Table of contents
- 1. Introduction to Genetics51m
- 2. Mendel's Laws of Inheritance3h 37m
- 3. Extensions to Mendelian Inheritance2h 41m
- 4. Genetic Mapping and Linkage2h 28m
- 5. Genetics of Bacteria and Viruses1h 21m
- 6. Chromosomal Variation1h 48m
- 7. DNA and Chromosome Structure56m
- 8. DNA Replication1h 10m
- 9. Mitosis and Meiosis1h 34m
- 10. Transcription1h 0m
- 11. Translation58m
- 12. Gene Regulation in Prokaryotes1h 19m
- 13. Gene Regulation in Eukaryotes44m
- 14. Genetic Control of Development44m
- 15. Genomes and Genomics1h 50m
- 16. Transposable Elements47m
- 17. Mutation, Repair, and Recombination1h 6m
- 18. Molecular Genetic Tools19m
- 19. Cancer Genetics29m
- 20. Quantitative Genetics1h 26m
- 21. Population Genetics50m
- 22. Evolutionary Genetics29m
9. Mitosis and Meiosis
Mitosis
5:04 minutes
Problem 32h
Textbook Question
Textbook QuestionFrom a piece of blank paper, cut out three sets of four cigar-shaped structures (a total of 12 structures). These will represent chromatids. Be sure each member of a set of four chromatids has the same length and girth. In set one, label two chromatids 'A' and two chromatids 'a.' Cut each of these chromatids about halfway across near their midpoint and slide the two 'A' chromatids together at the cuts, to form a single set of attached sister chromatids. Do the same for the 'a' chromatids. In the second set of four chromatids, label two 'B' and two 'b.' Cut and slide these together as you did for the first set, joining the 'B' chromatids together and the 'b' chromatids together. Repeat this process for the third set of chromatids, labeling them as 'D' and 'd.' You now have models for three pairs of homologous chromosomes, for a total of six chromosomes. Are there any alternative alignments of the chromosomes for this cell-division stage? Explain.
Verified Solution
This video solution was recommended by our tutors as helpful for the problem above
Video duration:
5mPlay a video:
Was this helpful?
Key Concepts
Here are the essential concepts you must grasp in order to answer the question correctly.
Chromatids and Chromosomes
Chromatids are the two identical halves of a replicated chromosome, connected at a region called the centromere. During cell division, specifically in mitosis and meiosis, chromatids separate to ensure that each daughter cell receives an identical set of chromosomes. Understanding the structure and function of chromatids is essential for grasping how genetic material is distributed during cell division.
Recommended video:
Guided course
04:35
Chromatin
Homologous Chromosomes
Homologous chromosomes are pairs of chromosomes that have the same structure and gene sequence but may carry different alleles. In the context of meiosis, these chromosomes align and can exchange genetic material through a process called crossing over, which increases genetic diversity. Recognizing the role of homologous chromosomes is crucial for understanding genetic variation and inheritance patterns.
Recommended video:
Guided course
07:10
Chromosome Structure
Cell Division and Alignment
Cell division involves the processes of mitosis and meiosis, where chromosomes align at the cell's equatorial plane before being separated into daughter cells. The alignment of chromosomes can vary, particularly during meiosis, where independent assortment can lead to different combinations of chromosomes in gametes. This concept is vital for explaining how alternative alignments can result in genetic diversity among offspring.
Recommended video:
Guided course
03:52
Cell-cell interactions
Related Videos
Related Practice