So guys, now we're going to discuss what is basically the holy grail of our analytical techniques section and that is the skill of structure determination. At some point this semester, you may be asked to produce a structure from scratch. That means draw out a structure from scratch using nothing but a combination of molecular formula, NMR's, and IR spectra. That means literally all you have is a bunch of peaks and a bunch of spikes and stalactites, and you're supposed to actually turn that into a carbon structure. That is exactly the right structure. Okay. So when students see this type of question, they tend to freak out because this is a very complex skill. We're having to synthesize tons of information. We're having to get creative, and students just start drawing every structure they can think of. Now, for you guys, you guys are smart. You're already watching my videos. That means you're trying to get ahead. And I'm going to tell you that is the first way to lose points on the exam because you're going to run out of time. You're going to draw a bunch of structures that aren't correct, and it's just not efficient. We need to be much more strategic in how we draw these structures. That's why I always teach my students to build a strong molecular sentence before you even begin getting creative and drawing structures. The way we build a molecular sentence is by gathering clues. We're going to gather as many clues as possible from that NMR, from the IR, from the molecular formula. We're going to put it all together in a very ordered way. We're almost going to basically create like a mini essay on this molecule. And then from that sentence, guild that takes actually a skill that takes a lot of work and it's one of the harder things you may have to do this semester. But I promise you that by using this strategy, it's going to cut down on the learning curve big time. Let's go ahead and just talk about the steps to build a strong molecular sentence. The very first step is to determine the IHD which is a skill that we learned in Organic Chemistry 1 and that I've included in this section so you can review it. The IHD is just basically going to tell us about double bonds, rings, triple bonds, etc. Then we're going to use the NMR, the IR, splitting patterns, and integrations. We're going to look at all of that for major clues. Now specifically, I put all four of these things for a reason. The reason is because we tend to find extremely helpful clues with these four things. For example, NMR. What if I have a chemical shift in my NMR that's like 9.1? I'm just giving you examples here. But there's a lot of different shifts that we learned. What if you learned if you saw that you had an NMR shift of 9.1? What would you suspect about that molecule? Well, there's really only one functional group that results in the 9 to 10 range and that would be an aldehyde. So immediately I would be suspecting there is an aldehyde. So now what if I look at my IR spectrum and there's also a peak there at 1710. Then would that confirm my suspicion that I have an aldehyde or would it deter me? It would confirm it because remember, aldehydes have a carbonyl peak at 1710. So then that would kind of confirm the aldehyde suspicion. Now, what if I look at my splitting patterns and I notice that in my NMR, I actually have a triplet and a quartet present. Already, I know that I'm looking for aldehydes that have some kind of ethyl group on them. That's a big deal. Now, what if I look at my integration? What kind of information do you get from integration? You get the number of hydrogens. Why is that important? Well, what if I have that shift at 9.1 for my NMR, but it actually has an integration of 2 H? What would that tell me? If my integration is 2 H for a shift of 9.1, that tells me that I actually don't just have 1 aldehyde. I actually have 2 aldehydes. The reason is that every aldehyde only has 1 hydrogen that results in the 9 to 10 range. So if I have 2 hydrogens, that must mean that I have 2 aldehydes. These are the kinds of clues that we gather right away. You have to get good at learning where to find those clues. Now we've done that. Now we do something that's kind of like a clutch prep special. This is something that you're not going to see in your textbook, but sometimes it's helpful. And that's to do something that I call calculating the NMR, the proton NMR peak, or the proton NMR signal to carbon ratio. Basically, this is just a test of symmetry. What I do is I say that you look at the number of signals that you have and you put that over the number of carbons that you have. If that number turns out to be less than 1 half, then that suggests that it's a symmetrical compound. Whereas if that number tends to be above 1 half, then it's probably going to be a pretty asymmetrical compound. The logic behind here being let's say that you have a molecule that's like C6 H14. Right? And you've got your proton NMR. Right? It starts at 0. It ends at 13. And all you have is 1 peak. Let's just say you have 1 peak. Well, what that's going to suggest to me is that I only have one signal. So that's going to be the 1 in my fraction. And I have 6 carbons. That's going to tell me that a lot of these hydrogens are exactly the same as each other. Actually, they're all exactly the same if I'm only getting one signal. The only way that they could all be the same is if the molecule is symmetrical. This must be a pretty symmetrical molecule if it's giving me a ratio or a fraction that's so below 1 half. It's 1 6th instead of 1 half. Does that kind of make sense? Basically, my fraction is just a measure of how symmetrical this molecule probably is or how asymmetrical it is. Now because of the fact that I literally made this up, it's something that I've used for many years but it's also not for sure. You know, it's not like a tried and true method. So what that means is that you can never just rule out a structure because of symmetry. I've had students that say, oh, but that molecule doesn't look symmetrical so that can't be it. Don't do that. This is more of a hint than anything else. It should serve as guidance but it shouldn't serve as your final cut. For example, symmetry in straight chains can be very difficult to visualize. So I don't want you guys to just go draw structures just based off of this rule. Just use it as a helping hint more than anything else. Also, just another point, it tends to be really helpful at the extremes and not very helpful in the middle. If you take your carbon, you know, if you take your fraction and it happens to be exactly 1 half, let's say that it happens to be 2 over 4, That's not very useful to me. 2 over 4 is 1 half. That could really be anything. When this rule becomes really helpful is when I have something either like a very, very low number like 1 over 10, let's say. That would tell me it's extremely symmetrical. Or when I have a really, really high number like 8 over 10, then that would also tell me because it's very asymmetrical. Enough about that rule. The last thing is that you restate at the end, after you've gathered all these clues, after you've gathered your symmetry, you restate the number of proton NMR signals needed because you should only be drawing structures that actually have the number of signals needed. For example, if your proton NMR only has 3 signals, you should only draw structures that could yield 3 signals in a proton NMR. It's a waste to draw a structure that doesn't give that number. At this point, this is when you get creative. Unfortunately, this is a word that many of you are scared of. But what I'm trying to do here is take the most creativity out of it as possible because I know that's the hard part is trying to like really think about what could it be. Could it be this or that? I'm going to try to give you a system, so that when you do get creative, there's not that much to think about. It's literally maybe you have 2, 3, or 4 different drawings that are possible but not more than that. This is where you draw out everything that fits the above criteria. And then finally, once you've drawn all the possible structures that could fit all of those clues, that molecular sentence that we built, you finally use a combination of shifts, integrations, and splitting to confirm which structure is the right one. I know that was a mouthful. What we want to do for this next example is we're finally going to get into structure termination, but I'm not going to actually give you guys this molecule yet. I just want you guys to learn how to build that strong molecular sentence ahead of time. Basically, what we're doing here is I've given you a molecular formula. I've given you data from an IR and I've given you data from a proton NMR. These numbers by the way are the shifts. So the 2.29.4, you guys should know what 4 H and 2 H are. Those are integrations. You should recognize what the IR is. These are all major clues. There's a ton of clues going on around here. What I want to do is I'm going to go ahead and stop the video and I'm going to have you guys go step by step and I want you guys to figure out the IHD. I want you to figure out every clue possible that you can gather here. I've already given you a lot of hints. I want you to think about symmetry if that's important. And then finally, I want you to only draw structures that have 2 peaks in a proton NMR. At that point, I'll kind of take over from there. But I just want you guys to build the molecular_sentence and then only draw possible structures that fit that sentence and have 2 peaks in the proton NMR. Go ahead and take a stab at it and I'll be right back.
Table of contents
- 1. A Review of General Chemistry5h 5m
- Summary23m
- Intro to Organic Chemistry5m
- Atomic Structure16m
- Wave Function9m
- Molecular Orbitals17m
- Sigma and Pi Bonds9m
- Octet Rule12m
- Bonding Preferences12m
- Formal Charges6m
- Skeletal Structure14m
- Lewis Structure20m
- Condensed Structural Formula15m
- Degrees of Unsaturation15m
- Constitutional Isomers14m
- Resonance Structures46m
- Hybridization23m
- Molecular Geometry16m
- Electronegativity22m
- 2. Molecular Representations1h 14m
- 3. Acids and Bases2h 46m
- 4. Alkanes and Cycloalkanes4h 19m
- IUPAC Naming29m
- Alkyl Groups13m
- Naming Cycloalkanes10m
- Naming Bicyclic Compounds10m
- Naming Alkyl Halides7m
- Naming Alkenes3m
- Naming Alcohols8m
- Naming Amines15m
- Cis vs Trans21m
- Conformational Isomers13m
- Newman Projections14m
- Drawing Newman Projections16m
- Barrier To Rotation7m
- Ring Strain8m
- Axial vs Equatorial7m
- Cis vs Trans Conformations4m
- Equatorial Preference14m
- Chair Flip9m
- Calculating Energy Difference Between Chair Conformations17m
- A-Values17m
- Decalin7m
- 5. Chirality3h 39m
- Constitutional Isomers vs. Stereoisomers9m
- Chirality12m
- Test 1:Plane of Symmetry7m
- Test 2:Stereocenter Test17m
- R and S Configuration43m
- Enantiomers vs. Diastereomers13m
- Atropisomers9m
- Meso Compound12m
- Test 3:Disubstituted Cycloalkanes13m
- What is the Relationship Between Isomers?16m
- Fischer Projection10m
- R and S of Fischer Projections7m
- Optical Activity5m
- Enantiomeric Excess20m
- Calculations with Enantiomeric Percentages11m
- Non-Carbon Chiral Centers8m
- 6. Thermodynamics and Kinetics1h 22m
- 7. Substitution Reactions1h 48m
- 8. Elimination Reactions2h 30m
- 9. Alkenes and Alkynes2h 9m
- 10. Addition Reactions3h 18m
- Addition Reaction6m
- Markovnikov5m
- Hydrohalogenation6m
- Acid-Catalyzed Hydration17m
- Oxymercuration15m
- Hydroboration26m
- Hydrogenation6m
- Halogenation6m
- Halohydrin12m
- Carbene12m
- Epoxidation8m
- Epoxide Reactions9m
- Dihydroxylation8m
- Ozonolysis7m
- Ozonolysis Full Mechanism24m
- Oxidative Cleavage3m
- Alkyne Oxidative Cleavage6m
- Alkyne Hydrohalogenation3m
- Alkyne Halogenation2m
- Alkyne Hydration6m
- Alkyne Hydroboration2m
- 11. Radical Reactions1h 58m
- 12. Alcohols, Ethers, Epoxides and Thiols2h 42m
- Alcohol Nomenclature4m
- Naming Ethers6m
- Naming Epoxides18m
- Naming Thiols11m
- Alcohol Synthesis7m
- Leaving Group Conversions - Using HX11m
- Leaving Group Conversions - SOCl2 and PBr313m
- Leaving Group Conversions - Sulfonyl Chlorides7m
- Leaving Group Conversions Summary4m
- Williamson Ether Synthesis3m
- Making Ethers - Alkoxymercuration4m
- Making Ethers - Alcohol Condensation4m
- Making Ethers - Acid-Catalyzed Alkoxylation4m
- Making Ethers - Cumulative Practice10m
- Ether Cleavage8m
- Alcohol Protecting Groups3m
- t-Butyl Ether Protecting Groups5m
- Silyl Ether Protecting Groups10m
- Sharpless Epoxidation9m
- Thiol Reactions6m
- Sulfide Oxidation4m
- 13. Alcohols and Carbonyl Compounds2h 17m
- 14. Synthetic Techniques1h 26m
- 15. Analytical Techniques:IR, NMR, Mass Spect7h 3m
- Purpose of Analytical Techniques5m
- Infrared Spectroscopy16m
- Infrared Spectroscopy Table31m
- IR Spect:Drawing Spectra40m
- IR Spect:Extra Practice26m
- NMR Spectroscopy10m
- 1H NMR:Number of Signals26m
- 1H NMR:Q-Test26m
- 1H NMR:E/Z Diastereoisomerism8m
- H NMR Table24m
- 1H NMR:Spin-Splitting (N + 1) Rule22m
- 1H NMR:Spin-Splitting Simple Tree Diagrams11m
- 1H NMR:Spin-Splitting Complex Tree Diagrams12m
- 1H NMR:Spin-Splitting Patterns8m
- NMR Integration18m
- NMR Practice14m
- Carbon NMR4m
- Structure Determination without Mass Spect47m
- Mass Spectrometry12m
- Mass Spect:Fragmentation28m
- Mass Spect:Isotopes27m
- 16. Conjugated Systems6h 13m
- Conjugation Chemistry13m
- Stability of Conjugated Intermediates4m
- Allylic Halogenation12m
- Reactions at the Allylic Position39m
- Conjugated Hydrohalogenation (1,2 vs 1,4 addition)26m
- Diels-Alder Reaction9m
- Diels-Alder Forming Bridged Products11m
- Diels-Alder Retrosynthesis8m
- Molecular Orbital Theory9m
- Drawing Atomic Orbitals6m
- Drawing Molecular Orbitals17m
- HOMO LUMO4m
- Orbital Diagram:3-atoms- Allylic Ions13m
- Orbital Diagram:4-atoms- 1,3-butadiene11m
- Orbital Diagram:5-atoms- Allylic Ions10m
- Orbital Diagram:6-atoms- 1,3,5-hexatriene13m
- Orbital Diagram:Excited States4m
- Pericyclic Reaction10m
- Thermal Cycloaddition Reactions26m
- Photochemical Cycloaddition Reactions26m
- Thermal Electrocyclic Reactions14m
- Photochemical Electrocyclic Reactions10m
- Cumulative Electrocyclic Problems25m
- Sigmatropic Rearrangement17m
- Cope Rearrangement9m
- Claisen Rearrangement15m
- 17. Ultraviolet Spectroscopy51m
- 18. Aromaticity2h 34m
- 19. Reactions of Aromatics: EAS and Beyond5h 1m
- Electrophilic Aromatic Substitution9m
- Benzene Reactions11m
- EAS:Halogenation Mechanism6m
- EAS:Nitration Mechanism9m
- EAS:Friedel-Crafts Alkylation Mechanism6m
- EAS:Friedel-Crafts Acylation Mechanism5m
- EAS:Any Carbocation Mechanism7m
- Electron Withdrawing Groups22m
- EAS:Ortho vs. Para Positions4m
- Acylation of Aniline9m
- Limitations of Friedel-Crafts Alkyation19m
- Advantages of Friedel-Crafts Acylation6m
- Blocking Groups - Sulfonic Acid12m
- EAS:Synergistic and Competitive Groups13m
- Side-Chain Halogenation6m
- Side-Chain Oxidation4m
- Reactions at Benzylic Positions31m
- Birch Reduction10m
- EAS:Sequence Groups4m
- EAS:Retrosynthesis29m
- Diazo Replacement Reactions6m
- Diazo Sequence Groups5m
- Diazo Retrosynthesis13m
- Nucleophilic Aromatic Substitution28m
- Benzyne16m
- 20. Phenols55m
- 21. Aldehydes and Ketones: Nucleophilic Addition4h 56m
- Naming Aldehydes8m
- Naming Ketones7m
- Oxidizing and Reducing Agents9m
- Oxidation of Alcohols28m
- Ozonolysis7m
- DIBAL5m
- Alkyne Hydration9m
- Nucleophilic Addition8m
- Cyanohydrin11m
- Organometallics on Ketones19m
- Overview of Nucleophilic Addition of Solvents13m
- Hydrates6m
- Hemiacetal9m
- Acetal12m
- Acetal Protecting Group16m
- Thioacetal6m
- Imine vs Enamine15m
- Addition of Amine Derivatives5m
- Wolff Kishner Reduction7m
- Baeyer-Villiger Oxidation39m
- Acid Chloride to Ketone7m
- Nitrile to Ketone9m
- Wittig Reaction18m
- Ketone and Aldehyde Synthesis Reactions14m
- 22. Carboxylic Acid Derivatives: NAS2h 51m
- Carboxylic Acid Derivatives7m
- Naming Carboxylic Acids9m
- Diacid Nomenclature6m
- Naming Esters5m
- Naming Nitriles3m
- Acid Chloride Nomenclature5m
- Naming Anhydrides7m
- Naming Amides5m
- Nucleophilic Acyl Substitution18m
- Carboxylic Acid to Acid Chloride6m
- Fischer Esterification5m
- Acid-Catalyzed Ester Hydrolysis4m
- Saponification3m
- Transesterification5m
- Lactones, Lactams and Cyclization Reactions10m
- Carboxylation5m
- Decarboxylation Mechanism14m
- Review of Nitriles46m
- 23. The Chemistry of Thioesters, Phophate Ester and Phosphate Anhydrides1h 10m
- 24. Enolate Chemistry: Reactions at the Alpha-Carbon1h 53m
- Tautomerization9m
- Tautomers of Dicarbonyl Compounds6m
- Enolate4m
- Acid-Catalyzed Alpha-Halogentation4m
- Base-Catalyzed Alpha-Halogentation3m
- Haloform Reaction8m
- Hell-Volhard-Zelinski Reaction3m
- Overview of Alpha-Alkylations and Acylations5m
- Enolate Alkylation and Acylation12m
- Enamine Alkylation and Acylation16m
- Beta-Dicarbonyl Synthesis Pathway7m
- Acetoacetic Ester Synthesis13m
- Malonic Ester Synthesis15m
- 25. Condensation Chemistry2h 9m
- 26. Amines1h 43m
- 27. Heterocycles2h 0m
- Nomenclature of Heterocycles15m
- Acid-Base Properties of Nitrogen Heterocycles10m
- Reactions of Pyrrole, Furan, and Thiophene13m
- Directing Effects in Substituted Pyrroles, Furans, and Thiophenes16m
- Addition Reactions of Furan8m
- EAS Reactions of Pyridine17m
- SNAr Reactions of Pyridine18m
- Side-Chain Reactions of Substituted Pyridines20m
- 28. Carbohydrates5h 53m
- Monosaccharide20m
- Monosaccharides - D and L Isomerism9m
- Monosaccharides - Drawing Fischer Projections18m
- Monosaccharides - Common Structures6m
- Monosaccharides - Forming Cyclic Hemiacetals12m
- Monosaccharides - Cyclization18m
- Monosaccharides - Haworth Projections13m
- Mutarotation11m
- Epimerization9m
- Monosaccharides - Aldose-Ketose Rearrangement8m
- Monosaccharides - Alkylation10m
- Monosaccharides - Acylation7m
- Glycoside6m
- Monosaccharides - N-Glycosides18m
- Monosaccharides - Reduction (Alditols)12m
- Monosaccharides - Weak Oxidation (Aldonic Acid)7m
- Reducing Sugars23m
- Monosaccharides - Strong Oxidation (Aldaric Acid)11m
- Monosaccharides - Oxidative Cleavage27m
- Monosaccharides - Osazones10m
- Monosaccharides - Kiliani-Fischer23m
- Monosaccharides - Wohl Degradation12m
- Monosaccharides - Ruff Degradation12m
- Disaccharide30m
- Polysaccharide11m
- 29. Amino Acids3h 20m
- Proteins and Amino Acids19m
- L and D Amino Acids14m
- Polar Amino Acids14m
- Amino Acid Chart18m
- Acid-Base Properties of Amino Acids33m
- Isoelectric Point14m
- Amino Acid Synthesis: HVZ Method12m
- Synthesis of Amino Acids: Acetamidomalonic Ester Synthesis16m
- Synthesis of Amino Acids: N-Phthalimidomalonic Ester Synthesis13m
- Synthesis of Amino Acids: Strecker Synthesis13m
- Reactions of Amino Acids: Esterification7m
- Reactions of Amino Acids: Acylation3m
- Reactions of Amino Acids: Hydrogenolysis6m
- Reactions of Amino Acids: Ninhydrin Test11m
- 30. Peptides and Proteins2h 42m
- Peptides12m
- Primary Protein Structure4m
- Secondary Protein Structure17m
- Tertiary Protein Structure11m
- Disulfide Bonds17m
- Quaternary Protein Structure10m
- Summary of Protein Structure7m
- Intro to Peptide Sequencing2m
- Peptide Sequencing: Partial Hydrolysis25m
- Peptide Sequencing: Partial Hydrolysis with Cyanogen Bromide7m
- Peptide Sequencing: Edman Degradation28m
- Merrifield Solid-Phase Peptide Synthesis18m
- 31. Catalysis in Organic Reactions1h 30m
- 32. Lipids 2h 50m
- 33. The Organic Chemistry of Metabolic Pathways2h 52m
- Intro to Metabolism6m
- ATP and Energy6m
- Intro to Coenzymes3m
- Coenzymes in Metabolism16m
- Energy Production in Biochemical Pathways5m
- Intro to Glycolysis3m
- Catabolism of Carbohydrates: Glycolysis27m
- Glycolysis Summary15m
- Pyruvate Oxidation (Simplified)4m
- Anaerobic Respiration11m
- Catabolism of Fats: Glycerol Metabolism11m
- Intro to Citric Acid Cycle7m
- Structures of the Citric Acid Cycle19m
- The Citric Acid Cycle35m
- 34. Nucleic Acids1h 32m
- 35. Transition Metals6h 14m
- Electron Configuration of Elements45m
- Coordination Complexes20m
- Ligands24m
- Electron Counting10m
- The 18 and 16 Electron Rule13m
- Cross-Coupling General Reactions40m
- Heck Reaction40m
- Stille Reaction13m
- Suzuki Reaction25m
- Sonogashira Coupling Reaction17m
- Fukuyama Coupling Reaction15m
- Kumada Coupling Reaction13m
- Negishi Coupling Reaction16m
- Buchwald-Hartwig Amination Reaction19m
- Eglinton Reaction17m
- Catalytic Allylic Alkylation18m
- Alkene Metathesis23m
- 36. Synthetic Polymers1h 49m
- Introduction to Polymers6m
- Chain-Growth Polymers10m
- Radical Polymerization15m
- Cationic Polymerization8m
- Anionic Polymerization8m
- Polymer Stereochemistry3m
- Ziegler-Natta Polymerization4m
- Copolymers6m
- Step-Growth Polymers11m
- Step-Growth Polymers: Urethane6m
- Step-Growth Polymers: Polyurethane Mechanism10m
- Step-Growth Polymers: Epoxy Resin8m
- Polymers Structure and Properties8m
15. Analytical Techniques:IR, NMR, Mass Spect
Structure Determination without Mass Spect
Video duration:
11mPlay a video:
Related Videos
Related Practice
Structure Determination without Mass Spect practice set
