go away in the mechanism so we can even just scratch them out. Mechanism so we can even just scratch them out. Cool. Alright, so now we've really done the transformation. It's just in a very like crude way, but we've actually done it in a way that's very understandable carbonyl So don't worry about the direction of the carbonyl. All we really care about is for any of these 4 sugars, do they have their alcohols facing exactly the same directions so that they can be the same Aldopentose?
Do you guys see any that are exactly the same? So I do see one that looks kind of similar, which is D glucose over here related to L Glucose which is over here, okay? And if you I don't know, if you weren't paying attention maybe someone could pick these because they would think, oh but if you flip it then it's the same thing. That's wrong, don't think that way. These are different Aldopentoses guys because this is not a symmetrical molecule. We have the same group on both sides. Remember the top is going to be an aldehyde, the bottom is an