Table of contents
- 1. Introduction to Genetics51m
- 2. Mendel's Laws of Inheritance3h 37m
- 3. Extensions to Mendelian Inheritance2h 41m
- 4. Genetic Mapping and Linkage2h 28m
- 5. Genetics of Bacteria and Viruses1h 21m
- 6. Chromosomal Variation1h 48m
- 7. DNA and Chromosome Structure56m
- 8. DNA Replication1h 10m
- 9. Mitosis and Meiosis1h 34m
- 10. Transcription1h 0m
- 11. Translation58m
- 12. Gene Regulation in Prokaryotes1h 19m
- 13. Gene Regulation in Eukaryotes44m
- 14. Genetic Control of Development44m
- 15. Genomes and Genomics1h 50m
- 16. Transposable Elements47m
- 17. Mutation, Repair, and Recombination1h 6m
- 18. Molecular Genetic Tools19m
- 19. Cancer Genetics29m
- 20. Quantitative Genetics1h 26m
- 21. Population Genetics50m
- 22. Evolutionary Genetics29m
18. Molecular Genetic Tools
Genetic Cloning
2:51 minutes
Problem 1e
Textbook Question
Textbook QuestionIn this chapter we focused on how specific DNA sequences can be copied, identified, characterized, and sequenced. At the same time, we found many opportunities to consider the methods and reasoning underlying these techniques. From the explanations given in the chapter, what answers would you propose to the following fundamental questions?
In a recombinant DNA cloning experiment, how can we determine whether DNA fragments of interest have been incorporated into plasmids and, once host cells are transformed, which cells contain recombinant DNA?
Verified Solution
This video solution was recommended by our tutors as helpful for the problem above
Video duration:
2mPlay a video:
245
views
Was this helpful?
Related Videos
Related Practice